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What for?

• Animation!
• Mesh editing
• Image warping (2D)

This, and many other images in this presentation are from ‘Polygon Mesh Processing’ textbook by Botsch et al. 
or their website 



Warning:

TMI
This topic is immense

We’ll only see a few samples



Deformation: user interface

• Handles
• Cages
• Skeletons
• …

Ju et al., SIGGRAPH 2007

More on 
those later



Deformation models

Direct Variational

𝑣! = ∑𝑤"𝑇" 𝑣 𝑣! = argmin
"

𝐸(𝑥)

• Linear Blend Skinning
• Dual Quaternion Skinning
• …

• Multiresolution editing
• As-Rigid-As-Possible 
• Laplacian Mesh Editing
• …
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Deformation: user interface

• Handles
• Cages
• Skeletons
• …



Modeling

Paint three surface areas:
• Constrained
• Smooth falloff
• Fixed



Formulation

Find displacement vector field 𝑑
• Smooth
• Satisfies constraints

𝑆

𝑑 known

𝑆 ! = {𝑝 + 𝑑(𝑝)|𝑝 ∈ 𝑆 }

𝑑 = 0

𝑑 =?



Simplest idea

• 𝑑 = 𝑠 𝑝 ⋅ 𝐷
• 𝑠(𝑝) is a smooth function:

– 1 on green vertices
– 0 on grey ones 𝑑 known = 𝑫

𝑑 = 0

𝑑 =?



Geodesic distance?

Reality     vs     Expectation



How to find 𝑠(𝑝)?

• Something inversely proportional to 
geodesic distance

• Or our favorite:



Physically-Based

Find a deformation that preserves both 
fundamental forms

Express the fundamental forms of 𝑆′ via vector field 𝑑
Expensive to 

optimize!

F F



Shell-Based Deformation

Find a deformation that preserves both 
fundamental forms

Linearize Express the fundamental forms of 𝑆′ via vector 
field 𝑑



Physically-Based

Gateaux derivative =>

−𝑘!Δ𝑑 + 𝑘"Δ#𝑑 = 0



Physically-Based

Gateaux derivative =>

−𝑘!Δ𝑑 + 𝑘"Δ#𝑑 = 0
Bi-Laplacian

𝑥
𝑦
𝑧



Deformation Energies

Initial state ∆ 2𝑑 = 0

∆ 2𝑝 = 0∆ 𝑝 = 0

∆ 𝑑 = 0
(Bilaplacian)(Membrane)



Deformation Energies

Initial state ∆ 2𝑑 = 0

∆ 2𝑝 = 0∆ 𝑝 = 0

∆ 𝑑 = 0
(Bilaplacian)(Membrane)

Higher order => 
more boundary 

conditions



• Very fast
• One linear solve!

• Physically-based
• Linearization => lose details

Solved?

Original Non-linear
deformation

Linear
deformation



• We need to rotate details
• Local rotation is nonlinear!

• Can we still survive with linear solves?

Issue

Original Non-linear
deformation

Linear
deformation



Multiresolution Editing

Frequency decomposition

Change low  
frequencies

Add high frequency details,  
stored in local frames



Multiresolution Editing

Multiresolution

Modeling

D
ec

om
po

si
tio

n

Detail  
Information

Freeform  

Modeling

R
econstruction



How to represent details?

• For example, normal displacements



Result

Global deformation
with intuitive detail

preservation



Limitations
Neighboring displacements are not coupled

– Surface bending changes their angle
– Leads to volume changes or self-intersections

Original Normal Displ. Nonlinear



Limitations
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– Surface bending changes their angle
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Original Normal Displ. Nonlinear



New coordinates?

Express shape in differential coordinates

Transform those,
then reconstruct the new shape



Mean Value Property

Value at v is average of neighboring values

Long time ago:



Laplacian Mesh Editing
Graph Laplacian:

𝛅! = 𝐯! −
1
𝑑!

/
"∈$(!)

𝐯"

𝛿 = 𝐿𝑣
Local 

coordinates!



Laplacian Mesh Editing

• Represent mesh using only 𝛿
• Find a surface whose Laplacian coordinates 

are as close as possible to 𝛿

s.t. 𝑝!' = 𝑝! , 𝑖 ∈ {𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠}



Laplacian Mesh Editing

Find a surface whose Laplacian coordinates are 
as close as possible to 𝛿

min ∑ 𝛿! − 𝐿(𝑝′!) " + ∑!∈$ 𝑝′! − 𝑝! "



Laplacian Mesh Editing

Find a surface whose Laplacian coordinates are 
as close as possible to 𝛿

s.t. 𝑝!' = 𝑝! , 𝑖 ∈ {𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠}

Gateaux derivative => 



Physically-Based

Gateuax derivative =>

−𝑘!Δ𝑑 + 𝑘"Δ#𝑑 = 0
Bi-Laplacian

𝑥
𝑦
𝑧

Before:

(almost) the same 
equation?



Issue
Reconstructing from differential coordinates 

makes sense only if they are 
rotation and translation invariant

Otherwise, you get this

Translating a handle induces local rotations!



Laplacian Coordinates

• Translation invariant
• Not rotation/scale invariant

δi

𝛿! = 𝐿(𝐯!) = 𝐿(𝐯! + 𝐭); ∀𝐭 ∈ ℝ"

δi
δi



Solutions
1. Transform, ignoring rotations or details
2. while (not converged)
– Estimate rotations (from normals)
– Rotate differential coordinates and solve

𝐸(𝐕′) =/
!()

*

𝑅!𝛿! − 𝐿(𝑝′!) + +/
!∈,

𝑝!' − 𝑝! +

[Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi and H. P. Seidel,
"Differential coordinates for interactive mesh editing," Proceedings Shape Modeling
Applications, 2004]



Solutions
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2. while (not converged)
– Estimate rotations (from normals)
– Rotate differential coordinates and solve

[Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi and H. P. Seidel,
"Differential coordinates for interactive mesh editing," Proceedings Shape Modeling
Applications, 2004]



Rotations + scaling – invariant?
Add local transformations 𝑇. as variables

𝐸(𝐕′) =/
!()

*

𝑇!𝛿! − 𝐿(𝑝′!) + +/
!∈,

𝑝!' − 𝑝! +

[O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, H.-P. Seidel,
Laplacian Surface Editing, EUROGRAPHICS/Symposium on Geometry
Processing, 2004]
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Rotations + scaling – invariant?
Add local transformations 𝑇. as variables

[O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, H.-P. Seidel,
Laplacian Surface Editing, EUROGRAPHICS/Symposium on Geometry Processing, 2004]

𝑇! = translation + rotation + scaling

Represent (a linearization of) 𝑇! using 
translation/rotation/scaling parameters



Rotations + scaling – invariant?
Add local transformations 𝑇. as variables

𝐸(𝐕′) =/
!()

*

𝑇!𝛿! − 𝐿(𝑝′!) + +/
!∈,

𝑝!' − 𝑝! +

[O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, H.-P. Seidel,
Laplacian Surface Editing, EUROGRAPHICS/Symposium on Geometry Processing, 2004]

⇒ 𝑇# is a linear function of 𝑉′
⇒Quadratic optimization

⇒ Linear solve!





As-Rigid-As-Possible Surface 
Modelling

43



As-rigid-as-possible (ARAP)

44



As-rigid-as-possible (ARAP)
• “Intuitive” deformations 
◦ Smooth deformations at large scale

• Preserve local features
• Fast, for interactive mesh editing

45



ARAP in a nutshell…
1. Break mesh into overlapping pieces
2. Try to move each piece rigidly
3. Combine all local transformations into a 

smooth one

46



Pieces
Vertex Umbrella
–Covers entire surface
–One cell per vertex
–All triangles exist in 3 cells

47



Rigid motion
If cell i moved rigidly:

pi
pj p'i

p'j

𝑅!

𝑝"' − 𝑝!' = 𝑅!(𝑝" − 𝑝!)

∀𝑗 ∈ 𝑁(𝑖)



Deviation from rigid motion
If cell i moved rigidly:

𝑝"' − 𝑝!' = 𝑅!(𝑝" − 𝑝!)

∀𝑗 ∈ 𝑁(𝑖)

𝐸 = /
"∈$(!)

𝑝"' − 𝑝!' − 𝑅!(𝑝" − 𝑝!)
+



For the whole mesh

𝐸 =/
!

/
"∈$(!)

𝑝"' − 𝑝!' − 𝑅!(𝑝" − 𝑝!)
+



For the whole mesh

𝐸 =/
!

/
"∈$(!)

𝒘𝒊𝒋 𝑝"' − 𝑝!' − 𝑅!(𝑝" − 𝑝!)
+



Orthogonal Procrustes 
problem

How to find the best rotation matrix 
aligning 𝑉 with 𝑉′?

vi vj1

vj2 v׳i v׳j1

v׳j2
Ri



Orthogonal Procrustes 
problem

How to find the best rotation matrix 
aligning 𝑉 with 𝑉′?

vi vj1

vj2 v׳i v׳j1

v׳j2
Ri

argmin
/

𝑅𝐴 − 𝐵 0

s. t. 𝑅1𝑅 = 𝐼
???



Procrustes problem

1. Build covariance matrix S = VV׳T

2. SVD: S = USWT

3. Ri = UWT

vi vj1

vj2
v׳i v׳j1

v׳j2
RiClosed-form 

solution!



Mesh Deformation

point constraints

Caveats:
• {𝒑!.} and {𝑅.} are unknown
• Non-linear optimization problem

55

min∑! ∑"∈$(!)𝒘𝒊𝒋 𝑝"' − 𝑝!' − 𝑅!(𝑝" − 𝑝!)
+

s.t. 𝑝!% = +𝑝!



Mesh Deformation

1. Start with initial guess of {𝒑!.}, find {𝑅.}
2. Given {𝑅.}, minimize energy to find {𝒑!.}
3. Repeat

!
'∈)(+)

𝑤+' 𝒑-+ − 𝒑
-
' = !

'∈)(+)

𝑤+'
2 𝑅+ + 𝑅' 𝒑+ − 𝒑'

𝐿𝒑′ = 𝒃
56



Advantages
Laplacian 
– Depends only on original mesh
– Only needs to be factored once!

Rotations can be computed in parallel
• Each iteration reduces energy
◦ Updating rotations guaranteed to reduce cell-error
◦ Updating positions guaranteed to reduce global error

Guaranteed Convergence
12



Results (vs Poisson)

Poisson:

ARAP:

58
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1) Rest pose

𝐯
𝑖

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



2) Skinning transformations

𝐓1
𝐓2

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



3) Skinning weights

0

1

𝑤𝑖 ,1

63

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



3) Skinning
weights

0

1

𝑤𝑖 ,2

64

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



65

Linear blend skinning (LBS)

𝑣! = ∑𝑤"𝑇" 𝑣



LBS is used widely in the
industry

Halo 3 Bolt

66

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



LBS: candy-wrapper
artifact

67

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



LBS: candy-wrapper artifact

68



What went wrong?

𝑣! = ∑𝑤"𝑇" 𝑣



What went wrong?

𝑣! = ∑𝑤"𝑇" 𝑣

𝑹1 = 0
1 0 0

1 0
0 0 1

𝑹2 =
−1 0 0
0 −1 0
0 0 1



What went wrong?

𝑣! = ∑𝑤"𝑇" 𝑣

𝑹1 = 0
1 0 0

1 0
0 0 1

𝑹2 =
−1 0 0
0 −1 0
0 0 1

Why can’t we just sum up rotation matrices?



Geometry of linear blending

SE(3)

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



𝐓1

73

𝐓2
SE(3)

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



𝐓1

74

𝐓2
𝐓blendSE(3)

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



𝐓1

75
𝐓2

𝐓blend

SE(3)

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



Intrinsic blending

76

𝐓blend
𝐓1

𝐓2

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan
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𝐓blend
𝐓1

𝐓2

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



𝐓blend

78

𝐓1
𝐓2

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



Intrinsic blending using Lie algebras
[Buss and Fillmore 2001, Alexa 2002, Govindu 2004, Rossignac and Vinacua 2011]

argmin
$

1
$

𝑤%𝑑 𝑋, 𝑇%

𝑑 𝐗, 𝐘 = log(𝐘𝐗−1)

79

2

Karcher / Frechet mean

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



Dual Quaternion Skinning



Where do the weights come from?

0

1

𝑤𝑖 ,1

81



Manual?



Automatic skinning 
weight computation



Weights should obtain a few basic 
qualities 

84Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



[Shepard 1968],
[Schaefer et al. 2006], etc.

Inverse Euclidean distance weights are too crude,
show obvious artifacts

85

weights optimized inside shapewj(v) =
1

kci � vk2

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



[Shepard 1968],
[Schaefer et al. 2006], etc.

Inverse Euclidean distance weights 
are too crude

86

weights optimized inside shapewj(v) =
1

kci � vk2

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Discontinuous projection onto surface 
can be smoothed out

ŵ [Baran & Popović 2007]

Closest visible
bone

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Discontinuous projection onto surface 
can be smoothed out

wŵ [Baran & Popović 2007] 88

argmin
wj

Z

⌦
krwjk2 + hj(wj � ŵj)

2 dA

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



smoothness

Discontinuous projection onto surface 
can be smoothed out

wŵ [Baran & Popović 2007] 89

argmin
wj

Z

⌦
krwjk2 + hj(wj � ŵj)

2 dA

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



argmin
wj

Z

⌦
krwjk2 + hj(wj � ŵj)

2 dA

Discontinuous projection onto surface 
can be smoothed out

wŵ [Baran & Popović 2007]

“data”

90

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Discontinuous projection onto surface 
can be smoothed out

wŵ [Baran & Popović 2007] 91

argmin
wj

Z

⌦
krwjk2 + hj(wj � ŵj)

2 dA

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Gradient energy weights not smooth at 
handles

92

argmin
wj

Z

⌦
krwjk2 dAargmin

wj

Z

⌦
(�wj)

2 dA

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



argmin
wj

Z

⌦
krwjk2 dA

Gradient energy weights not smooth at 
handles

93

argmin
wj

Z

⌦
(�wj)

2 dA

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Gradient energy weights not smooth at 
handles

94

�wj = 0�2wj = 0

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Point constraints for
Laplace equation

https://www.facebook.com/521399544544480/photos/a.523048724379562/80096825992093
9/?type=1&theater , Facebook group “Circus tents and circus equipment”

https://www.facebook.com/521399544544480/photos/a.523048724379562/800968259920939/?type=1&theater


Non-negative, local weights are mandatory

96

[Botsch & Kobbelt 2004]

0  wj  1

argmin
wj

Z

⌦
(�wj)

2 dA

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



97

Spurious extrema cause distracting artifacts

local max
local min

0  wj  1

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



98

Must explicitly prohibit spurious 
extrema

local max
local min

wj is “monotonic”

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



99

Previous methods fail in one way or another

Euclidean ∆wj ∆2wj

smooth ✓ - ✓
non-negative ✓ ✓ -
shape-aware - ✓ ✓
local -/✓ - -
monotonic - ✓ -
arbitrary handles - ✓ ✓

[Shepard 1968,
Sibson 1980,
Schaefer et al. 2006]

[Baran & Popovic 2007, 
Joshi et al. 2007]

[Botsch & Kobbelt 2004, 
Sorkine et al. 2004, 
Finch et al. 2011]

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Constrained optimization ensures 
satisfaction of all properties

100

+ shape-aware
+ smoothness

[Botsch & Kobbelt 2004, Sorkine et al. 2004, Joshi & Carr 2008, Jacobson et al. 2010, Finch et al. 2011, Andrews et al. 2011]

argmin
wj ,j=1,...,m

mX

j=1

Z

⌦
(�wj)

2 dV

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Constrained optimization ensures 
satisfaction of all properties

101

+ shape-aware
+ smoothness
+ arbitrary handles

[Botsch & Kobbelt 2004, Sorkine et al. 2004, Joshi & Carr 2008, Jacobson et al. 2010, Finch et al. 2011, Andrews et al. 2011]

argmin
wj ,j=1,...,m

mX

j=1

Z

⌦
(�wj)

2 dV

wj(v) =

8
><

>:

1 v 2 hj ,

0 v 2 hk

linear on cage facets

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Constrained optimization ensures 
satisfaction of all properties

102

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity

[Jacobson et al. 2011]

argmin
wj ,j=1,...,m

mX

j=1

Z

⌦
(�wj)

2 dV

0  wj  1,
mX

j=1

wj = 1

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Constrained optimization ensures 
satisfaction of all properties

103

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality

[Jacobson et al. 2011]

argmin
wj ,j=1,...,m

mX

j=1

Z

⌦
(�wj)

2 dV

0  wj  1,
mX

j=1

wj = 1

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



[Rustamov 2011]

Constrained optimization ensures 
satisfaction of all properties

104

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality

argmin
wj ,j=1,...,m

mX

j=1

Z

⌦
(�wj)

2 dV

kwk1 = 1 !
mX

j=1

|wj | = 1 !
mX

j=1

wj = 1,

0  wj  1

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



[Rustamov 2011]

Constrained optimization ensures 
satisfaction of all properties

105

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality

argmin
wj ,j=1,...,m

mX

j=1

Z

⌦
(�wj)

2 dV

kwk1 = 1 !
mX

j=1

|wj | = 1 !
mX

j=1

wj = 1,

0  wj  1

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



[Rustamov 2011]

Constrained optimization ensures 
satisfaction of all properties

106

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality

argmin
wj ,j=1,...,m

mX

j=1

Z

⌦
(�wj)

2 dV

kwk1 = 1 !
mX

j=1

|wj | = 1 !
mX

j=1

wj = 1,

0  wj  1

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Constrained optimization ensures 
satisfaction of all properties

107

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality
+ monotonicity

[Weinkauf et al. 2011, Jacobson et al. 2012, Günther et al. 2014]

argmin
wj ,j=1,...,m

mX

j=1

Z

⌦
(�wj)

2 dV

rwj ·ruj > 0
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Previous methods fail in one way or 
another

Euclidean ∆wj = u ∆2wj

smooth ✓ - ✓
non-negative ✓ ✓ -
shape-aware - ✓ ✓
local -/✓ - -
monotonic - ✓ -
arbitrary handles - ✓ ✓

[Shepard 1968,
Sibson 1980,
Schaefer et al. 2006]

[Baran & Popovic 2007, 
Joshi et al. 2007]

[Botsch & Kobbelt 2004, 
Sorkine et al. 2004, 
Finch et al. 2011]
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+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality
+ monotonicity

[Weinkauf et al. 2011, Jacobson et al. 2012, Günther et al. 2014]

argmin
wj ,j=1,...,m

mX

j=1

Z

⌦
(�wj)

2 dV

rwj ·ruj > 0
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Weights retain nice properties in 3D
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