IFT 6113 MESH DEFORMATION AND SKINNING

tiny.cc/ift6113

Image from 'As-Rigid-As-Possible Shape Modeling' by Sorkine & Alexa, 2007

Mikhail Bessmeltsev

What for?

- Animation!
- Mesh editing
- Image warping (2D)

This, and many other images in this presentation are from 'Polygon Mesh Processing' textbook by Botsch et al. or their website

Warning:

TMI

This topic is immense We'll only see a few samples

Deformation: user interface

- Handles
- Cages
- Skeletons

Ju et al., SIGGRAPH 2007

Deformation models Direct Variational

$$v' = \left(\sum w_j T_j\right) v$$

$$v' = \operatorname*{argmin}_{x} E(x)$$

- Linear Blend Skinning
- Dual Quaternion Skinning
- Multiresolution editing
 - As-Rigid-As-Possible
 - Laplacian Mesh Editing

Deformation models Direct Variational

$$v' = (\sum w_j T_j) v$$

. . .

$$v' = \operatorname*{argmin}_{x} E(x)$$

- Linear Blend Skinning
 Dual Quaternion Skinning
- Multiresolution editing
 - As-Rigid-As-Possible
 - Laplacian Mesh Editing

Deformation: user interface

- Handles
- Cages
- Skeletons

Modeling

Paint three surface areas:

- Constrained
- Smooth falloff
- Fixed

Formulation

Find displacement vector field *d*

- Smooth
- Satisfies constraints

Simplest idea

- $d = s(p) \cdot D$
- s(p) is a smooth function:
 -1 on green vertices
 -0 on grey ones

Geodesic distance?

Reality vs Expectation

How to find s(p)?

- Something inversely proportional to geodesic distance
- Or our favorite:

$$\Delta s(\mathbf{p}_i) = 0, \quad \mathbf{p}_i \in \mathcal{R},$$
$$s(\mathbf{p}_i) = 1, \quad \mathbf{p}_i \in \mathcal{H},$$
$$s(\mathbf{p}_i) = 0, \quad \mathbf{p}_i \in \mathcal{F}.$$

Physically-Based

Find a deformation that preserves both fundamental forms

Express the fundamental forms of S' via vector field d **Expensive to optimize!** $\int_{\Omega} k_s \left\| \left\| \mathbf{I} - \mathbf{I}' \right\|_{\mathrm{F}}^2 + k_b \left\| \left\| \mathbf{I} - \mathbf{II}' \right\|_{\mathrm{F}}^2 \right\| \mathrm{d}u \mathrm{d}v$ stretching bending

Shell-Based Deformation

Find a deformation that preserves both fundamental forms

Linearize Express the fundamental forms of S' via vector field d

$$\int_{\Omega} k_s \left(\|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2 \right) + k_b \left(\|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \right) \mathrm{d}u \mathrm{d}v$$

stretching bending

$$\int_{\Omega} k_s \left(\|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2 \right) + k_b \left(\|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \right) \mathrm{d}u \mathrm{d}v$$

stretching bending

Gateaux derivative =>

$$-k_s \Delta d + k_b \Delta^2 d = 0$$

Physically-Based

$$\int_{\Omega} k_s \left(\|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2 \right) + k_b \left(\|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \right) \mathrm{d}u \mathrm{d}v$$

stretching bending

Gateaux derivative =>

$$-k_{s}\Delta d + k_{b}\Delta^{2}d = 0$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
Bi-Laplacian

Deformation Energies

Solved?

- Very fast
 - One linear solve!
- Physically-based
- Linearization => lose details

Original

Linear deformation

Non-linear deformation

Issue

- We need to rotate details
 - Local rotation is nonlinear!
- Can we still survive with linear solves?

Original

Linear deformation

Non-linear deformation

Multiresolution Editing

47

Frequency decomposition

Add high frequency details, stored in local frames

Multiresolution Editing

How to represent details?

• For example, normal displacements

Result

Global deformation with intuitive detail preservation

Limitations

Neighboring displacements are not coupled
– Surface bending changes their angle
– Leads to volume changes or self-intersections

Limitations

Neighboring displacements are not coupled
– Surface bending changes their angle
– Leads to volume changes or self-intersections

Original

Normal Displ.

Nonlinear

New coordinates?

Express shape in *differential coordinates*

Transform those, then reconstruct the new shape Long time ago:

Mean Value Property

$$L_{vw} = A - D = \begin{cases} 1 & \text{if } v \sim w \\ -\text{degree}(v) & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$$

$$(Lx)_v = 0$$
Value at v is average of neighboring values

Graph Laplacian:

$$\boldsymbol{\delta}_i = \mathbf{v}_i - \frac{1}{d_i} \sum_{j \in N(i)} \mathbf{v}_j$$

Local coordinates! $\delta = L v$

- Represent mesh using only δ
- Find a surface whose Laplacian coordinates are as close as possible to δ

$$\int_{\mathcal{S}} \left\| \Delta \mathbf{p}' - \boldsymbol{\delta}' \right\|^2 \mathrm{d}\mathcal{S} \to \min$$

s.t. $p'_i = p_i, i \in \{point \ constraints\}$

Find a surface whose Laplacian coordinates are as close as possible to δ

$\min \sum \|\delta_i - L(p'_i)\|^2 + \sum_{i \in c} \|p'_i - p_i\|^2$

Find a surface whose Laplacian coordinates are as close as possible to δ

$$\int_{\mathcal{S}} \left\| \Delta \mathbf{p}' - \boldsymbol{\delta}' \right\|^2 \mathrm{d}\mathcal{S} \to \min$$

s.t. $p'_i = p_i, i \in \{point \ constraints\}$

Gateaux derivative => $\Delta^2 \mathbf{p}' = \Delta \boldsymbol{\delta}'$

Physically-Based

$$\int_{\Omega} k_s \left(\|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2 \right) + k_b \left(\|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \right) \mathrm{d}u \mathrm{d}v$$

stretching bending

Gateuax derivative =>

$$-k_{s}\Delta d + k_{b}\Delta^{2}d = 0$$
(almost) the same equation? Bi-Laplacian

Issue

Reconstructing from differential coordinates makes sense only if they are **rotation and translation invariant**

Otherwise, you get this

Laplacian Coordinates

- Translation invariant
- Not rotation/scale invariant

 $\delta_i = L(\mathbf{v}_i) = L(\mathbf{v}_i + \mathbf{t}); \forall \mathbf{t} \in \mathbb{R}^3$

Solutions

- 1. Transform, ignoring rotations or details
- 2. while (not converged)
 - Estimate rotations (from normals)
 - Rotate differential coordinates and solve

$$E(\mathbf{V}') = \sum_{i=1}^{n} ||\mathbf{R}_{i} \delta_{i} - L(p'_{i})||^{2} + \sum_{i \in c} ||p'_{i} - p_{i}||^{2}$$

[Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi and H. P. Seidel, "Differential coordinates for interactive mesh editing," **Proceedings Shape Modeling Applications, 2004**]
Solutions

- 1. Transform, ignoring rotations or details
- 2. while (not converged)
 - Estimate rotations (from normals)
 - Rotate differential coordinates and solve

[Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi and H. P. Seidel, "Differential coordinates for interactive mesh editing," **Proceedings Shape Modeling Applications, 2004**]

Rotations + **scaling** – invariant?

Add local transformations T_i as variables

$$E(\mathbf{V}') = \sum_{i=1}^{n} \|\mathbf{T}_{i}\delta_{i} - L(p'_{i})\|^{2} + \sum_{i \in c} \|p'_{i} - p_{i}\|^{2}$$

Rotations + scaling – invariant? Add local transformations T_i as variables

$$E(\mathbf{V}') = \sum_{i=1}^{n} \|T_{i}\delta_{i} - L(p'_{i})\|^{2} + \sum_{i \in c} \|p'_{i} - p_{i}\|^{2}$$
$$\min_{T_{i}} \left(\|T_{i}\mathbf{v}_{i} - \mathbf{v}'_{i}\|^{2} + \sum_{j \in \mathcal{N}_{i}} \|T_{i}\mathbf{v}_{j} - \mathbf{v}'_{j}\|^{2} \right).$$

Rotations + **scaling** – invariant?
Add local transformations
$$T_i$$
 as variables

$$\min_{T_i} \left(\|T_i \mathbf{v}_i - \mathbf{v}'_i\|^2 + \sum_{j \in \mathcal{N}_i} \|T_i \mathbf{v}_j - \mathbf{v}'_j\|^2 \right).$$

 T_i = translation + rotation + scaling

Represent (a linearization of) T_i using translation/rotation/scaling parameters

Rotations + **scaling** – invariant?

Add local transformations T_i as variables

$$E(\mathbf{V}') = \sum_{i=1}^{n} ||\mathbf{T}_{i}\delta_{i} - L(p'_{i})||^{2} + \sum_{i \in c} ||p'_{i} - p_{i}||^{2}$$

 $\Rightarrow T_i \text{ is a linear function of } V' \\\Rightarrow \text{Quadratic optimization} \\\Rightarrow \text{Linear solve!}$

As-Rigid-As-Possible Surface Modelling

As-rigid-as-possible (ARAP)

As-rigid-as-possible (ARAP)

- "Intuitive" deformations
 - Smooth deformations at large scale
- Preserve local features
- Fast, for interactive mesh editing

ARAP in a nutshell...

- 1. Break mesh into overlapping pieces
- 2. Try to move each piece rigidly
- 3. Combine all local transformations into a smooth one

Pieces

Vertex Umbrella –Covers entire surface –One cell per vertex –All triangles exist in 3 cells

Rigid motion

If cell *i* moved rigidly:

$$p_j' - p_i' = R_i(p_j - p_i)$$

Deviation from rigid motion

If cell *i* moved rigidly:

$$p_j' - p_i' = R_i(p_j - p_i)$$

 $\forall j \in N(i)$

$$E = \sum_{j \in N(i)} \|p'_j - p'_i - R_i(p_j - p_i)\|^2$$

For the whole mesh

$$E = \sum_{i} \sum_{j \in N(i)} \|p'_{j} - p'_{i} - R_{i}(p_{j} - p_{i})\|^{2}$$

For the whole mesh

$$E = \sum_{i} \sum_{j \in N(i)} \mathbf{w_{ij}} \| p'_j - p'_i - R_i (p_j - p_i) \|^2$$

Orthogonal Procrustes problem

How to find the best rotation matrix aligning *V* with *V*'?

Orthogonal Procrustes problem

How to find the best rotation matrix aligning *V* with *V*'?

$$\underset{R}{\operatorname{argmin}} \|RA - B\|_{F}$$

s.t. $R^{T}R = I$
???

- 1. Build covariance matrix $S = VV'^T$
- 2. SVD: $S = U\Sigma W^T$
- 3. $R_i = UW^T$

Mesh Deformation

$$\min \sum_{i} \sum_{j \in N(i)} \boldsymbol{w_{ij}} \| p'_j - p'_i - R_i (p_j - p_i) \|^2$$

s.t. $p'_i = \widetilde{p_i}$

point constraints

Caveats:

- { p'_i } and { R_i } are unknown
- Non-linear optimization problem

Mesh Deformation

- 1. Start with initial guess of $\{\boldsymbol{p'}_i\}$, find $\{R_i\}$
- 2. Given $\{R_i\}$, minimize energy to find $\{p'_i\}$ 3. Repeat

$$\sum_{j \in N(i)} w_{ij} \left(\boldsymbol{p'}_i - \boldsymbol{p'}_j \right) = \sum_{j \in N(i)} \frac{w_{ij}}{2} \left(R_i + R_j \right) \left(\boldsymbol{p}_i - \boldsymbol{p}_j \right)$$

$$Lp' = b$$

Advantages

Laplacian

- Depends only on original mesh
- Only needs to be factored once!

Rotations can be computed in parallel

- Each iteration reduces energy
 - Updating rotations guaranteed to reduce cell-error
 - Updating positions guaranteed to reduce global error

Guaranteed Convergence

Deformation models Direct Variational

$$v' = \left(\sum w_j T_j\right) v$$

$$v' = \operatorname*{argmin}_{x} E(x)$$

- Linear Blend Skinning
- Dual Quaternion Skinning
- Multiresolution editing
 - As-Rigid-As-Possible
 - Laplacian Mesh Editing

Deformation models Direct Variational

$$v' = \left(\sum w_j T_j\right) v$$

• Dual Quaternion Skinning

$$v' = \operatorname*{argmin}_{x} E(x)$$

1) Rest pose

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

2) Skinning transformations

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

3) Skinning weights

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

Linear blend skinning (LBS)

$$\nu' = \left(\sum w_j T_j\right) \nu$$

LBS is used widely in the industry

66

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

LBS: candy-wrapper artifact

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

LBS: candy-wrapper artifact

Figure 2: Typical "candy-wrapper" artifacts of linear blend skinning.

What went wrong?

$$v' = \left(\sum w_j T_j\right) v$$

What went wrong?

$$v' = \left(\sum w_j T_j\right) v$$

$$\boldsymbol{R}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \boldsymbol{R}_2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

What went wrong?

$$v' = \left(\sum w_j T_j\right) v$$

$\boldsymbol{R}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \boldsymbol{R}_2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Why can't we just sum up rotation matrices?

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan
Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

Intrinsic blending

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

Intrinsic blending using Lie algebras

[Buss and Fillmore 2001, Alexa 2002, Govindu 2004, Rossignac and Vinacua 2011]

$$\operatorname{argmin}_{X} \sum_{X} w_{j} d(X, T_{j})$$
$$d(\mathbf{X}, \mathbf{Y}) = \|\log(\mathbf{Y}\mathbf{X}^{-1})\|^{2}$$
Karcher / Frechet mean

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

Dual Quaternion Skinning

Where do the weights come from?

Manual?

Automatic skinning weight computation

Weights should obtain a few basic qualities

Inverse Euclidean distance weights are too crude, show obvious artifacts

[Shepard 1968], [Schaefer et al. 2006], etc.

Inverse Euclidean distance weights are too crude

[Shepard 1968], [Schaefer et al. 2006], etc.

Discontinuous projection onto surface can be smoothed out

Discontinuous projection onto surface can be smoothed out

Discontinuous projection onto surface can be smoothed out

Discontinuous projection onto surface can be smoothed out

Discontinuous projection onto surface can be smoothed out

Gradient energy weights not smooth at handles

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Alec Jacobson

Gradient energy weights not smooth at handles

 $\Delta^2 w_j = 0$

 $\Delta w_i = 0$

Point constraints for Laplace equation

https://www.facebook.com/521399544544480/photos/a.523048724379562/80096825992093 9/?type=1&theater, Facebook group "Circus tents and circus equipment"

Non-negative, local weights are mandatory

Spurious extrema cause distracting artifacts

Must explicitly prohibit spurious extrema

Previous methods fail in one way or another

	Euclidean	Δw_j	$\Delta^2 w_j$
smooth	\checkmark	_	\checkmark
non-negative	\checkmark	\checkmark	-
shape-aware	—	\checkmark	\checkmark
local	-/√	—	-
monotonic	-	\checkmark	-
arbitrary handles	-	\checkmark	\checkmark
	[Shepard 1968, Sibson 1980, Schaefer et al. 2006]	[Baran & Popovic 2007, Joshi et al. 2007]	[Botsch & Kobbelt 2004, Sorkine et al. 2004, Finch et al. 2011]

$$\underset{w_j, j=1, \dots, m}{\operatorname{argmin}} \sum_{j=1}^{m} \int_{\Omega} (\Delta w_j)^2 \, dV$$

000

+ shape-aware + smoothness

[Botsch & Kobbelt 2004, Sorkine et al. 2004, Joshi & Carr 2008, Jacobson et al. 2010, Finch et al. 2011, Andrews et al. 2011]

$$\underset{w_{j},j=1,...,m}{\operatorname{argmin}} \sum_{j=1}^{m} \int_{\Omega} (\Delta w_{j})^{2} dV + \underset{k \text{ shape-aware}}{+ \text{ smoothness}} + \underset{k \text{ arbitrary handles}}{+ \text{ arbitrary handles}} \\ w_{j}(\mathbf{v}) = \begin{cases} 1 & \mathbf{v} \in h_{j}, \\ 0 & \mathbf{v} \in h_{k} \\ \text{ linear on cage facets} \end{cases}$$

[Botsch & Kobbelt 2004, Sorkine et al. 2004, Joshi & Carr 2008, Jacobson et al. 2010, Finch et al. 2011, Andrews et al. 2011]

$$\underset{w_j, j=1, \dots, m}{\operatorname{argmin}} \sum_{j=1}^{m} \int_{\Omega} (\Delta w_j)^2 \, dV$$

200

$$0 \le w_j \le 1,$$
$$\sum_{j=1}^m w_j = 1$$

[Jacobson et al. 2011]

Slides from Skinning: Real-time Shape Deformation Course, Direct 102 Skinning Methods and Deformation Primitives by Alec Jacobson

+ shape-aware + smoothness

- + arbitrary handles
- + non-negativity

$$\underset{w_j, j=1, \dots, m}{\operatorname{argmin}} \sum_{j=1}^{m} \int_{\Omega} (\Delta w_j)^2 \, dV$$

200

$$0 \le w_j \le 1,$$
$$\sum_{j=1}^m w_j = 1$$

[Jacobson et al. 2011]

- + shape-aware
 + smoothness
 + arbitrary handles
 + non-negativity
- + locality

$$\underset{w_j, j=1,...,m}{\operatorname{argmin}} \sum_{j=1}^m \int_{\Omega} (\Delta w_j)^2 \, dV$$

 $||w||_1 = 1$

+ shape-aware

- + smoothness
- + arbitrary handles
- + non-negativity
- + locality

[Rustamov 2011]

$$\underset{w_j,j=1,\ldots,m}{\operatorname{argmin}} \sum_{j=1}^m \int_{\Omega} (\Delta w_j)^2 \, dV$$

$$||w||_1 = 1 \to \sum_{j=1}^m |w_j| = 1$$

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality

[Rustamov 2011]

$$\underset{w_j,j=1,\ldots,m}{\operatorname{argmin}} \sum_{j=1}^m \int_{\Omega} (\Delta w_j)^2 \, dV$$

$$||w||_{1} = 1 \to \sum_{j=1}^{m} |w_{j}| = 1 \to \sum_{j=1}^{m} w_{j} = 1,$$
$$0 \le w_{j} \le 1$$

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality

[Rustamov 2011]

$$\underset{w_j, j=1,...,m}{\operatorname{argmin}} \sum_{j=1}^m \int_{\Omega} (\Delta w_j)^2 \, dV$$

200

$$\nabla w_j \cdot \nabla u_j > 0$$

[Weinkauf et al. 2011, Jacobson et al. 2012, Günther et al. 2014]

Slides from Skinning: Real-time Shape Deformation Course, Direct 107 Skinning Methods and Deformation Primitives by Alec Jacobson

+ shape-aware

- + smoothness
- + arbitrary handles
- + non-negativity
- + locality
- + monotonicity

Previous methods fail in one way or another

	Euclidean	$\Delta w_j = u$	$\Delta^2 w_j$
smooth	\checkmark	_	\checkmark
non-negative	\checkmark	\checkmark	-
shape-aware	—	\checkmark	\checkmark
local	-/√	_	_
monotonic	-	\checkmark	-
arbitrary handles	-	\checkmark	\checkmark
	[Shepard 1968, Sibson 1980, Schaefer et al. 2006]	[Baran & Popovic 2007, Joshi et al. 2007]	[Botsch & Kobbelt 2004, Sorkine et al. 2004, Finch et al. 2011]
Constrained optimization ensures satisfaction of all properties

$$\operatorname{argmin}_{w_j, j=1,...,m} \sum_{j=1}^m \int_{\Omega} (\Delta w_j)^2 \, dV$$
$$\nabla w_j \cdot \nabla u_j > 0$$

- + shape-aware
- + smoothness
- + arbitrary handles
- + non-negativity
- + locality
- + monotonicity

[Weinkauf et al. 2011, Jacobson et al. 2012, Günther et al. 2014]

Slides from Skinning: Real-time Shape Deformation Course, Direct 109 Skinning Methods and Deformation Primitives by Alec Jacobson

Weights retain nice properties in 3D

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Alec Jacobson

110