
IFT 6113
REMESHING

tiny.cc/ift6113

Mikhail Bessmeltsev

Re-Meshing Surfaces

Generate a better mesh
close to the original surface

Motivation
• Numerical stability
• Easier modeling
• Quality requirements

What’s a good mesh?

How to (re)mesh surfaces?

–What is Delaunay criterion on surface?
• Option 1: Use sphere instead of circle

– Works for volumetric meshes (tets)
• Option 2: Use pairwise test only

– Theoretical Delaunay properties?
• Option 3: Intrinsic Delaunay

– Boundary recovery = Approximation quality

Delaunay triangulation?

Approaches

• Mesh adaptation/Local Remeshing
– Locally update mesh while tracking error

• Reduction to 2D/Global Remeshing
– Parameterize in 2D
–Mesh in 2D
– Project back

Approaches

• Mesh adaptation/Local Remeshing
– Locally update mesh while tracking error

• Reduction to 2D/Global Remeshing
– Parameterize in 2D
–Mesh in 2D
– Project back

Local approach

1. Refine/Coarsen to satisfy sizing
2. Smooth mesh
3. Perform flips after every other operation
4.

Store original to
compute distance/error

Local approach

Remove short
edges

Remove long
edges

Adjust vertex
valences

Smooth

Flip one diagonal if longer than the other
3D equivalent of Delaunay test in 2D

Track approximation error (why?)
– Approximate Hausdorff metric

• Normal error
• Smoothness

Test self-intersection
– Complexity? Maybe skip?

Edge Flip

On mesh approximate by
–measuring vertex to surface distance
–measuring vertex to vertex distance

• Computation complexity?

If 𝑃, 𝑄 are sets,
𝐻! 𝑄 = max

"∈!
min
$∈%

‖𝑝 − 𝑞‖

Hausdorff Metric:
𝐻(𝑃, 𝑄) = max(𝐻%(𝑃), 𝐻!(𝑄))

Measuring Error

Hausdorff is expensive => cheat

Idea 1: Stay within an ε-envelope

Measuring Error

Hausdorff is expensive => cheat

Idea 1: Stay within an ε-envelope

Does not limit Hausdorff distance!

Reach desired sizing or element count

Strategy
Split long edges – insert mid-points

Project to original mesh

Hard to achieve good spacing
– Improve by smoothing

Local approach: Edge split

Before (avg min 33)

After (avg min 33)

Second round of
flips (avg min 37)

Mesh Adaptation: Smoothing

Local Laplacian smoothing

Stay on the surface!

Edge Collapse Algorithm

• Simplification
operation:
– Edge collapse (pair

contraction)

• Error metric:
distance, pseudo-global

17

Recall:

Edge Collapse Algorithm

• Simplification
operation:
– Edge collapse (pair

contraction)

• Error metric:
distance, pseudo-global

18

Where should we
place the vertex?

Recall:

Where to place the new vertex?

Nearest point
– Expensive search

• Find original face closest to (estimated) new vertex
– Unlimited Hausdorff error

Projection to Original Mesh

Vertex relocation

1. Project all adjacent vertices on a tangent
plane

2. Find new location in the plane
Barycentric coordinates in the new mesh

Vertex relocation

1. Project all adjacent vertices on a tangent
plane

2. Find new location in the plane
Barycentric coordinates in the new mesh

How to project to the original surface?

Vertex relocation

Which 2D triangle does it belong to?
Use triangle vertices’
– triangle indices,

– barycentric coordinates
w/r to the original mesh

Local Parameterization

Compute a local parameterization
for the original mesh

Use the barycentric coordinates to
place the vertex in 2D

Lift the vertex in 3D using the
parameterization

Local Parameterization

Idea:
use barycentric coordinates

Parameterize surface

Place the new vertex in 2D using

Lift to 3D

Cheap Local Parameterization

1. Project vertex 𝑣 + neighbors to
tangent plane

2. Move 𝑣 in the plane
3. Find new triangle in which vertex

is located
4. Compute barycentric coordinates

in this triangle
5. Lift back to 3D

Projection to Approximate Surface

Original mesh approximates “unknown” smooth
surface
• Construct local approximation (e.g. quadric)
• Or use vertices + normals of triangle to define

patch
– Hermite, Bézier,…

Local approach: Edge collapse

Mesh simplification!
Operations:
– Vertex removal
– Edge collapse
• Project new vertex to original surface

as in refinement
Approximation Error
– Quadrics
– Normal based

Before (avg min 30)

Smoothing + Flips
(avg min 45)

Michelangelo's David

Original: 350k faces
Remesh: 100k faces

David: Zoom in

Original Remesh

Local approach

• Fast
• Simple to implement
• Hard to find good spacing of vertices
• Heuristic
– How to combine local operations?

Modify existing mesh using
sequence of local operations

Approaches

• Mesh adaptation/Local Remeshing
– Locally update mesh while tracking error

• Reduction to 2D/Global Remeshing
– Parameterize in 2D
–Mesh in 2D
– Project back

Reduction to 2D/Global Remeshing
1. Segment surface into charts
– How? How many charts?

2. Parameterize in 2D
–Which parameterization to choose?

3. Mesh charts in 2D (Delaunay)
– Sizing ~ distortion
– Take care of shared boundaries

4. Project back

Parameterization
• Distortion is inevitable, but

• Can handle some stretch
–Measure & take into account

during 2D meshing
• Use as component of local sizing

→ Look for a conformal map

Impact of distortion

tail head
leg

How to control sampling?

Input Uniform Non-uniform/Adaptive

How to control sampling?

• Sample random points?
– Density ~ parameterization stretch
– Issue?

Sampling Energy

𝐸 𝑥! !"#,…,&, {𝑅! !"#,…,&
)

= *
!"#,…,&

+
'!
𝑥! − 𝑥 (𝑑𝑥

Sampling Energy

𝐸 𝑥! !"#,…,&, {𝑅! !"#,…,&
)

= *
!"#,…,&

+
'!
𝑥! − 𝑥 (𝑑𝑥

For fixed 𝑥! , what are the optimal 𝑅!?

Sampling Energy

𝐸 𝑥! !"#,…,&, {𝑅! !"#,…,&
)

= *
!"#,…,&

+
'!
𝑥! − 𝑥 (𝑑𝑥

For fixed 𝑥! , what are the optimal 𝑅!?

Sampling Energy

𝐸 𝑥! !"#,…,&, {𝑅! !"#,…,&
)

= *
!"#,…,&

+
'!
𝑥! − 𝑥 (𝑑𝑥

Vice-versa?

Sampling Energy

𝐸 𝑥! !"#,…,&, {𝑅! !"#,…,&
)

= *
!"#,…,&

+
'!
𝑥! − 𝑥 (𝑑𝑥

Global optimum: a Voronoi tessellation
with sites = centroids of Voronoi cells

Centroidal Voronoi Diagram
Points spread evenly

https://maxhalford.github.io/blog/halftoning-with-go---part-2/

Centroidal Voronoi Diagram
Alternate two steps:
1. Compute Voronoi cells
2. Move sites to their centroids

Centroidal Voronoi Diagram
Alternate two steps:
1. Compute Voronoi cells
2. Move sites to their centroids

Lloyd iterations
Same as in k-means clustering

Meshing - sizing

Measure parametric stretch (3D to 2D)
– Measure stretch per edge ||𝑒3𝐷||/||𝑒2𝐷||
– Vertex stretch = average of edges

Multiply sizing function (at vertices) by stretch

Non-uniform density

𝐸 𝑥! !"#,…,&, {𝑅! !"#,…,&
)

= *
!"#,…,&

+
'!
𝜌 𝑥 𝑥! − 𝑥 (𝑑𝑥

Non-uniform density

Non-uniform density

3D

Smoothing: Centroidal Voronoi Diagram
• Relocate vertices (smoothing) to control sizing

(sampling)
• Lloyd algorithm on surface mesh

– On 2D umbrella compute VD of vertex + neighbors
– Place vertex at center of mass of it’s cell
– Repeat

Alternative: Blue noise

Alternative: Blue noise

Reduction to 2D/Global Remeshing
1. Segment surface into charts
– How? How many charts?

2. Parameterize in 2D
–Which parameterization to choose?

3. Mesh charts in 2D (Delaunay)
– Sizing ~ distortion
– Take care of shared boundaries

4. Project back

Segmentation

• Chart Properties
– Disk topology
– Low distortion

• Ideal: Developable charts
• Approaches
– Single chart

• Generate (short) cuts to reduce genus
• Cut through high curvature/distortion vertices

– Multiple charts
• More convex boundaries – easier to handle

Lloyd Iterations
for segmentation

Initialization: select random triangles = seeds
1. Grow charts around seeds greedily
2. Find new seed for each chart
– E.g. centroid

3. Repeat

[Cohen Steiner et al. ‘04]

Proxies
• Charts represented by proxies – used

for reseeding and growth
• Example: Planar charts
– Proxy: Normal to plane 𝑁)
– Compute: Average normal of chart triangles
– Growth metric: Normal difference 𝑁* ⋅ 𝑛+

Example Results

Related: zippables

Related: zippables

Boundary
Need mesh consistency along boundaries
• Enforce shared boundary vertex positions

Boundaries
• Consistent but visible…

Features
Preserving features – locate surface
creases and prevent removing them
– Special handling by segmentation

and/or 2D meshing

Global Methods - Properties

• Three major components:
– Segment
– Parameterize
– Mesh in 2D

• Strongly depends on parameterization
quality
– In turn depends on segmentation

• Typically more complex to implement from
scratch

Tet Meshing

An active area of research!

Hex Meshing

An active area of research!

Hex Meshing

How to (re)mesh surfaces?

–What is Delaunay criterion on surface?
• Option 1: Use sphere instead of circle

– Works for volumetric meshes (tets)
• Option 2: Use pairwise test only

– Theoretical Delaunay properties?
• Option 3: Intrinsic Delaunay

– Boundary recovery = Approximation quality

Delaunay triangulation?

Intrinsic Delaunay

Intrinsic Delaunay

• Idea: keep the geometry!
• Use Delaunay criterion for curvilinear

triangles
• Edges = geodesics

(locally shortest paths)

Intrinsic Delaunay

• Idea: keep the geometry!
• Use Delaunay criterion for curvilinear

triangles
• Edges = geodesics

(locally shortest paths)
• Generate = flips

