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Re-Meshing Surfaces

Generate a better mesh
close to the original surface



Motivation
• Numerical stability
• Easier modeling
• Quality requirements



What’s a good mesh?



How to (re)mesh surfaces?

–What is Delaunay criterion on surface?
• Option 1: Use sphere instead of circle

– Works for volumetric meshes (tets)
• Option 2: Use pairwise test only

– Theoretical Delaunay properties?
• Option 3: Intrinsic Delaunay

– Boundary recovery = Approximation quality

Delaunay triangulation?



Approaches

• Mesh adaptation/Local Remeshing 
– Locally update mesh while tracking error

• Reduction to 2D/Global Remeshing 
– Parameterize in 2D
–Mesh in 2D
– Project back  
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Local approach

1. Refine/Coarsen to satisfy sizing
2. Smooth mesh 
3. Perform flips after every other operation
4.

Store original to 
compute distance/error



Local approach

Remove short 
edges

Remove long 
edges

Adjust vertex 
valences

Smooth



Flip one diagonal if longer than the other
3D equivalent of Delaunay test in 2D

Track approximation error (why?)
– Approximate Hausdorff metric

• Normal error
• Smoothness 

Test self-intersection
– Complexity? Maybe skip?

Edge Flip



On mesh approximate by 
–measuring vertex to surface distance 
–measuring vertex to vertex distance

• Computation complexity?

If 𝑃, 𝑄 are sets, 
𝐻! 𝑄 = max
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Hausdorff Metric:
𝐻(𝑃, 𝑄) = max(𝐻%(𝑃), 𝐻!(𝑄))



Measuring Error

Hausdorff is expensive => cheat

Idea 1: Stay within an ε-envelope



Measuring Error

Hausdorff is expensive => cheat

Idea 1: Stay within an ε-envelope

Does not limit Hausdorff distance!



Reach desired sizing or element count

Strategy
Split long edges  – insert mid-points

Project to original mesh

Hard to achieve good spacing 
– Improve by smoothing

Local approach: Edge split



Before (avg min 33)

After (avg min 33)

Second round of 
flips (avg min 37)



Mesh Adaptation: Smoothing

Local Laplacian smoothing

Stay on the surface!



Edge Collapse Algorithm

• Simplification 
operation:
– Edge collapse (pair 

contraction)

• Error metric:
distance, pseudo-global

17

Recall:
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Where should we 
place the vertex?

Recall:



Where to place the new vertex?



Nearest point 
– Expensive search 

• Find original face closest to (estimated) new vertex
– Unlimited Hausdorff error

Projection to Original Mesh



Vertex relocation

1. Project all adjacent vertices on a tangent 
plane

2. Find new location in the plane
Barycentric coordinates in the new mesh



Vertex relocation

1. Project all adjacent vertices on a tangent 
plane

2. Find new location in the plane
Barycentric coordinates in the new mesh

How to project to the original surface?



Vertex relocation

Which 2D triangle does it belong to?
Use triangle vertices’
– triangle indices,

– barycentric coordinates
w/r to the original mesh



Local Parameterization

Compute a local parameterization 
for the original mesh

Use the barycentric coordinates to 
place the vertex in 2D

Lift the vertex in 3D using the 
parameterization



Local Parameterization

Idea:
use barycentric coordinates

Parameterize surface

Place the new vertex in 2D using

Lift to 3D 



Cheap Local Parameterization

1. Project vertex 𝑣 + neighbors to 
tangent plane

2. Move 𝑣 in the plane
3. Find new triangle in which vertex 

is located
4. Compute barycentric coordinates 

in this triangle
5. Lift back to 3D



Projection to Approximate Surface

Original mesh approximates “unknown” smooth 
surface
• Construct local approximation (e.g. quadric)
• Or use vertices + normals of triangle to define 

patch
– Hermite, Bézier,… 



Local approach: Edge collapse

Mesh simplification!
Operations: 
– Vertex removal 
– Edge collapse 
• Project new vertex to original surface 

as in refinement
Approximation Error
– Quadrics
– Normal based



Before (avg min 30)

Smoothing + Flips 
(avg min 45)



Michelangelo's David

Original: 350k faces
Remesh: 100k faces



David: Zoom in

Original Remesh



Local approach

• Fast
• Simple to implement
• Hard to find good spacing of vertices
• Heuristic 
– How to combine local operations?

Modify existing mesh using 
sequence of local operations



Approaches

• Mesh adaptation/Local Remeshing 
– Locally update mesh while tracking error

• Reduction to 2D/Global Remeshing 
– Parameterize in 2D
–Mesh in 2D
– Project back  



Reduction to 2D/Global Remeshing
1. Segment surface into charts
– How? How many charts?

2. Parameterize in 2D
–Which parameterization to choose?

3. Mesh charts in 2D (Delaunay)
– Sizing ~ distortion
– Take care of shared boundaries

4. Project back  



Parameterization
• Distortion is inevitable, but

• Can handle some stretch 
–Measure & take into account 

during 2D meshing
• Use as component of local sizing

→ Look for a conformal map



Impact of distortion

tail head
leg



How to control sampling?

Input Uniform Non-uniform/Adaptive



How to control sampling?

• Sample random points?
– Density ~ parameterization stretch
– Issue?



Sampling Energy
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For fixed 𝑥! , what are the optimal 𝑅!?
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Vice-versa?



Sampling Energy
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Global optimum: a Voronoi tessellation 
with sites = centroids of Voronoi cells



Centroidal Voronoi Diagram
Points spread evenly

https://maxhalford.github.io/blog/halftoning-with-go---part-2/



Centroidal Voronoi Diagram
Alternate two steps:
1. Compute Voronoi cells
2. Move sites to their centroids



Centroidal Voronoi Diagram
Alternate two steps:
1. Compute Voronoi cells
2. Move sites to their centroids

Lloyd iterations
Same as in k-means clustering



Meshing - sizing

Measure parametric stretch (3D to 2D)
– Measure stretch per edge ||𝑒3𝐷||/||𝑒2𝐷||
– Vertex stretch = average of edges

Multiply sizing function (at vertices) by stretch 



Non-uniform density
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Non-uniform density



Non-uniform density



3D



Smoothing: Centroidal Voronoi Diagram
• Relocate vertices (smoothing) to control sizing  

(sampling)
• Lloyd algorithm on surface mesh

– On 2D umbrella compute VD of vertex + neighbors
– Place vertex at center of mass of it’s cell
– Repeat



Alternative: Blue noise



Alternative: Blue noise



Reduction to 2D/Global Remeshing
1. Segment surface into charts
– How? How many charts?

2. Parameterize in 2D
–Which parameterization to choose?

3. Mesh charts in 2D (Delaunay)
– Sizing ~ distortion
– Take care of shared boundaries

4. Project back  



Segmentation

• Chart Properties
– Disk topology
– Low distortion 

• Ideal: Developable charts
• Approaches
– Single chart

• Generate (short) cuts to reduce genus
• Cut through high curvature/distortion vertices 

– Multiple charts 
• More convex boundaries – easier to handle



Lloyd Iterations
for segmentation

Initialization: select random triangles = seeds
1. Grow charts around seeds greedily
2. Find new seed for each chart
– E.g. centroid

3. Repeat

[Cohen Steiner et al. ‘04]



Proxies
• Charts represented by proxies – used 

for reseeding and growth
• Example: Planar charts
– Proxy: Normal to plane 𝑁)
– Compute: Average normal of chart triangles
– Growth metric: Normal difference 𝑁* ⋅ 𝑛+



Example Results 



Related: zippables



Related: zippables



Boundary
Need mesh consistency along boundaries 
• Enforce shared boundary vertex positions



Boundaries
• Consistent but visible…



Features
Preserving features – locate surface 
creases and prevent removing them
– Special handling by segmentation 

and/or 2D meshing



Global Methods - Properties

• Three major components: 
– Segment
– Parameterize
– Mesh in 2D

• Strongly depends on parameterization 
quality
– In turn depends on segmentation

• Typically more complex to implement from 
scratch



Tet Meshing

An active area of research!



Hex Meshing

An active area of research!



Hex Meshing



How to (re)mesh surfaces?

–What is Delaunay criterion on surface?
• Option 1: Use sphere instead of circle

– Works for volumetric meshes (tets)
• Option 2: Use pairwise test only

– Theoretical Delaunay properties?
• Option 3: Intrinsic Delaunay

– Boundary recovery = Approximation quality

Delaunay triangulation?



Intrinsic Delaunay



Intrinsic Delaunay

• Idea: keep the geometry!
• Use Delaunay criterion for curvilinear 

triangles
• Edges = geodesics                                    

(locally shortest paths)



Intrinsic Delaunay

• Idea: keep the geometry!
• Use Delaunay criterion for curvilinear 

triangles
• Edges = geodesics                                    

(locally shortest paths)
• Generate = flips


