IFT 6113 SURFACE RECONSTRUCTION

tiny.cc/ift6113

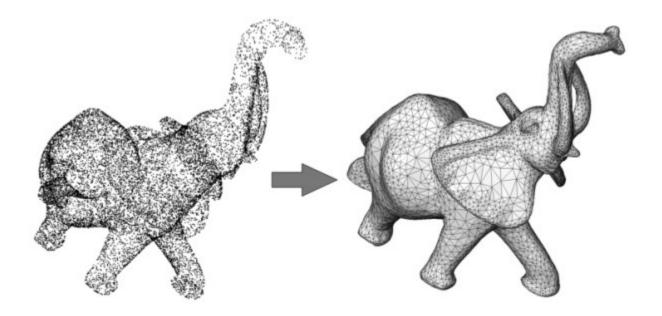
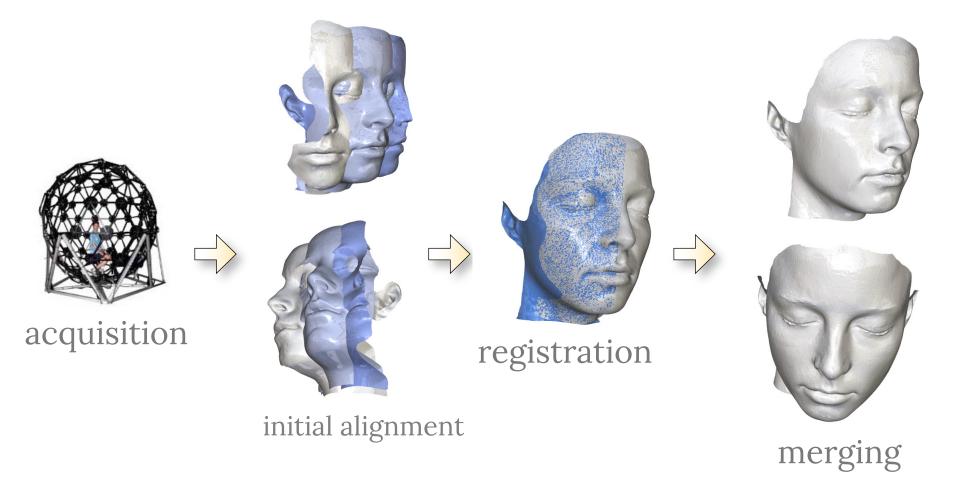


Image from https://doc.cgal.org/latest/Poisson_surface_reconstruction_3/index.html

Mikhail Bessmeltsev

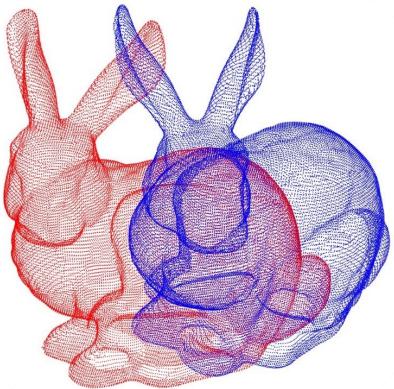
Some slides from Alla Sheffer, Justin Solomon, and Hao Li

3D Reconstruction Pipeline



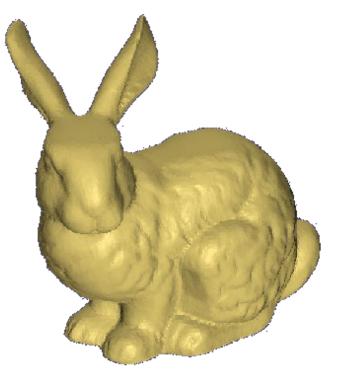
Data provided by Paramount Pictures and Aguru Images

Two components

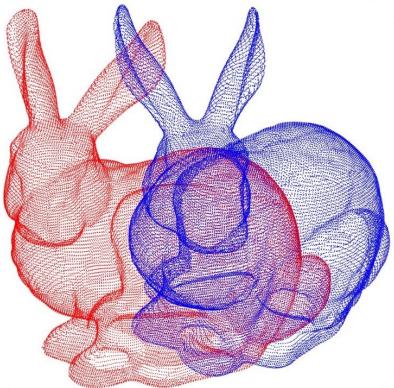


https://i.ytimg.com/vi/uzOCS_gdZuM/maxresdefault.jpg

Registration

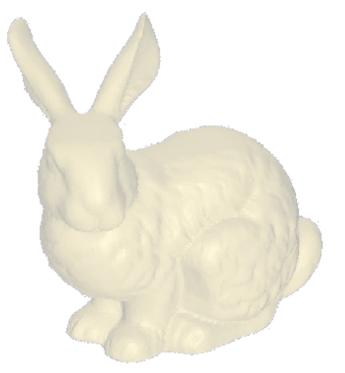


Two components

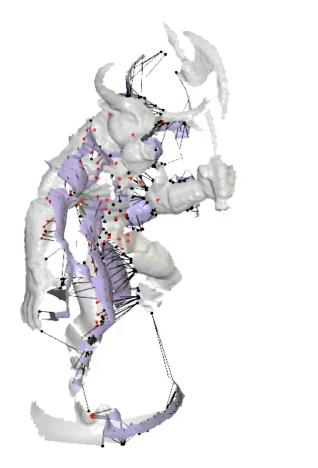


https://i.ytimg.com/vi/uzOCS_gdZuM/maxresdefault.jpg

Registration



Registration Problem



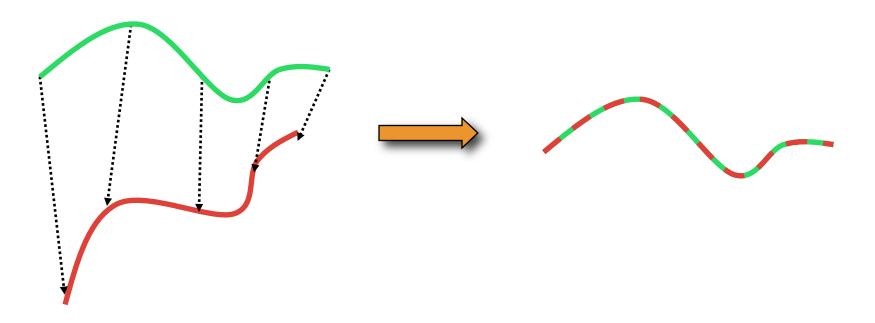
Align two overlapping objects

Rough Plan

• ICP algorithm A classic!

• ICP variants

Starting Point



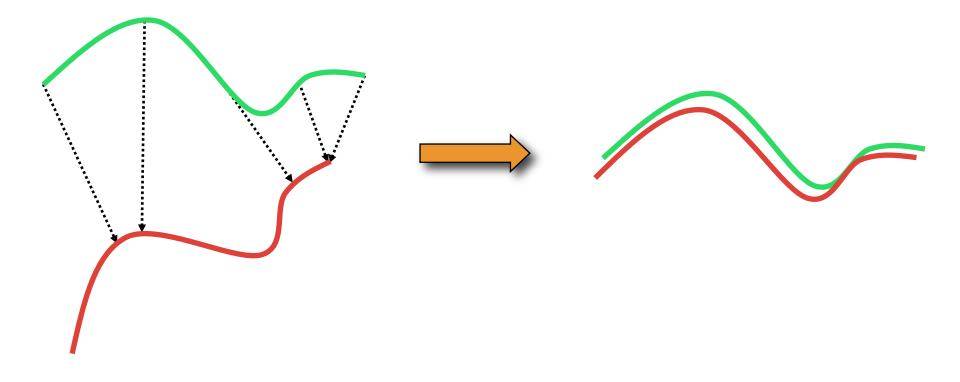
$$q_i = Rp_i + t$$

Can align given enough matches

How many correspondences determine R and t?

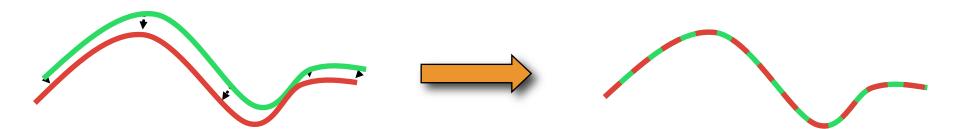
How do you get correspondences?

Rough Approximation



Closest points correspond

Try a Second Time...



Iterative Closest Point (ICP)

- Choose e.g. 1000 random points
- Match each to closest point on other scan
- Reject pairs with distance > k times median
- Minimize

$$E[R,t] := \sum_{i} \|Rp_i + t - q_i\|^2$$
• Iterate

"A method for registration of 3-D shapes." Besl and McKay, PAMI 1992.

On the Board

$$\min_{t \in \mathbb{R}^3, \ R^\top R = I} \sum_{i} \|Rp_i + t - q_i\|^2$$

Closed-form formulas!

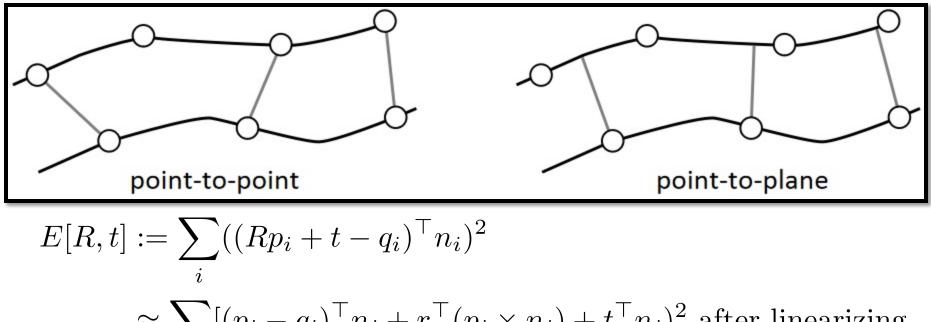
Many (!) Variants of ICP

- Source points from one or both meshes
 - Matching to points in the other mesh
 - Weighting correspondences
 - Rejecting outlier point pairs
 - Alternative error metrics

See [Rusinkiewicz & Levoy, 3DIM 2001]

Point-to-Plane Error Metric

Flat parts can slide along each other



$$\approx \sum_{i} [(p_i - q_i)^{\top} n_i + r^{\top} (p_i \times n_i) + t^{\top} n_i)^2 \text{ after linearizing}$$

Leasi

where $r := (r_x, r_y, r_z)$

"Object modelling by registration of multiple range images" Chen and Medioni, Image and Vision Computing 10.3 (1992); image courtesy N. Mitra

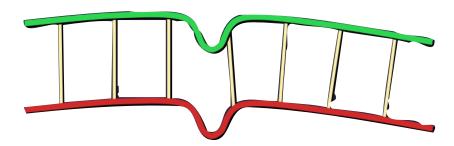
Closest Compatible Point

Can improve matching effectiveness by restricting match to compatible points

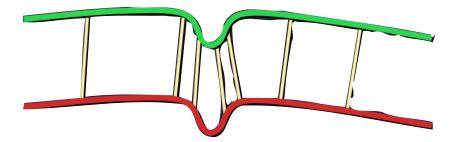
- Compatibility of colors [Godin et al. 94]
- Compatibility of normals [Pulli 99]
- Other possibilities:

curvatures, higher-order derivatives, and other local features

Choose Points to Improve Stability



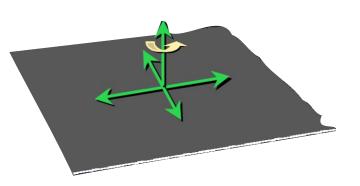
Uniform Sampling



Stable Sampling

Sample discriminative points

Local Covariance



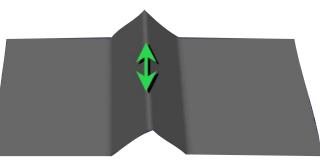
3 small eigenvalues
2 translation
1 rotation

1 rotation

1 small eigenvalue

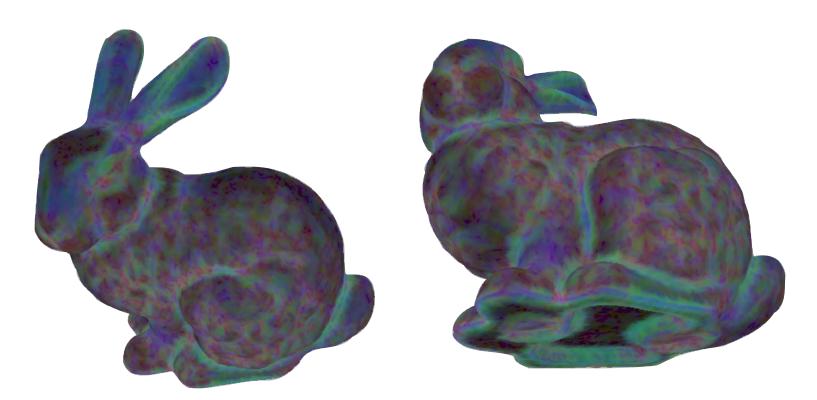
3 small eigenvalues 3 rotation

2 small eigenvalues
1 translation
1 rotation



1 small eigenvalue 1 translation [Gelfand et al. 2004]

Stability Analysis



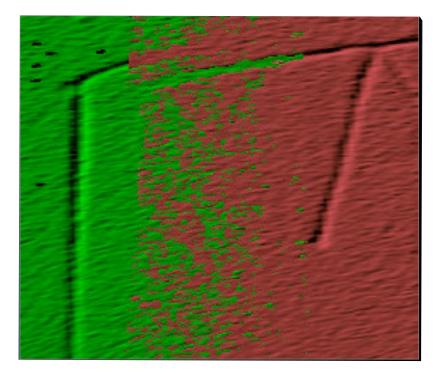
Key:

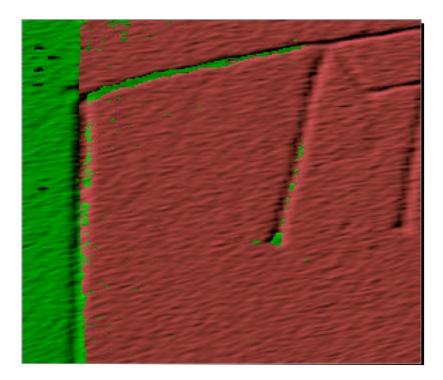
5 DOFs stable

4 DOFs stable

6 DOFs stable

Alternative: Uniform Normals

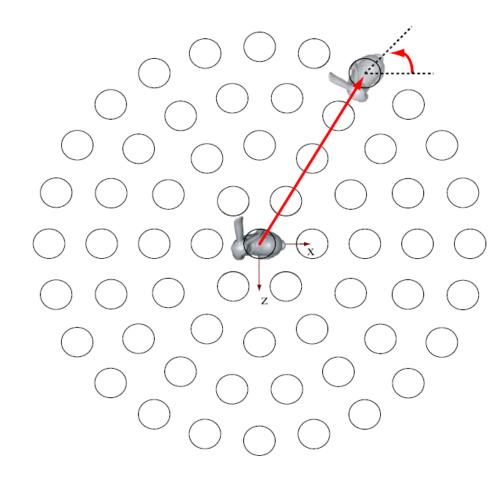




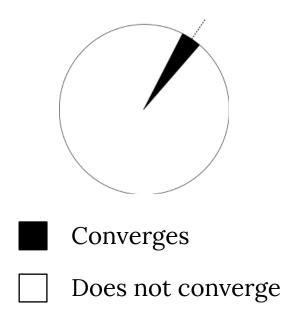
Random Sampling

Normal-space Sampling

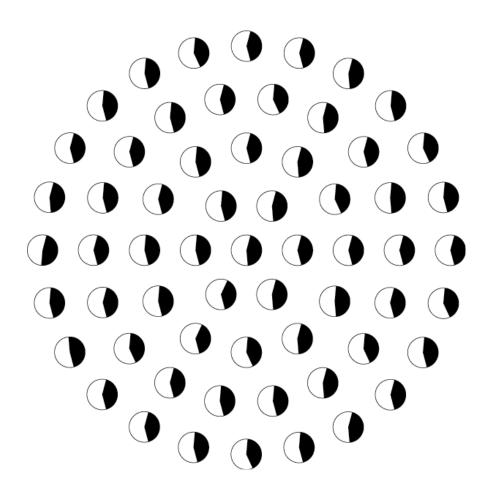
Convergence Funnel Visualization



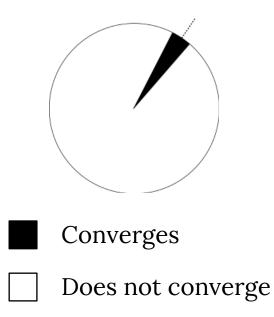
Translation in xz plane **Rotation** about y



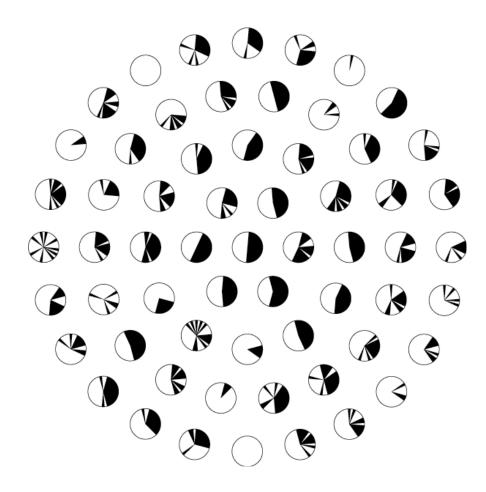
Distance Field Method



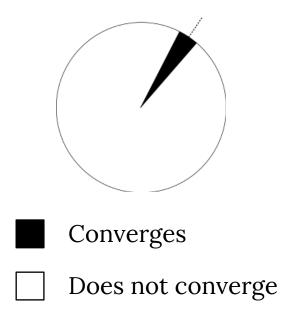
Translation in xz plane **Rotation** about y

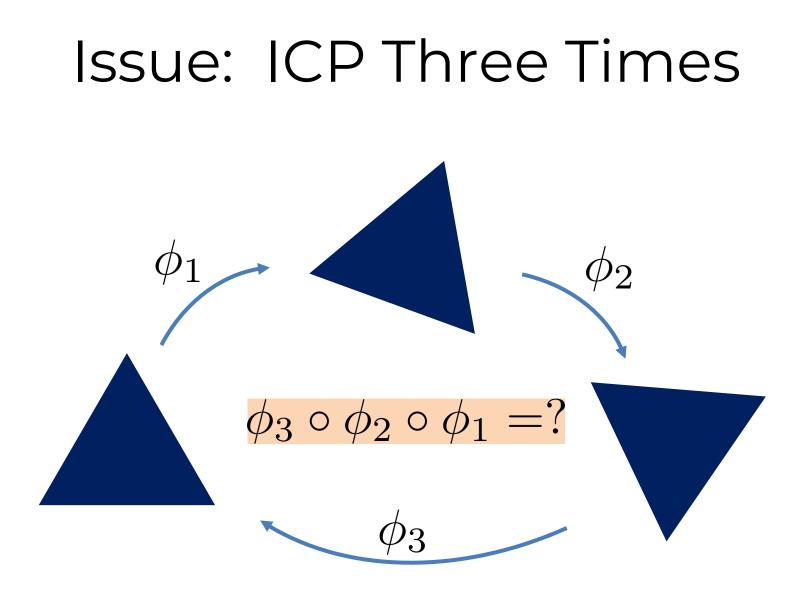


Point-to-Plane



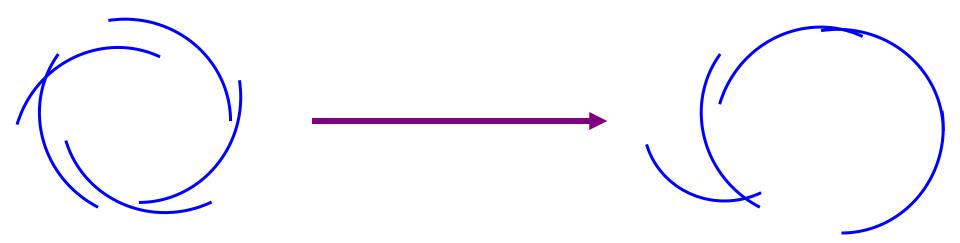
Translation in xz plane **Rotation** about y





Usually have ≥ 2 scans

Improve Sequential Alignment?

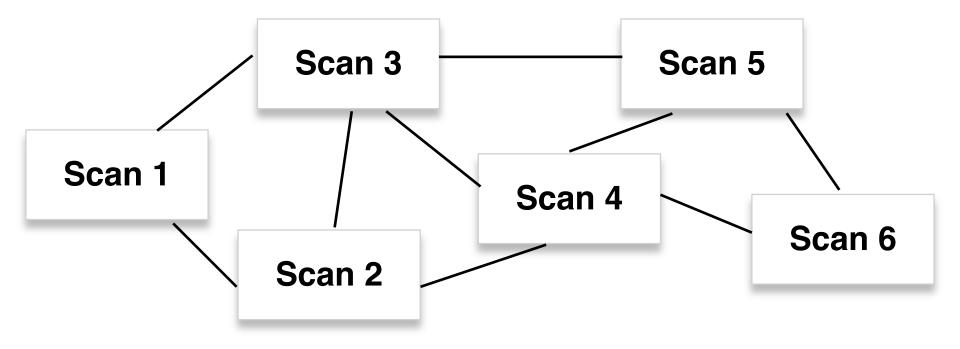


Prevent "drift"

Simple Methods

- Align everything to anchor scan Which to choose? Dependence on anchor?
- Align to union of previous scans Order dependence? Speed?
- Simultaneously align everything using ICP Local optima? Computational expense?

Graph Approach



Align similar scans, then assemble

Lu and Milios

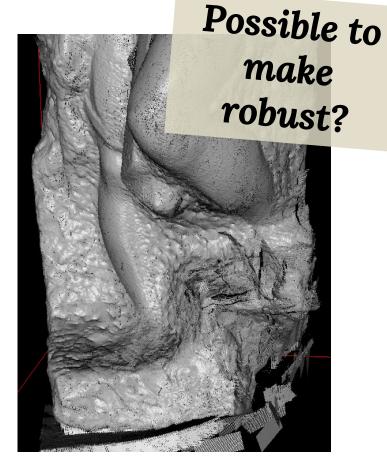
Pairwise phase Compute pairwise ICP on graph

Global alignment Least-squares rotation/translation

Linearize for global alignment

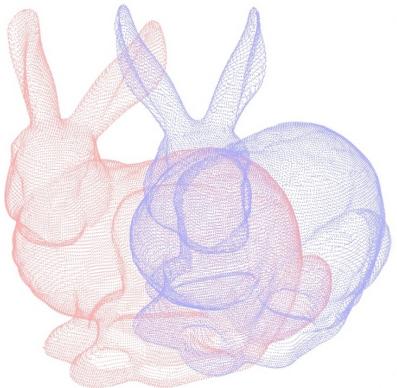
Failed ICP in Global Registration

Correct global registration



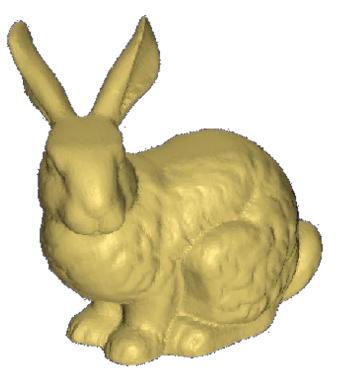
Global registration including bad ICP

Two components



https://i.ytimg.com/vi/uzOCS_gdZuM/maxresdefault.jpg

Registration



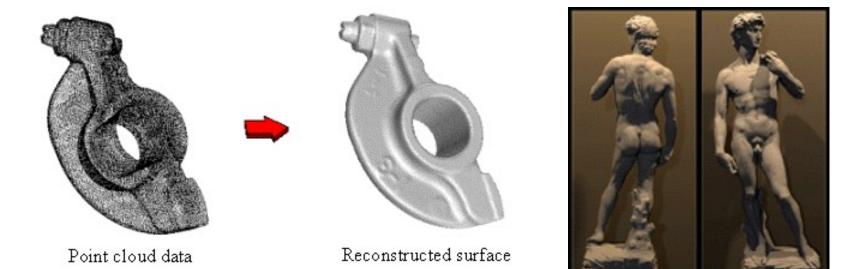
Meshing

Triangulating Point Clouds

Connect neighboring points into triangles

Triangulating Point Clouds

Connect neighboring points into triangles



Who are the neighbors? ⇔ What's the connectivity/topology

Methods

- Explicit, or reconstruction circa 1998
 - Zippering
 - Delaunay/Voronoi-based
- Implicit
 - Signed distance function
 - Poisson
- Data-driven

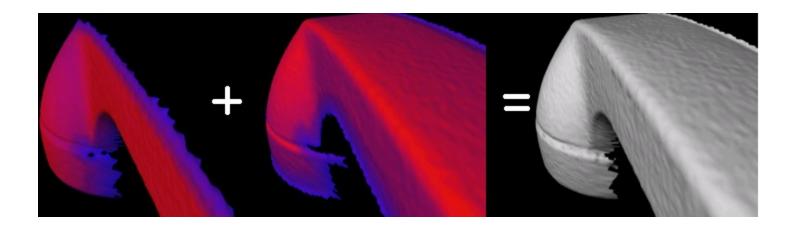
Methods

- Explicit, or reconstruction circa 1998
 - Zippering
 - Delaunay/Voronoi-based
- Implicit
 - Signed distance function
 - Poisson
- Data-driven

Basic Reconstruction: Zippering

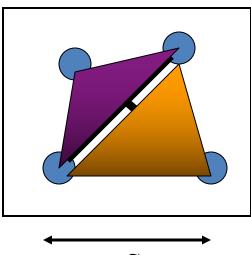
Single scan \rightarrow mesh

- regular lattice of points in X and Y with changing depth (Z) = height map
- Register Merge meshes



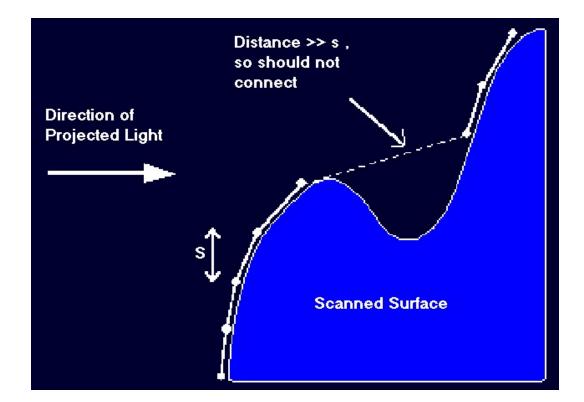
One scan → mesh

- Find quadruples of lattice points
- Form triangles
 - Find shortest diagonal
 - Form two triangles (test depth)



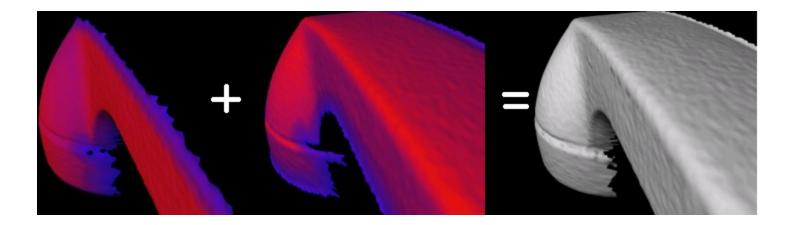
One scan → mesh

Avoid connecting depth discontinuities



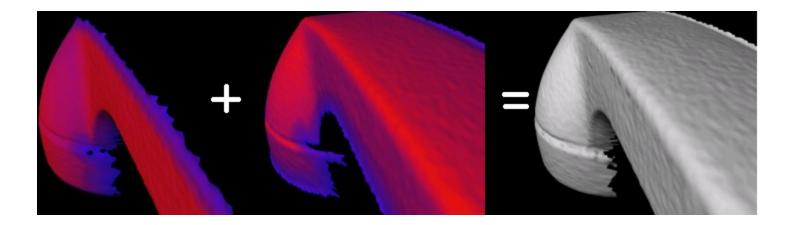
Basic Reconstruction: Zippering

✓ Single scan → mesh
 Register
 Merge meshes



Basic Reconstruction: Zippering

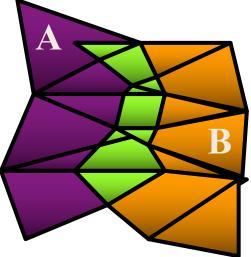
✓ Single scan → mesh
 ✓ Register
 Merge meshes



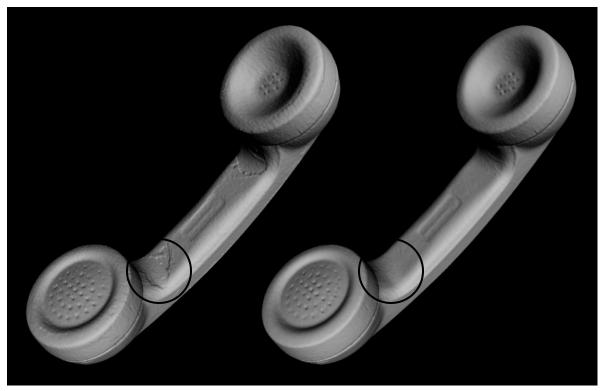
Merging 2 overlapping meshes

Zippering

- Remove overlapping portion of the mesh
 - Use for **consensus geometry**
- Clip one mesh against another
- Remove triangles introduced during clipping



Post-processing



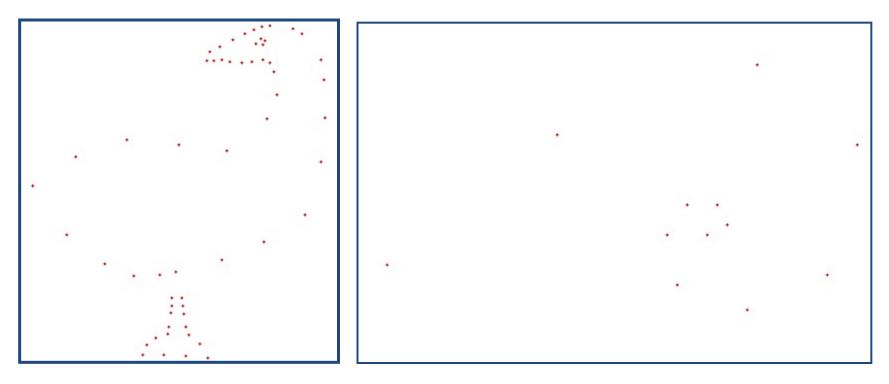
Zippering results

'Consensus geometry'

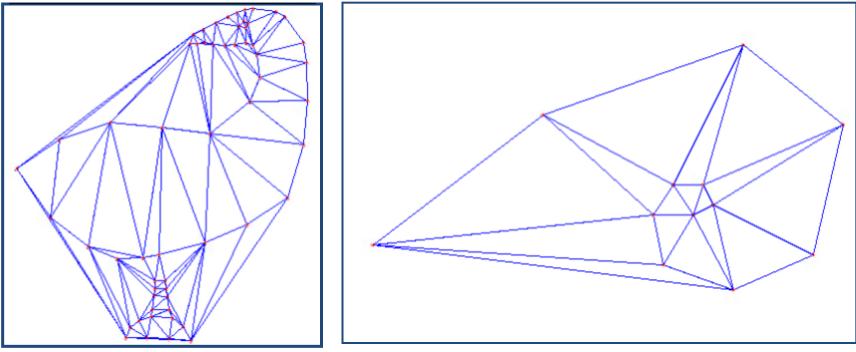
Move vertices to their average positions over all scans

Methods

- Explicit, or reconstruction circa 1998
 - Zippering
 - Delaunay/Voronoi-based
- Implicit
 - Signed distance function
 - Poisson
- Data-driven

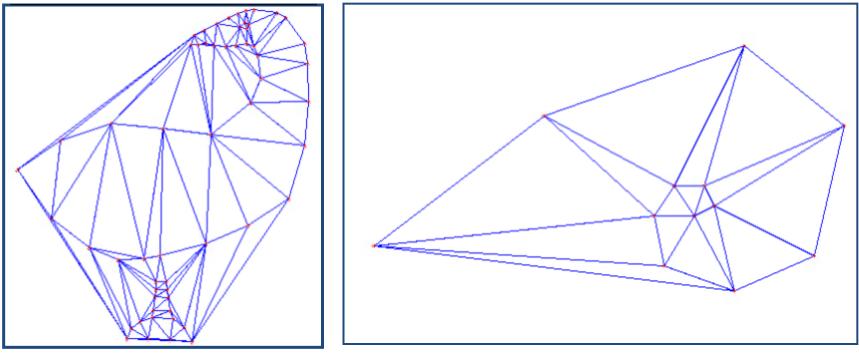


Connectivity? Edges should be far from other points



Delaunay Triangulation

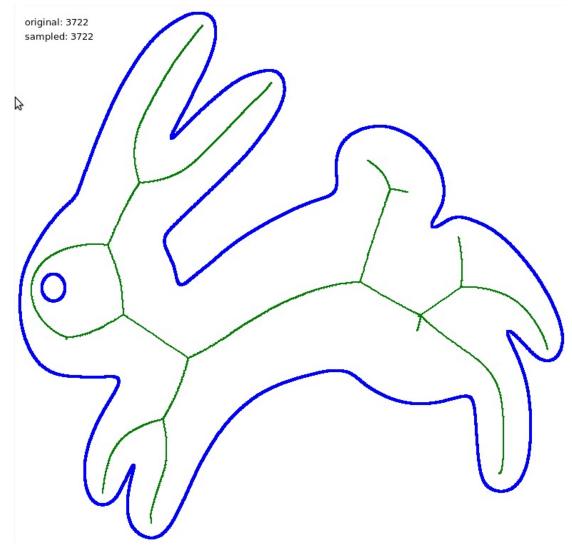
Edge *e* is Delaunay ⇔ some circumcircle of *e* contains no other sample points



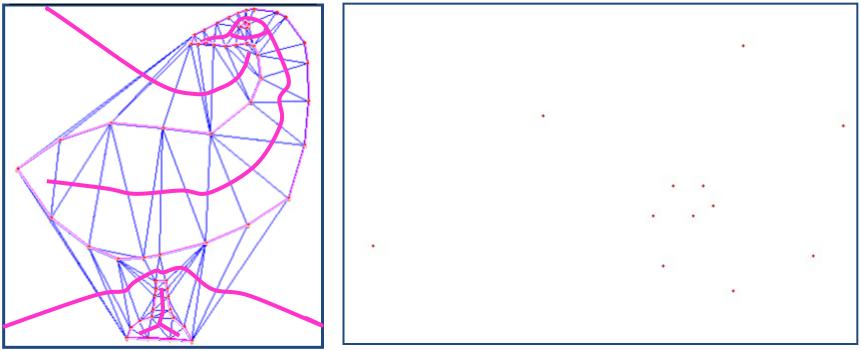
Which edges to pick?

Recall: Medial axis vs Voronoi diagram

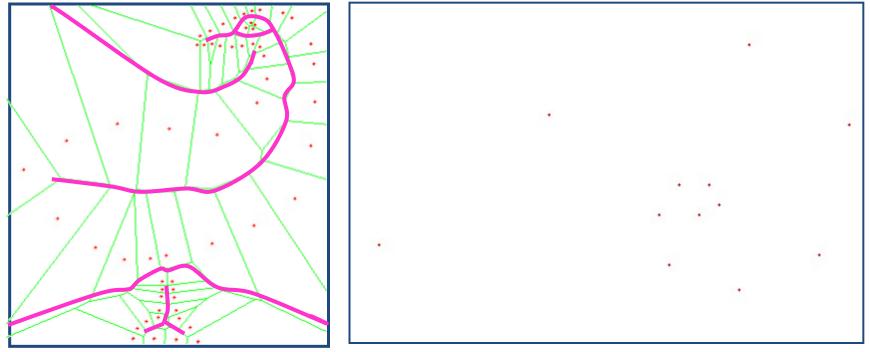
Recall: Medial axis vs Voronoi diagram



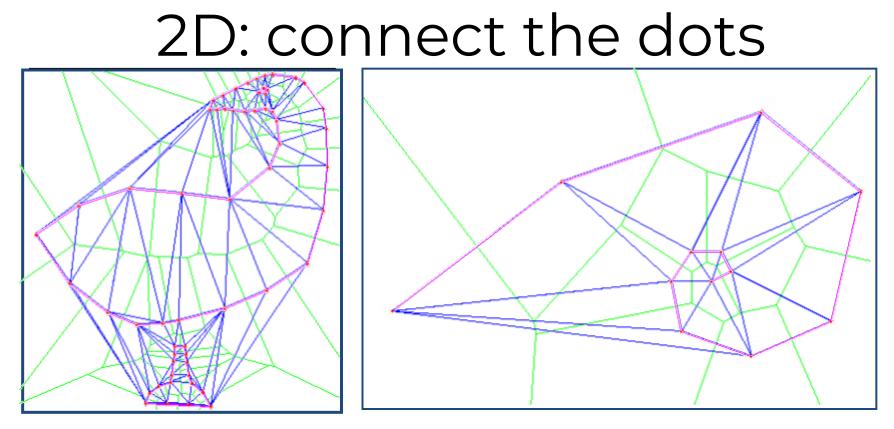
"On the Evaluation of the Voronoi-Based Medial Axis" by <u>Adriana Schulz</u>, <u>Francisco Ganacim</u> and <u>Leandro Cruz</u>



Edges should be "far" from Medial Axis

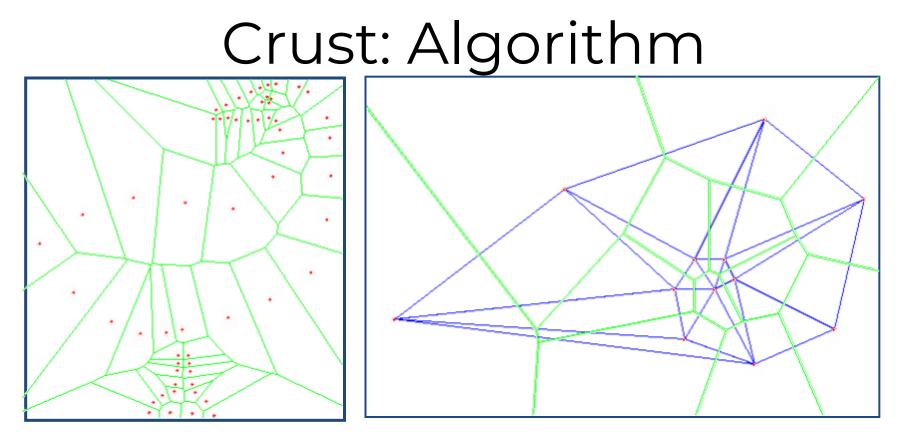


Voronoi diagram approximates Medial Axis **if points are sampled densely enough**

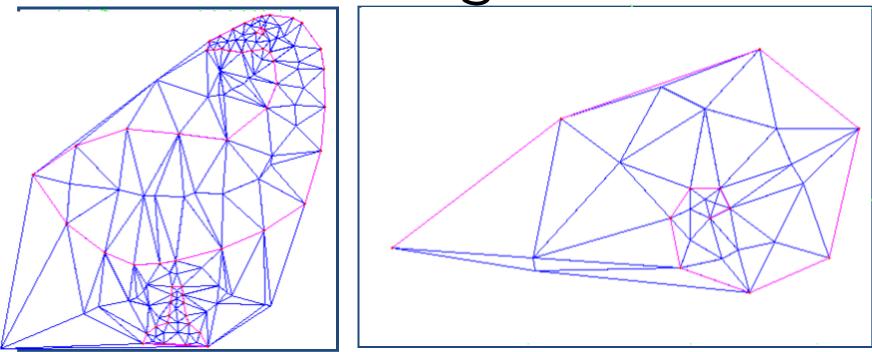


Edge e in **crust** \Leftrightarrow

a circumcircle of *e* contains no other sample points or Voronoi vertices of *S*

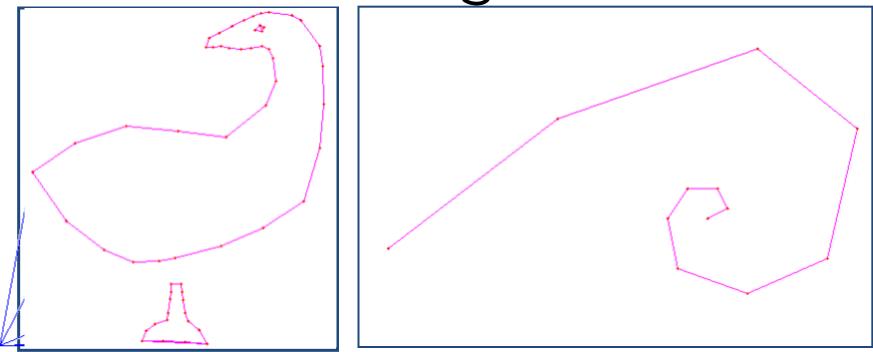


Compute Voronoi diagram of S $V = \{Voronoi vertices\}$



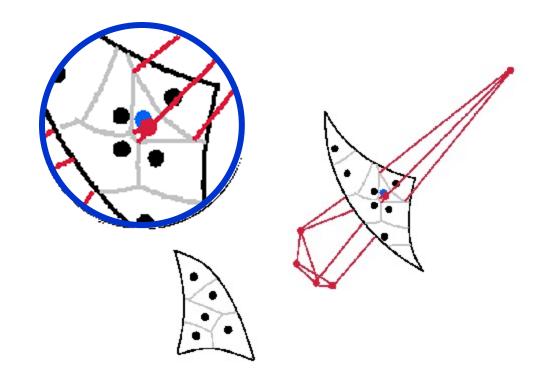
Compute Voronoi diagram of S $V = \{Voronoi vertices\}$

Compute Delaunay Triangulation of $S \cup V$



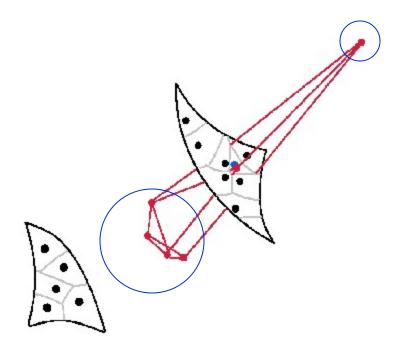
Compute Voronoi diagram of S $V = \{Voronoi vertices\}$ Compute Delaunay Triangulation of $S \cup V$ Crust = all edges between points of S

- Extend 2D approach
- Voronoi vertex is equidistant from 4 sample points
- BUT in 3D not all Voronoi vertices are near medial axis (regardless of sampling density)



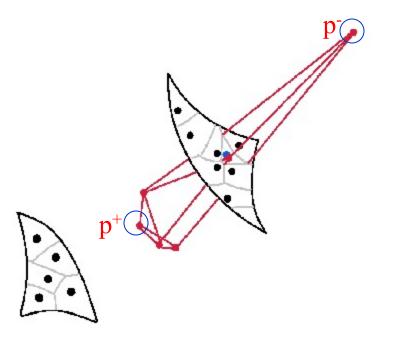
Some vertices of the Voronoi cell are near medial axis

Intuitively – cell is closed not just from the sides but also from "top" & "bottom"



Solution: use only two farthest vertices of V_s - one on each side of the surface

• Call vertices **poles** of s (p⁺, p⁻)

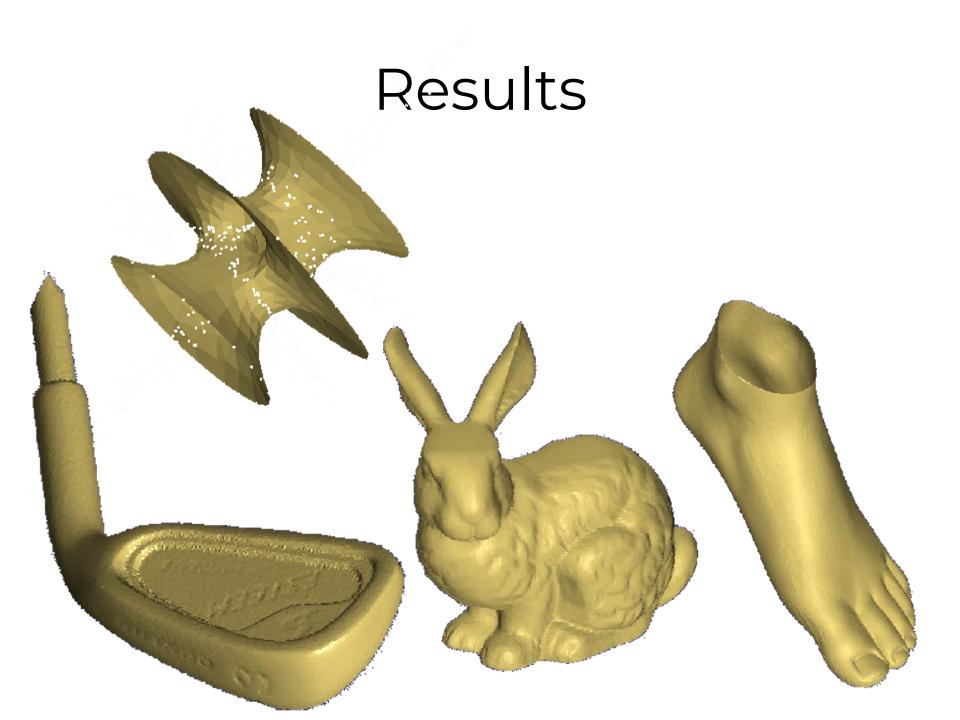


- Compute Voronoi diagram of S
- For each $s_i \in S$, compute

$$P = \{p_i^+, p_i^-\}$$

• Compute Delaunay triangulation T of $S \cup P$

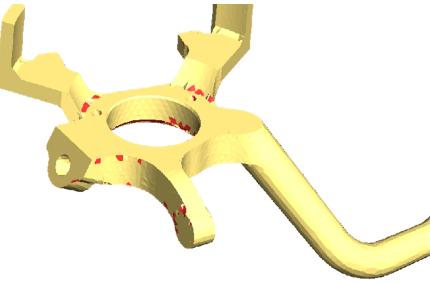
Crust = all triangles in *T* with vertices in *S*



Problems & Modifications

Correct in the absence of noise

Slow-**ish** Need dense samples Problems at sharp corners Noise



Methods

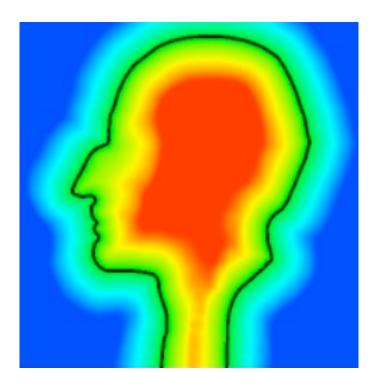
- Explicit, or reconstruction circa 1998
 - Zippering
 - Delaunay/Voronoi-based

• Implicit

- Signed distance function
- Poisson
- Data-driven

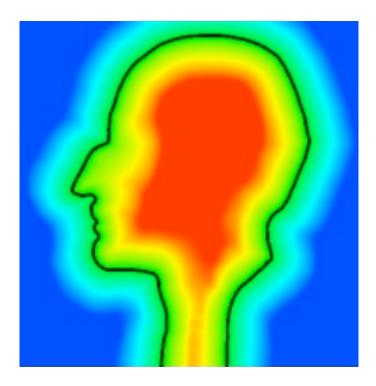
Implicit Reconstruction

- 1. Estimate signed distance function $d: \mathbb{R}^3 \to \mathbb{R}$
- 2. Extract an isosurface d = 0



Implicit Reconstruction

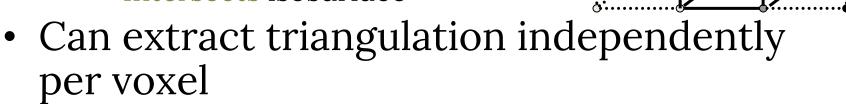
- 1. Estimate signed distance function $d: \mathbb{R}^3 \to \mathbb{R}$
- 2. Extract an isosurface d = 0

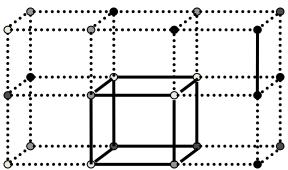


Marching Cubes

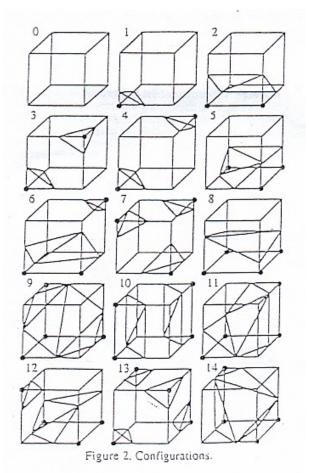
• Each voxel:

- Has values at 8 corners
- Has 256 possible configurations
 - 15 after counting symmetries and rotations
- Either
 - Inside isosurface
 - Outside isosurface
 - Intersects isosurface





Marching Cubes For each *intersecting* voxel contains triangles of the isosurface

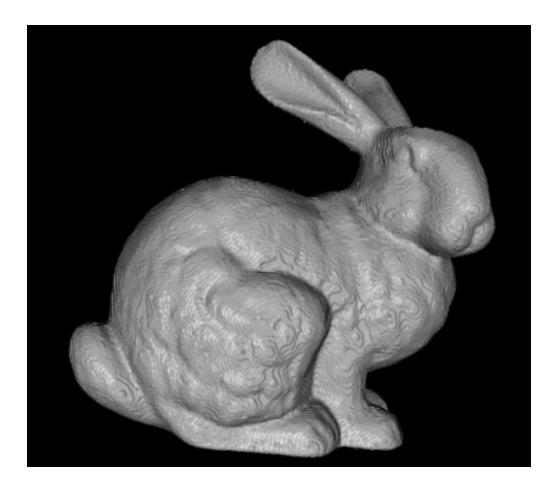


Configurations

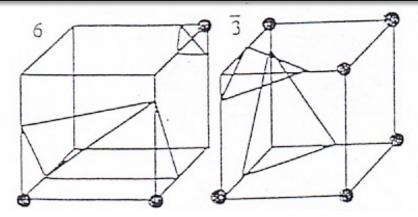
• For each configuration add 1-4 triangles to isosurface

- Isosurface vertices computed by:
 - Interpolation along edges (according to grid values)

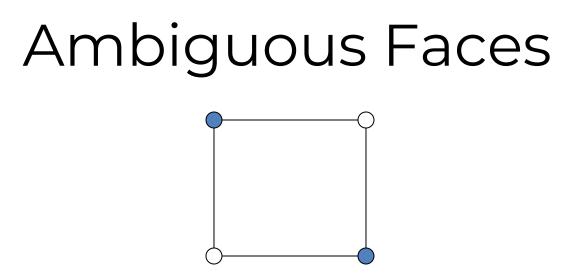
Example



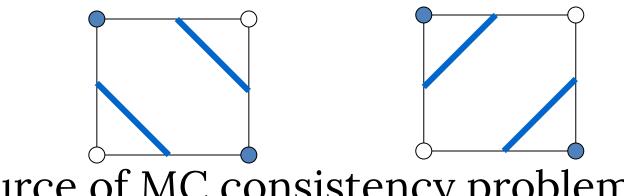
Problem Can produce non-manifold results and wrong genus



- What if those two are adjacent?
 - Each is ambiguous
- Consistency?



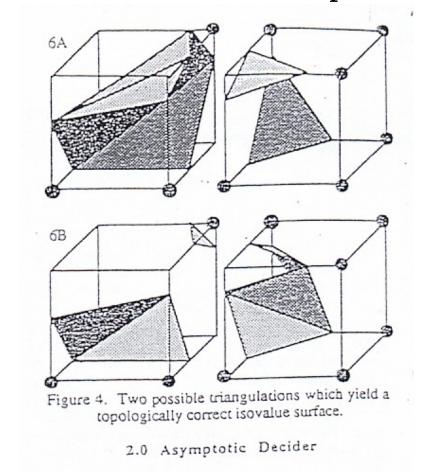
Two locally valid interpretations



Source of MC consistency problem

Solution

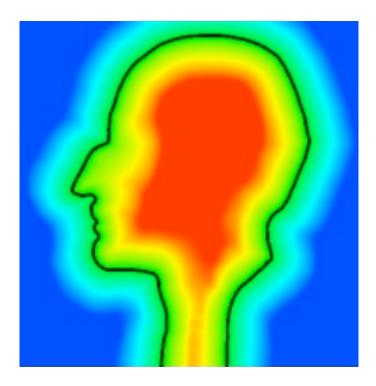
For those cases, store multiple triangulations



Choose one that agrees with neighbor voxels

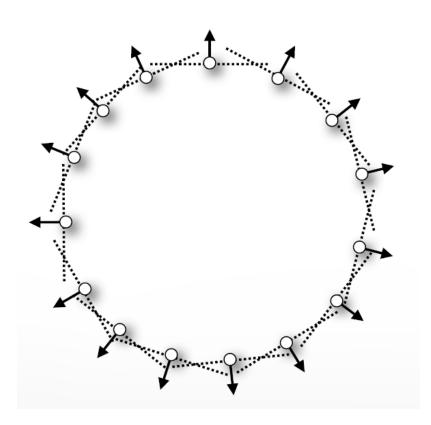
Implicit Reconstruction

- 1. Estimate signed distance function $d: \mathbb{R}^3 \to \mathbb{R}$
- 2. Extract an isosurface d = 0

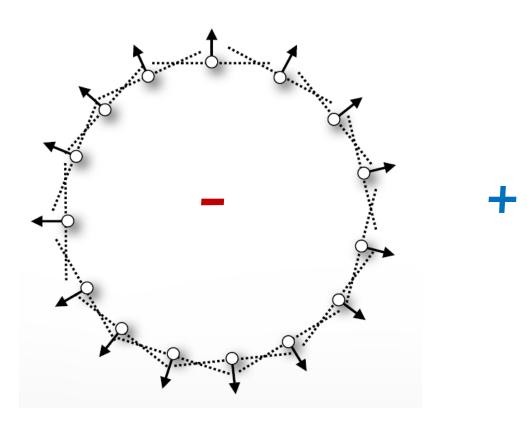


Signed distance function

Distance to points is not enough **Need more structure**



How can we tell inside from outside? **Estimate normals.**



• Fit a plane into neighborhood of each point

– Neighborhood = k nearest neighbors

 Determine consistent normal orientation

- Fit a plane into neighborhood of each point
 - Neighborhood = k nearest neighbors
 - Use spatial decompositions (BSP-trees)
- Determine consistent normal orientation

Fitting plane

 $\min_{c \in \mathbb{R}^{3}, ||n||=1} \sum_{i}^{\infty} (n^{T}(p_{i} - c))^{2}$

On the board, time permitting

• Fit a plane into neighborhood of each point

– Neighborhood = k nearest neighbors

 Determine consistent normal orientation

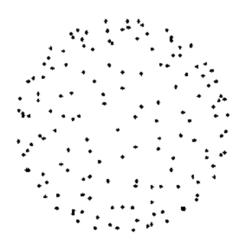
• Fit a plane into neighborhood of each point

– Neighborhood = k nearest neighbors

 Determine consistent normal orientation

– Make sure $n_i \cdot n_j > 0$ for neighb

Distance to tangent planes
– [Hoppe et al. '92]



150 samples

reconstruction on 50³ grid

• Smoother: RBF basis

Hoppe '92

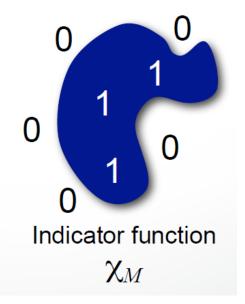
Compact RBF Wendland C² Global RBF Triharmonic

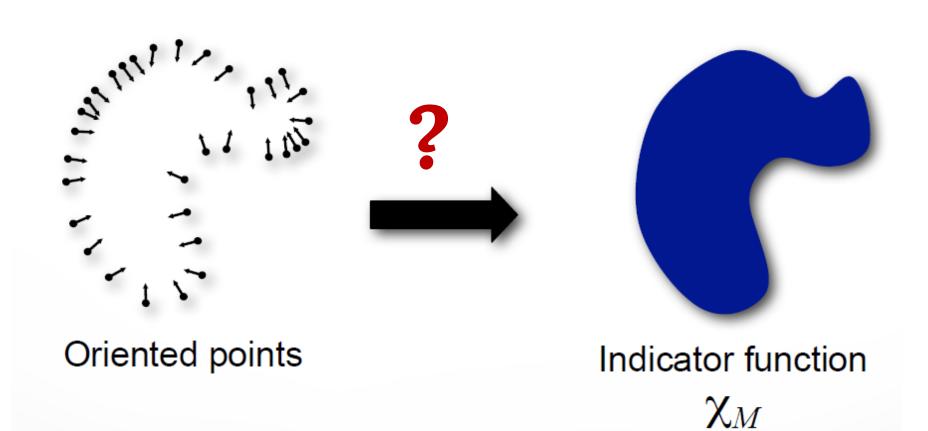
Poisson surface reconstruction

– [Kazhdan et al. '06]

Poisson surface reconstruction
 – Solve for indicator function

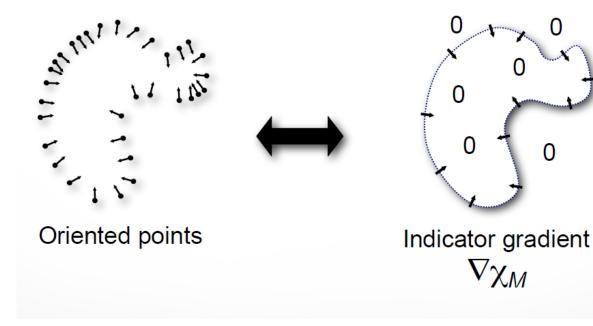
$$\chi_M(p) = \begin{cases} 1 & \text{if } p \in M \\ 0 & \text{if } p \notin M \end{cases}$$





Idea

Oriented normals = gradient of an indicator function?



Idea

Oriented normals \Rightarrow vector field \vec{V} Find indicator function:

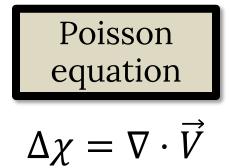
$$\min_{\chi} \left\| \vec{V} - \nabla \chi \right\|^2$$

Idea

Oriented normals \Rightarrow vector field \vec{V} Find indicator function:

$$\min_{\chi} \left\| \vec{V} - \nabla \chi \right\|^2$$

Differentiate,



Process



