IFT 6113
 MESH DEFORMATION AND SKINNING

tiny.cc/ift6113

Image from 'As-Rigid-As-Possible Shape Modeling' by Sorkine \& Alexa, 2007

Mikhail Bessmeltsev

What for?

- Animation!
- Mesh editing
- Image warping (2D)

This, and many other images in this presentation are from 'Polygon Mesh Processing' textbook by Botsch et al.

Warning:

TMI

This topic is immense
We'll only see a few samples

Deformation: user interface

- Handles
- Cages
- Skeletons

Ju et al., SIGGRAPH 2007

Deformation models

Direct

Variational

$v^{\prime}=\left(\sum w_{j} T_{j}\right) v$

- Linear Blend Skinning
- Dual Quaternion Skinning • As-Rigid-As-Possible
- Laplacian Mesh Editing

Deformation models

Variational

$v^{\prime}=\operatorname{argmin} E(x)$ x

- Multiresolution editing
- As-Rigid-As-Possible
- Laplacian Mesh Editing
- ...

Deformation: user interface

- Handles
- Cages
- Skeletons

Modeling

Paint three surface areas:

- Constrained
- Smooth falloff
- Fixed

Formulation

Find displacement vector field d

- Smooth
- Satisfies constraints

Simplest idea

- $d=s(p) \cdot D$
- $s(p)$ is a smooth function:
-1 on green vertices
- 0 on grey ones

Long time ago:

Dirichlet Energy

$$
E[f]:=\int_{\Omega}\langle\nabla f, \nabla f\rangle d A
$$

non-smooth $f(x)$

solution $\Delta f=0$

On board:

Images made by E. Vouga

Harmonic Functions

$\Delta f \equiv 0$

Mean value property:

How to find $s(p)$?

- Something inversely proportional to geodesic distance
- Or our favorite:

$$
\begin{aligned}
\Delta s\left(\mathbf{p}_{i}\right)=0, & \mathbf{p}_{i} \in \mathcal{R} \\
s\left(\mathbf{p}_{i}\right)=1, & \mathbf{p}_{i} \in \mathcal{H} \\
s\left(\mathbf{p}_{i}\right)=0, & \mathbf{p}_{i} \in \mathcal{F}
\end{aligned}
$$

Maximum principle

Reality vs Expectation

Deformation Energies

$\Delta p=0$

$$
\Delta^{2} p=0
$$

Initial state

$\Delta^{2} d=0$
(Bilaplacian)

Deformation Er Higher order s

 more boundary conditions

$$
\Delta p=0
$$

Initial state

$\Delta d=0$
(Membrane)

$$
\Delta^{2} p=0
$$

$\Delta^{2} d=0$
(Bilaplacian)

Physically-Based

Find a deformation that preserves both fundamental forms

Express the fundamental forms of S^{\prime} via vector field d Expensive to

stretching
bending

Shell-Based Deformation

Find a deformation that preserves both fundamental forms

Linearize Express the fundamental forms of S^{\prime} via vector field d

Physically-Based

$$
\int_{\Omega} k_{s} \underbrace{\left(\left\|\mathbf{d}_{u}\right\|^{2}+\left\|\mathbf{d}_{v}\right\|^{2}\right)}_{\text {stretching }}+k_{b} \underbrace{\left(\left\|\mathbf{d}_{u u}\right\|^{2}+2\left\|\mathbf{d}_{u v}\right\|^{2}+\left\|\mathbf{d}_{v v}\right\|^{2}\right)}_{\text {bending }} \mathrm{d} u \mathrm{~d} v
$$

Gateau derivative =>

$$
-k_{s} \Delta d+k_{b} \Delta^{2} d=0
$$

Physically-Based

$$
\int_{\Omega} k_{s} \underbrace{\left(\left\|\mathbf{d}_{u}\right\|^{2}+\left\|\mathbf{d}_{v}\right\|^{2}\right)}_{\text {stretching }}+k_{b} \underbrace{\left(\left\|\mathbf{d}_{u u}\right\|^{2}+2\left\|\mathbf{d}_{u v}\right\|^{2}+\left\|\mathbf{d}_{v v}\right\|^{2}\right)}_{\text {bending }} \mathrm{d} u \mathrm{~d} v
$$

Gateau derivative =>

$$
\left.\begin{array}{c}
-k_{s} \Delta d+k_{b} \Delta^{2} d=0 \\
y \\
y
\end{array}\right)
$$

Solved?

- Very fast
- One linear solve!
- Physically-based
- Linearization => lose details

Original

Linear deformation

Non-linear
deformation

Issue

- We need to rotate details
- Local rotation is nonlinear!
- Can we still survive with linear solves?

Non-linear
deformation

Multiresolution Editing

$\because A B A-A-A B$
Frequency decomposition

Change low frequencies

Add high frequency details, stored in local frames

Multiresolution Editing

How to represent details?

- For example, normal displacements

Result

Global deformation with intuitive detail preservation

Limitations

Neighboring displacements are not coupled

- Surface bending changes their angle
- Leads to volume changes or self-intersections

Original

Normal Displ.

Nonlinear

Limitations

Neighboring displacements are not coupled

- Surface bending changes their angle
- Leads to volume changes or self-intersections

Original

Normal Displ.

Nonlinear

New coordinates?

Express shape in differential coordinates

Transform those,
then reconstruct the new shape

Mean Value Property

$$
L_{v w}=A-D= \begin{cases}1 & \text { if } v \sim w \\ -\operatorname{degree}(v) & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}
$$

$$
(L x)_{v}=0
$$

Value at v is average of neighboring values

Laplacian Mesh Editing

Graph Laplacian:

$$
\boldsymbol{\delta}_{i}=\mathbf{v}_{i}-\frac{1}{d_{i}} \sum_{j \in N(i)} \mathbf{v}_{j}
$$

Local coordinates!

$$
\delta=L v
$$

Laplacian Mesh Editing

- Represent mesh using only δ
- Find a surface whose Laplacian coordinates are as close as possible to δ

$$
\begin{aligned}
& \int_{\mathcal{S}}\left\|\Delta \mathbf{p}^{\prime}-\boldsymbol{\delta}^{\prime}\right\|^{2} \mathrm{~d} \mathcal{S} \rightarrow \min \\
& \text { s.t. } p_{i}^{\prime}=p_{i}, i \in\{\text { point constraints }\}
\end{aligned}
$$

Laplacian Mesh Editing

Find a surface whose Laplacian coordinates are as close as possible to δ
$\min \sum\left\|\delta_{i}-L\left(p^{\prime}{ }_{i}\right)\right\|^{2}+\sum_{i \in c}\left\|p^{\prime}{ }_{i}-p_{i}\right\|^{2}$

Laplacian Mesh Editing

Find a surface whose Laplacian coordinates are as close as possible to δ

s.t. $p_{i}^{\prime}=p_{i}, i \in\{$ point constraints $\}$

Gateau derivative =>

$$
\Delta^{2} \mathbf{p}^{\prime}=\Delta \delta^{\prime}
$$

Physically-Based

$$
\int_{\Omega} k_{s} \underbrace{\left(\left\|\mathbf{d}_{u}\right\|^{2}+\left\|\mathbf{d}_{v}\right\|^{2}\right)}_{\text {stretching }}+k_{b} \underbrace{\left(\left\|\mathbf{d}_{u u}\right\|^{2}+2\left\|\mathbf{d}_{u v}\right\|^{2}+\left\|\mathbf{d}_{v v}\right\|^{2}\right)}_{\text {bending }} \mathrm{d} u \mathrm{~d} v
$$

Gateua derivative =>

$$
-k_{s} \Delta d+k_{b} \Delta^{2} d=0
$$

(almost) the same equation?

Bi-Laplacian

Issue

Reconstructing from differential coordinates makes sense only if they are rotation and translation invariant

Otherwise, you get this

Laplacian Coordinates

- Translation invariant
- Not rotation/scale invariant

Solutions

1. Transform, ignoring rotations or details
2. while (not converged)

- Estimate rotations (from normals)
- Rotate differential coordinates and solve

$$
E\left(\mathbf{V}^{\prime}\right)=\sum_{i=1}^{n}\left\|R_{i} \delta_{i}-L\left({p^{\prime}}_{i}\right)\right\|^{2}+\sum_{i \in c}\left\|p_{i}^{\prime}-p_{i}\right\|^{2}
$$

[Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi and H. P. Seidel, "Differential coordinates for interactive mesh editing," Proceedings Shape Modeling Applications, 2004]

Solutions

1. Transform, ignoring rotations or details
2. while (not converged)

- Estimate rotations (from normals)
- Rotate differential coordinates and solve

[Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi and H. P. Seidel, "Differential coordinates for interactive mesh editing," Proceedings Shape Modeling Applications, 2004]

Rotations + scaling - invariant?

Add local transformations T_{i} as variables

$$
E\left(\mathbf{V}^{\prime}\right)=\sum_{i=1}^{n}\left\|T_{i} \delta_{i}-L\left({p^{\prime}}_{i}\right)\right\|^{2}+\sum_{i \in c}\left\|p_{i}^{\prime}-p_{i}\right\|^{2}
$$

[O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, H.-P. Seidel, Laplacian Surface Editing, EUROGRAPHICS/Symposium on Geometry Processing, 2004]

Rotations + scaling - invariant?

Add local transformations T_{i} as variables

$$
E\left(\mathbf{V}^{\prime}\right)=\sum_{i=1}^{n}\left\|T_{i} \delta_{i}-L\left({p^{\prime}}_{i}\right)\right\|^{2}+\sum_{i \in c}\left\|p_{i}^{\prime}-p_{i}\right\|^{2}
$$

[O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, H.-P. Seidel, Laplacian Surface Editing, EUROGRAPHICS/Symposium on Geometry Processing, 2004]

Rotations + scaling - invariant?

Add local transformations T_{i} as variables

$$
T_{i}=\text { translation }+ \text { rotation }+ \text { scaling }
$$

Represent (a linearization of) T_{i} using translation/rotation/scaling parameters

[O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, H.-P. Seidel, Laplacian Surface Editing, EUROGRAPHICS/Symposium on Geometry Processing, 2004]

Rotations + scaling - invariant?

Add local transformations T_{i} as variables

$$
E\left(\mathbf{V}^{\prime}\right)=\sum_{i=1}^{n}\left\|T_{i} \delta_{i}-L\left({p^{\prime}}_{i}\right)\right\|^{2}+\sum_{i \in c}\left\|p_{i}^{\prime}-p_{i}\right\|^{2}
$$

$\Rightarrow T_{i}$ is a linear function of V^{\prime}
\Rightarrow Quadratic optimization
\Rightarrow Linear solve!
[O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, H.-P. Seidel, Laplacian Surface Editing, EUROGRAPHICS/Symposium on Geometry Processing, 2004]

$$
615
$$

As-Rigid-As-Possible Surface Modelling

As-rigid-as-possible (ARAP)

As-rigid-as-possible (ARAP)
-"Intuitive" deformations

- Smooth deformations at large scale
- Preserve local features
- Fast, for interactive mesh editing

ARAP in a nutshell...

1. Break mesh into overlapping pieces
2. Try to move each piece rigidly
3. Combine all local transformations into a smooth one

Pieces

Vertex Umbrella

-Covers entire surface
-One cell per vertex
-All triangles exist in 3 cells

Rigid motion

If cell \boldsymbol{i} moved rigidly:

$$
\begin{gathered}
p_{j}^{\prime}-p_{i}^{\prime}=R_{i}\left(p_{j}-p_{i}\right) \\
\forall j \in N(i)
\end{gathered}
$$

Deviation from rigid motion

If cell \boldsymbol{i} moved rigidly:

$$
p_{j}^{\prime}-p_{i}^{\prime}=R_{i}\left(p_{j}-p_{i}\right)
$$

$\forall j \in N(i)$

$$
\vec{H}=
$$

For the whole mesh

$$
E=\sum_{i} \sum_{j \in N(i)}\left\|p_{j}^{\prime}-p_{i}^{\prime}-R_{i}\left(p_{j}-p_{i}\right)\right\|^{2}
$$

For the whole mesh

$$
E=\sum_{i} \sum_{j \in N(i)} w_{i j}\left\|p_{j}^{\prime}-p_{i}^{\prime}-R_{i}\left(p_{j}-p_{i}\right)\right\|^{2}
$$

Orthogonal Procrustes problem

How to find the best rotation matrix aligning V with V^{\prime} ?

Orthogonal Procrustes problem

How to find the best rotation matrix aligning V with V^{\prime} ?

$$
\begin{gathered}
\underset{R}{\operatorname{argmin}}\|R A-B\|_{F} \\
\text { s.t. } R^{T} R=I
\end{gathered}
$$

???

Procrustes problem

1. Build covariance matrix $S=A B^{T}$
2. $\mathrm{SVD}: \mathrm{S}=\mathrm{U} \Sigma \mathrm{W}^{\mathrm{T}}$
3. $R_{i}=\mathrm{UW}^{\mathrm{T}}$

Mesh Deformation

$\min \sum_{i} \sum_{j \in N(i)} w_{i j}\left\|p_{j}^{\prime}-p_{i}^{\prime}-R_{i}\left(p_{j}-p_{i}\right)\right\|^{2}$

$$
\text { s.t. } p_{i}^{\prime}=\widetilde{p_{i}}
$$

point constraints
Caveats:

- $\left\{\boldsymbol{p}_{i}^{\prime}\right\}$ and $\left\{R_{i}\right\}$ are unknown
- Non-linear optimization problem

As-Rigid-As-Possible

1. Initialize $R_{i}=I$, for all i
2. Global Step. Given $\left\{R_{i}\right\}$, minimize energy to find $\left\{\boldsymbol{p}^{\prime}{ }_{i}\right\}$
3. Local Step. Fix $\left\{\boldsymbol{p}_{i}^{\prime}\right\}$, find optimal rotations $\left\{R_{i}\right\}$ via SVD.
4. Repeat steps 2 and 3 until convergence.

$$
\sum_{j \in N(i)} w_{i j}\left(\boldsymbol{p}_{i}^{\prime}-\boldsymbol{p}_{j}^{\prime}\right)=\sum_{j \in N(i)} \frac{w_{i j}}{2}\left(R_{i}+R_{j}\right)\left(\boldsymbol{p}_{i}-\boldsymbol{p}_{j}\right)
$$

$$
L \boldsymbol{p}^{\prime}=\boldsymbol{b}
$$

Advantages

Laplacian

- Depends only on original mesh
- Only needs to be factored once!

Rotations can be computed in parallel

- Each iteration reduces energy
- Updating rotations guaranteed to reduce cell-error
- Updating positions guaranteed to reduce global error

Guaranteed Convergence

Results (vs Poisson)

Poisson:

ARAP:

Deformation models

Direct

Variational

$v^{\prime}=\left(\sum w_{j} T_{j}\right) v$

- Linear Blend Skinning
- Dual Quaternion Skinning • As-Rigid-As-Possible
- Laplacian Mesh Editing

Deformation models

Direct

$v^{\prime}=\left(\sum w_{j} T_{j}\right) v$

- Linear Blend Skinning
- Dual Quaternion Skinning

1) Rest pose

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

2) Skinning transformations

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

3) Skinning weights

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

3) Skinning

 weights

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

Linear blend skinning (LBS)

$$
v^{\prime}=\left(\sum w_{j} T_{j}\right) v
$$

LBS is used widely in the industry

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

LBS: candy-wrapper artifact

LBS: candy-wrapper artifact

Figure 2: Typical "candy-wrapper" artifacts of linear blend skinning.

What went wrong?

$$
v^{\prime}=\left(\sum w_{j} T_{j}\right) v
$$

What went wrong?

$$
v^{\prime}=\left(\sum w_{j} T_{j}\right) v
$$

$$
\boldsymbol{R}_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \boldsymbol{R}_{2}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

What went wrong?

$$
v^{\prime}=\left(\sum w_{j} T_{j}\right) v
$$

$$
\boldsymbol{R}_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \boldsymbol{R}_{2}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Why can't we just sum up rotation matrices?

Geometry of linear blending

SE(3)

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Ladislav Kavan

Geometry of linear blending

SE(3)

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Ladislav Kavan

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Ladislav Kavan

Intrinsic blending

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan

Intrinsic blending using Lie algebras

[Buss and Fillmore 2001, Alexa 2002, Govindu 2004, Rossignac and Vinacua 2011]

$$
\begin{aligned}
& \underset{X}{\operatorname{argmin}} \sum_{X} w_{j} d\left(X, T_{j}\right) \\
& d(\mathbf{X}, \mathbf{Y})=\left\|\log \left(\mathbf{Y X}^{-1}\right)\right\|^{2}
\end{aligned}
$$

Karcher / Frechet mean

Dual Quaternion Skinning

Where do the weights come from?

Manual?

Automatic skinning weight computation

Weights should obtain a few basic qualities

Inverse Euclidean distance weights are too crude, show obvious artifacts

$$
w_{j}(\mathbf{v})=\frac{1}{\left\|\mathbf{c}_{i}-\mathbf{v}\right\|^{2}}
$$

[Shepard 1968],
[Schaefer et al. 2006], etc.
weights optimized inside shape

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson

Inverse Euclidean distance weights are too crude

$$
U_{j}(\mathbf{V})=\frac{1}{\left\|\mathbf{C}_{i}-\mathbf{V}\right\|^{2}}
$$

weights optimized inside shape
[Shepard 1968],
[Schaefer et al. 2006], etc.

Slides from Skinning: Real-time Shape Deformation Course, Direct

Discontinuous projection onto surface can be smoothed out

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Alec Jacobson

Discontinuous projection onto surface can be smoothed out

$\underset{w_{j}}{\operatorname{argmin}} \int_{\Omega}\left\|\nabla w_{j}\right\|^{2}+h_{j}\left(w_{j}-\hat{w}_{j}\right)^{2} d A$

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Alec Jacobson

Discontinuous projection onto surface can be smoothed out

smoothness

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Alec Jacobson

Discontinuous projection onto surface can be smoothed out

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Alec Jacobson

Discontinuous projection onto surface can be smoothed out

$\underset{w_{j}}{\operatorname{argmin}} \int_{\Omega}\left\|\nabla w_{j}\right\|^{2}+h_{j}\left(w_{j}-\hat{w}_{j}\right)^{2} d A$

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Alec Jacobson

Gradient energy weights not smooth at handles

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Alec Jacobson

Gradient energy weights not smooth at handles

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Alec Jacobson

Gradient energy weights not smooth at handles

$$
\Delta^{2} w_{j}=0
$$

$$
\Delta w_{j}=0
$$

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Alec Jacobson

Point constraints for Laplace equation

https://www.facebook.com/521399544544480/photos/a.523048724379562/80096825992093 9/?type=1\&theater, Facebook group "Circus tents and circus equipment"

Non-negative, local weights are mandatory

Spurious extrema cause distracting artifacts

Must explicitly prohibit spurious extrema

w_{j} is "monotonic"

Previous methods fail in one way or another

	Euclidean	$\Delta \mathrm{w}_{\mathrm{j}}$	$\Delta^{2} \mathrm{w}_{\mathrm{j}}$
smooth	\checkmark	-	\checkmark
non-negative	\checkmark	\checkmark	-
shape-aware	-	\checkmark	\checkmark
local	-/V	-	-
monotonic	-	\checkmark	-
arbitrary handles	-	\checkmark	\checkmark
	[Shepard 1968 Sibson 1980, Schaefer et al. 2006]	[Baran \& Popovic 2007 Joshi et al. 2007]	[Botsch \& Kobbelt 2004 Sorkine et al. 2004 Finch et al. 2011]

Constrained optimization ensures satisfaction of all properties
$\underset{\substack{\text { wrgmin } \\ w_{j}, j=1, \ldots, m}}{\arg } \sum_{j=1}^{m} \int_{\Omega}\left(\Delta w_{j}\right)^{2} d V$

```
+ shape-aware
+ smoothness
```


Constrained optimization ensures satisfaction of all properties

$$
\begin{aligned}
\underset{w_{j}, j=1, \ldots, m}{\operatorname{argmin}} & \sum_{j=1}^{m} \int_{\Omega}\left(\Delta w_{j}\right)^{2} d V \\
w_{j}(\mathbf{v}) & =\left\{\begin{array}{l}
1 \\
0 \\
\text { linear on cage facets }
\end{array}\right.
\end{aligned}
$$

+ shape-aware
+ smoothness
+ arbitrary handles

Constrained optimization ensures satisfaction of all properties

$$
\begin{aligned}
& \underset{w_{j}, j=1, \ldots, m}{\operatorname{argmin}} \sum_{j=1}^{m} \int_{\Omega}\left(\Delta w_{j}\right)^{2} d V \\
& 0 \leq w_{j} \leq 1 \\
& \sum_{j=1}^{m} w_{j}=1
\end{aligned}
$$

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity

Constrained optimization ensures satisfaction of all properties

$$
\begin{aligned}
& \underset{w_{j}, j=1, \ldots, m}{\operatorname{argmin}} \sum_{j=1}^{m} \int_{\Omega}\left(\Delta w_{j}\right)^{2} d V \\
& 0 \leq w_{j} \leq 1 \\
& \sum_{j=1}^{m} w_{j}=1
\end{aligned}
$$

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality

Constrained optimization ensures satisfaction of all properties

$$
\begin{array}{ll}
\underset{w_{j}, j=1, \ldots, m}{\operatorname{argmin}} \sum_{j=1}^{m} \int_{\Omega}\left(\Delta w_{j}\right)^{2} d V & \begin{array}{l}
\text { + shape-aware } \\
\text { + smoothness } \\
\text { + arbitrary handles } \\
\text { + non-negativity }
\end{array} \\
\|w\|_{1}=1 &
\end{array}
$$

Constrained optimization ensures satisfaction of all properties

$$
\begin{aligned}
& \underset{w_{j}, j=1, \ldots, m}{\operatorname{argmin}} \sum_{j=1}^{m} \int_{\Omega}\left(\Delta w_{j}\right)^{2} d V \\
& \|w\|_{1}=1 \rightarrow \sum_{j=1}^{m}\left|w_{j}\right|=1
\end{aligned}
$$

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality

Constrained optimization ensures satisfaction of all properties

$$
\begin{aligned}
& \underset{w_{j}, j=1, \ldots, m}{\operatorname{argmin}} \sum_{j=1}^{m} \int_{\Omega}\left(\Delta w_{j}\right)^{2} d V \\
& \|w\|_{1}=1 \rightarrow \sum_{j=1}^{m}\left|w_{j}\right|=1 \rightarrow \sum_{j=1}^{m} w_{j}=1, \\
& 0 \leq w_{j} \leq 1
\end{aligned}
$$

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality

Constrained optimization ensures satisfaction of all properties

$$
\begin{aligned}
& \underset{w_{j}, j=1, \ldots, m}{\operatorname{argmin}} \sum_{j=1}^{m} \int_{\Omega}\left(\Delta w_{j}\right)^{2} d V \\
& \nabla w_{j} \cdot \nabla u_{j}>0
\end{aligned}
$$

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality
+ monotonicity

Previous methods fail in one way or another
 Euclidean $\quad \Delta \mathrm{w}_{\mathrm{j}}=\mathrm{u}$
 $\Delta^{2} W_{j}$

Constrained optimization ensures satisfaction of all properties

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality
+ monotonicity
[Weinkauf et al. 2011, Jacobson et al. 2012, Günther et al. 2014]

Weights retain nice properties in 3D

