IFT 6113 GEODESICS

tiny.cc/ift6173

Mikhail Bessmeltsev

Geodesic Distance

Geodesic Distance

Length of a shortest path on a surface

Geodesics

Possible questions

Locally shortest

Single source

Multi-source

Mesh ~ Graph find shortest path?

http://www.cse.ohio-state.edu/~tamaldey/isotopic.html

Mesh ~ Graph find shortest path?

Mesh ~ Graph
find shortest path?

Mesh ~ Graph
find shortest path?

Mesh ~ Graph
find shortest path?
May not converge under refinement

Mesh ~ Graph
find shortest path?
$\ell=\sqrt{2}$

$$
\ell=2
$$

Mesh ~ Graph find shortest path?

http://www.cse.ohio-state.edu/~tamaldey/isotopic.html

How to discretize geodesic distance?

Euclidean Space

- Globally shortest path
- Local minimizer of length
- Locally straight path

Surfaces: choose one

- Globally shortest path
- Local minimizer of length
- Locally straight path

Not the same!

Surfaces: choose one

- Globally shortest path

Let's find Local minimizer of length

- Locally straight path

Not the same!

Recalb:

Arc Length

Wouldn't it be nice?

\int^{b}
 $$
\left\|\gamma^{\prime}(t)\right\|^{2} d t
$$

Energy of a Curve

Not the length, but turns out we can optimize it instead!

$$
L=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t
$$

Note: we do not assume arclength parameterization

$$
E=\frac{1}{2} \int_{a}^{b}\left\|\gamma^{\prime}(t)\right\|^{2} d t
$$

Lemma: $L^{2} \leq 2(b-a) E$

= when parameterized by arc length.

First Variation of Arc Length

Lemma. Let $\gamma_{t}:[\mathrm{a}, \mathrm{b}] \rightarrow S$ be a family of curves with fixed endpoints in surface \mathbf{S}; assume γ is parameterized by arc length at $\mathbf{t}=0$. Then,

$$
\left.\frac{d}{d t} E\left[\gamma_{t}\right]\right|_{t=0}=-\int_{a}^{b}\left(\frac{d \gamma_{t}(s)}{d t} \cdot \operatorname{proj}_{T_{\gamma_{t}(s)} S}\left[\gamma_{t}^{\prime \prime}(s)\right]\right) d s
$$

Corollary. $\gamma:[\mathbf{a}, \mathbf{b}] \rightarrow \boldsymbol{S}$ is a geodesic iff

$$
\operatorname{proj}_{T_{\gamma(s)} S}\left[\gamma^{\prime \prime}(s)\right]=0
$$

Intuition

$$
\operatorname{proj}_{T_{\gamma(s)} S}\left[\gamma^{\prime \prime}(s)\right]=0
$$

- The only acceleration is out of the surface
- No steering wheel!

Intuition

$\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)=0$

- The only acceleration is out of the surface
- No steering wheel!

Intuition

$$
\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)=0
$$

"parallel transport along the curve

 preserves the tangent vector to the curve"
Two Local Perspectives

$$
\operatorname{proj}_{T_{\gamma(s) S} S}\left[\gamma^{\prime \prime}(s)\right]=0
$$

- Boundary value problem
- Given: $\gamma(\mathbf{0}), \gamma(\mathbf{1})$
- Initial value problem (ODE)
- Given: $\boldsymbol{\gamma}(\mathbf{0}), \gamma^{\prime}(\mathbf{0})$

Exponential Map

$$
\exp _{p}(v):=\gamma_{v}(1)
$$

$\gamma_{v}(1)$ where γ_{v} is (unique) geodesic from p with velocity v.

Instability of Geodesics

Locally minimizing distance is not enough to be a shortest path!

Eikonal Equation

$\|\nabla u\|_{2}=1$

https://www.mathworks.com/matlabcentral/fileexchange/24827-hamilton-jacobi-solver-on-unstructured-triangulargrids/content/HJB_Solver_Package/@SolveEikonal/SolveEikonal.m
\end\{math\} }

Starting Point for Algorithms

Graph shortest path algorithms are well-understood.

Can we use them (carefully) to compute geodesics?

Useful Principles

"Shortest path had to come from somewhere."

"All pieces of a shortest path are optimal."

Dijkstra's Algorithm

$v_{0}=$ Source vertex
$d_{i}=$ Current distance to vertex i
$S=$ Vertices with known optimal distance

$$
\begin{aligned}
& \text { Initialization: } \\
& \begin{aligned}
d_{0} & =0 \\
d_{i} & =\infty \forall i>0 \\
S & =\{ \}
\end{aligned}
\end{aligned}
$$

Dijkstra's Algorithm

$v_{0}=$ Source vertex
$d_{i}=$ Current distance to vertex i
$S=$ Vertices with known optimal distance

Iteration k :

$k=\arg \min _{v_{k} \in V \backslash S} d_{k}$
$S \leftarrow v_{k}$
$d_{\ell} \leftarrow \min \left\{d_{\ell}, d_{k}+d_{k \ell}\right\} \forall$ neighbors v_{ℓ} of v_{k}

Inductive proof: remains optimal.

Advancing Fronts

Example

Example

Fast Marching

Approximately solving Eikonal equation with a (modified) Dijkstra algorithm

Problem

Planar Front Approximation

At Local Scale

Notation

$d(x)$ - geodesic distance (from a fixed vertex x_{0})

- also time

Fast Marching: algorithm

- Initialization:

$$
d\left(x_{0}\right)=0
$$

Mark x_{0} as black / /computed
Red $=N\left(x_{0}\right) / /$ front
All other vertices are green / /not computed

- While not everything is black
- Find a red vertex x_{1} with min d
- Update neighbor triangles of x_{1}
- Update only non-black vertices
- Mark those as red
- Mark x_{1} as black

Fast Marching: Update Step

Vertex x updated from triangle $\ni x$

Distance computed from the other triangles vertices

Given:

Planar Calculations

$$
\begin{gathered}
\text { Given: } \\
d_{1}=n^{\top} x_{1}+p \\
d_{2}=n^{\top} x_{2}+p \\
d=V^{T} n+p \mathbf{1}_{2 \times 1} \\
\text { Find: } \\
d_{3}=n^{\top} x_{3}^{\top}+p=p
\end{gathered}
$$

Planar Calculations

$$
\begin{aligned}
& d=V^{\top} n+p \mathbf{1}_{2 \times 1} \\
& \quad \downarrow
\end{aligned}
$$

$$
n=V^{-\top}\left(d-p \mathbf{1}_{2 \times 1}\right)
$$

$$
1=n^{\top} n
$$

$$
=p^{2} \mathbf{1}_{2 \times 1}^{\top} Q \mathbf{1}_{2 \times 1}-2 p \mathbf{1}_{2 \times 1}^{\top} Q d+d^{\top} Q d
$$

$$
Q:=\left(V^{\top} V\right)^{-1}
$$

Planar Calculations

$$
\begin{gathered}
1=p^{2} \cdot \mathbf{1}_{2 \times 1}^{\top} Q \mathbf{1}_{2 \times 1}-2 p \cdot \mathbf{1}_{2 \times 1}^{\top} Q d+d^{\top} Q d \\
\text { Quadratic equation for } p
\end{gathered}
$$

Two Roots

Smaller root: acute

Larger root: obtuse

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Two orientations for the normal

Larger Root: Consistent

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Two orientations for the normal

Additional Issue

Front from outside the triangle

Condition for Front Direction

Bronstein et al., Numerical Geometry of Nonrigid S Front from outside the triangle

Obtuse Triangles

Bronstein et al., Numerical Geometry of Nonrigid S Must reach x_{3} after x_{1} and x_{2}

Fixing the Issues

- Alternative edge-based update:
$d_{3} \leftarrow \min \left\{d_{3}, d_{1}+\left\|x_{1}\right\|, d_{2}+\left\|x_{2}\right\|\right\}$
- Add connections as needed [Kimmel and Sethian 1998]

Obstuse angle

Summary: Update Step

input
: non-obtuse triangle with the vertices x_{1}, x_{2}, x_{3}, and the corresponding arrival times d_{1}, d_{2}, d_{3}
output : updated d_{3}
1 Solve the quadratic equation

$$
p=\frac{1_{2 \times 1}^{\mathrm{T}} Q d+\sqrt{\left(1_{2 \times 1}^{\mathrm{T}} Q d\right)^{2}-1_{2 \times 1}^{\mathrm{T}} Q 1_{2 \times 1} \cdot\left(d^{\mathrm{T}} Q d-1\right)}}{1_{2 \times 1}^{\mathrm{T}} Q 1_{2 \times 1}} .
$$

where $V=\left(x_{1}-x_{3}, x_{2}-x_{3}\right)$, and $d=\left(d_{1}, d_{2}\right)^{\mathrm{T}}$.
2 Compute the front propagation direction $n=V^{-\mathrm{T}}\left(d-p \cdot 1_{2 \times 1}\right)$
3 if $\left(V^{\mathrm{T}} V\right)^{-1} V^{\mathrm{T}} n<0$ then
$4 \quad d_{3} \longleftarrow \min \left\{d_{3}, p\right\}$
5 else
$6 \quad d_{3} \longleftarrow \min \left\{d_{3}, d_{1}+\left\|x_{1}\right\|, d_{2}+\left\|x_{2}\right\|\right\}$
7 end

Fast Marching vs. Dijkstra

- Modified update step
- Update all triangles
adjacent to a given vertex

Eikonal Equation

Greek: "Image"
$\begin{aligned} & 1=n \\ &=\left(d-p \mathbf{1}_{2 \times 1}\right)^{\top} X^{-1} X^{-\top}\left(d-p \mathbf{1}_{2 \times 1}\right) \\ &=p^{2} \cdot \mathbf{1}_{2 \times 1}^{\top} Q \mathbf{1}_{2 \times 1}-2 p \cdot \mathbf{1}_{2 \times 1}^{\top} Q d+d^{\top} Q d \\ & Q:=\left(X^{\top} X\right)^{-1}\end{aligned}$

Solutions are geodesic distance

A WARNING

STILL AN APPROXIMATION

Modifying Fast Marching

Modifying Fast Marching

Raster

scan and/or parallelize

Bronstein, Numerical Geometry of Nonrigid Shapes
Grids and parameterized surfaces

Alternative to Fast Marching

Algorithm 1 The Heat Method

I. Integrate the heat flow $\dot{u}=\Delta u$ for time t.
II. Evaluate the vector field $X=-\nabla u /|\nabla u|$.
III. Solve the Poisson equation $\Delta \phi=\nabla \cdot X$.

Crane, Weischedel, and Wardetzky. "Geodesics in Heat." TOG 2013.

Tracing Geodesic Curves

Trace gradient of distance function

Initial Value Problem

Equal left and right angles

Polthier and Schmies. "Shortest Geodesics on Polyhedral Surfaces." SIGGRAPH course notes 2006.

Trace a single geodesic exactly

Exact Geodesics

THE DISCRETE GEODESIC PROBLEM*

JOSEPH S. B. MITCHELL \dagger, DAVID M. MOUNT \ddagger AND CHRISTOS H. PAPADIMITRIOU§

Abstract

We present an algorithm for determining the shortest path between a source and a destination on an arbitrary (possibly nonconvex) polyhedral surface. The path is constrained to lie on the surface, and distances are measured according to the Euclidean metric. Our algorithm runs in time $O\left(n^{2} \log n\right)$ and requires $O\left(n^{2}\right)$ space, where n is the number of edges of the surface. After we run our algorithm, the distance from the source to any other destination may be determined using standard techniques in time $O(\log n)$ by locating the destination in the subdivision created by the algorithm. The actual shortest path from the source to a destination can be reported in time $O(k+\log n)$, where k is the number of faces crossed by the path. The algorithm generalizes to the case of multiple source points to build the Voronoi diagram on the surface, where n is now the maximum of the number of vertices and the number of sources.

Key words. shortest paths, computational geometry, geodesics, Dijkstra's algorithm

AMS(MOS) subject classification. 68E99

MMP Algorithm: Big Idea

Dijkstra-style front with windows explaining source.

Practical Implementation

Fast Exact and Approximate Geodesics on Meshes

Vitaly Surazhsky
University of Oslo

Tatiana Surazhsky
University of Oslo

Danil Kirsanov
Harvard University

Steven J. Gortler
Harvard University

Hugues Hoppe
Microsoft Research

Abstract

The computation of geodesic paths and distances on triangle meshes is a common operation in many computer graphics applications. We present several practical algorithms for computing such geodesics from a source point to one or all other points efficiently. First, we describe an implementation of the exact "single source, all destination" algorithm presented by Mitchell, Mount, and Papadimitriou (MMP). We show that the algorithm runs much faster in practice than suggested by worst case analysis. Next, we extend the algorithm with a merging operation to obtain computationally efficient and accurate approximations with bounded error. Finally, to compute the shortest path between two given points, we use a lower-bound property of our approximate geodesic algorithm to efficiently prune the frontier of the MMP algorithm, thereby obtaining an exact solution even more quickly.

Keywords: shortest path, geodesic distance.

1 Introduction

In this paper we present practical methods for computing both exact and approximate shortest (i.e. geodesic) paths on a triangle mesh. These geodesic paths typically cut across faces in the mesh and are therefore not found by the traditional graph-based Dijkstra algorithm for shortest paths.
The computation of geodesic paths is a common operation in many computer graphics applications. For example, parameterizing a mesh often involves cutting the mesh into one or more charts

Figure 1: Geodesic paths from a source vertex, and isolines of the geodesic distance function.
tance function over the edges, the implementation is actually practical even though, to our knowledge, it has never been done previously. We demonstrate that the algorithm's worst case running time of $O\left(n^{2} \log n\right)$ is pessimistic, and that in practice, the algorithm runs in sub-quadratic time. For instance, we can compute the exact geodesic distance from a source point to all vertices of a 400 K -triangle mesh in about one minute.
Approximation algorithm We extend the algorithm with a merging operation to obtain computationally efficient and accurate approximations with bounded error. In practice, the algorithm runs in (e.g. [Krishnamurthy and Levo the result generally has less distor if the cuts are geodesic. Geode
http://code.google.com/p/geodesic/

Fuzzy Geodesics

$$
G_{p, q}^{\sigma}(x):=\exp (-|d(p, x)+d(x, q)-d(p, q)| / \sigma)
$$

Function on surface expressing difference in triangle inequality

"Intersection" by pointwise multiplication

Sun, Chen, Funkhouser. "Fuzzy geodesics and consistent sparse correspondences for deformable shapes." CGF2010.

Stable version of geodesics

Stable Measurement

Campen and Kobbelt. "Walking On Broken Mesh: Defect-Tolerant Geodesic Distances and Parameterizations." Eurographics 2011.

All-Pairs Distances

Sample points

Geodesic field

Triangulate (Delaunay)

Fix edges

Query
(planar embedding)

Xin, Ying, and He. "Constant-time all-pairs geodesic distance query on triangle meshes." I3D 2012.

Geodesic Voronoi \& Delaunay

Fig. 4.12 Geodesic remeshing with an increasing number of points.
From Geodesic Methods in Computer Vision and Graphics (Peyré et al., FnT 2010)

High-Dimensional Problems

Heeren et al. Time-discrete geodesics in the space of shells. SGP 2012.

In ML: Be Careful!

Shortest path distance in random k-nearest neighbor graphs

Morteza Alamgir ${ }^{1}$
Ulrike von Luxburg ${ }^{1,2}$
${ }^{1}$ Max Planck Institute for Intelligent Systems, Tübingen, Germany
${ }^{2}$ Department of Computer Science, University of Hamburg, Germany

MORTEZA@TUEBINGEN.MPG.DE
ULRIKE.LUXBURG@TUEBINGEN.MPG.DE

Abstract

Consider a weighted or unweighted k-nearest neighbor graph that has been built on n data points drawn randomly according to some density p on \mathbb{R}^{d}. We study the convergence of the shortest path distance in such grap the sample size tends to infinity. We that for unweighted kNN graphs, thi tance converges to an unpleasant dis function on the underlying space whose erties are detrimental to machine lea We also study the behavior of the sh path distance in weighted kNN graphs.

The first question has already been studied in some special cases. Tenenbaum et al. (2000) discuss the case of ε - and kNN graphs when p is uniform and D is the geodesic distance. Sajama \& Orlitsky (2005) extend these results to ε-graphs from a general density p by
that for unweighted kNN graphs, this distance converges to an unpleasant distance function on the underlying space whose properties are detrimental to machine learning.

In ML: Be Careful!

Geodesic Exponential Kernels: When Curvature and Linearity Conflict

Aasa Feragen
DIKU, University of Copenhagen
Denmark
aasa@diku.dk

François Lauze
DIKU, University of Copenhagen
Denmark
francois@diku.dk

Søren Hauberg
DTU Compute
Denmark
sohau@dtu.dk

Abstract

We consider kernel methods on general geodesic metric spaces and provide both negative and positive results. First we show that the common Gaussian kernel can only be generalized to a positive definite kernel on a geodesic metric space if the space is flat. As a result, for data on a Riemannian manifold, the geodesic Gaussian k tive definite if the Dicmanuian old

Theorem 2. Let M be a complete, smooth Riemannian manifold with its associated geodesic distance metric d. Assume, moreover, that $k(x, y)=\exp \left(-\lambda d^{2}(x, y)\right)$ is a $P D$ geodesic Gaussian kernel for all $\lambda>0$. Then the Riemannian manifold M is isometric to a Euclidean space.

