IFT 6113 LAPLACIAN APPLICATIONS

http://tiny.cc/ift6113/

Mikhail Bessmeltsev

Review:

Rough Intuition

http://pngimg.com/upload/hammer_PNG3886.png

Review:
Spectral Geometry

What can you learn about its shape from
vibration frequencies and oscillation patterns?

$$
\Delta f=\lambda f
$$

Review:

The Cotangent
 LAPLACIAN

$$
L_{i j}= \begin{cases}\frac{1}{2} \sum_{i \sim k}\left(\cot \alpha_{i k}+\cot \beta_{i k}\right) & \text { if } i=j \\ -\frac{1}{2}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right) & \text { if } i \sim j \\ 0 & \text { otherwise }\end{cases}
$$

Laplacian is sparse!

How can we use L?

- (useful properties of the Laplacian)
- In Computer Graphics and Geometry Modeling/Processing
- In Machine Learning

How can we use L?

- (useful properties of the Laplacian)
- In Computer Graphics and Geometry Modeling/Processing
- In Machine Learning

One Object, Many Interpretations

Labeled graph	Degree matrix	Adjacency matrix	Laplacian matrix
	$\left(\begin{array}{llllll}2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$	$\left(\begin{array}{rrrrrr}2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1\end{array}\right)$

https://en.wikipedia.org/wiki/Laplacian_matrix

Deviation from neighbors

One Object, Many Interpretations

Decreasing E

$$
E[f]:=\int_{S}\|\nabla f\|_{2}^{2} d A=-\int_{S} f(x) \Delta f(x) d A(x)
$$

Images made by E. Vouga
Dirichlet energy: Measures smoothness

One Object, Many Interpretations

$$
\Delta \psi_{i}=\lambda_{i} \psi_{i}
$$

Vibration modes of surface (not volume!)

Key Observation (in discrete case)

$L_{i j}= \begin{cases}\frac{1}{2} \sum_{i \sim k}\left(\cot \alpha_{i k}+\cot \beta_{i k}\right) & \text { if } i=j \\ -\frac{1}{2}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right) & \text { if } i \sim j \\ 0 & \text { otherwise }\end{cases}$
$M_{i j}= \begin{cases}\frac{\text { one-ring area }}{6} & \text { if } i=j \\ \frac{\text { adjacent erea }}{12} & \text { if } i \neq j\end{cases}$

After (More) Trigonometry

$$
L_{v w}=\frac{1}{8} \begin{cases}-\sum_{u \sim v} L_{u v} & \text { when } v=w \\ \mu(T)^{-1}\left(\ell_{v w}^{2}-\ell_{v}^{2}-\ell_{w}^{2}\right) & \text { when } v \sim w \\ +\mu\left(T^{\prime}\right)^{-1}\left(\ell_{v w}^{2}-\ell_{v}^{\prime 2}-\ell_{w}^{\prime 2}\right) & \text { otherwise }\end{cases}
$$

Image/formula in "Functional Characterization of Instrinsic and Extrinsic Geometry," TOG 2017 (Corman et al.)

Laplacian only depends on edge lengths

Isometry

Bending without stretching.

Lots of Interpretations

Global isometry

$$
d_{1}(x, y)=d_{2}(f(x), f(y))
$$

Local isometry

$$
\begin{aligned}
g_{1} & =f^{*} g_{2} \\
g_{1}(v, w) & =g_{2}\left(f_{*} v, f_{*} w\right)
\end{aligned}
$$

Intrinsic Techniques

http://www.revedreams.com/crochet/yarncrochet/nonorientable-crochet/
Isometry invariant

Isometry Invariance: Hope

Isometry Invariance: Reality

"Rigidity"

Isometry Invariance: Reality

"Rigidity"

₹isometries?

http://www.4tnz.com/content/got-toilet-paper

Few shapes can deform isometrically

Useful Fact

Contents lists available at SciVerse ScienceDirect
Graphical Models

Discrete heat kernel determines discrete Riemannian metric

Wei Zeng ${ }^{\text {a,* }}$, Ren Guo ${ }^{\text {b }}$, Feng Luo ${ }^{\text {c }}$, Xianfeng Gu ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA
${ }^{\text {b }}$ Department of Mathematics, Oregon State University. Corvallis, OR 97331, USA
${ }^{\text {c }}$ Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA

ARTICLEINFO

Article history:

Received 5 March 2012
Accepted 28 March 2012 Available online 12 April 2012

Keywords:

Discrete heat kernel
Discrete Riemannian metric Laplace-Beltrami operator Legendre duality principle Discrete curvature flow

ABSTRACT

The Laplace-Beltrami operator of a smooth Riemannian manifold is determined by the Riemannian metric. Conversely, the heat kernel constructed from the eigenvalues and eigenfunctions of the Laplace-Beltrami operator determines the Riemannian metric. This work proves the analogy on Euclidean polyhedral surfaces (triangle meshes), that the discrete heat kernel and the discrete Riemannian metric (unique up to a scaling) are mutually determined by each other. Given a Euclidean polyhedral surface, its Riemannian metric is represented as edge lengths, satisfying triangle inequalities on all faces. The LaplaceBeltrami operator is formulated using the cotangent formula, where the edge weight is defined as the sum of the cotangent of angles against the edge. We prove that the edge lengths can be determined by the edge weights unique up to a scaling using the variational approach.
The constructive proof leads to a computational algorithm that finds the unique metric on a triangle mesh from a discrete Laplace-Beltrami operator matrix.

Published by Elsevier Inc.

1. Introduction

Laplace-Beltrami operator plays a fundamental role in Riemannian geometry [26]. Discrete Ladlace-Beltrami

1.1. Motivation

The Laplace-Beltrami operator on a Riemannian manifold plavs an fundamental role in Riemannian geometry.

Beware

But calculations on a volume are expensive!

Not the same.

Why Study the Laplacian?

- Encodes intrinsic geometry

Edge lengths on triangle mesh, Riemannian metric on manifold

- Multi-scale

Filter based on frequency

- Geometry through linear algebra

Linear/eigenvalue problems, sparse positive definite matrices

- Connection to physics

Heat equation, wave equation, vibration, ...

How can we use L?

- (useful properties of the Laplacian)
- In Computer Graphics and Geometry Modeling/Processing
- In Machine Learning

Eigenhomers

Eigenfunctions of L =

 basis of function space on the surface

Recall:Another Interpretation of Eigenfunctions

Find critical points of $E[f]$

$$
\text { s.t. } \int_{\Omega} f^{2}=1
$$

Small eigenvalue: smooth function

Eigenhomers

Eigenfunctions of $\mathrm{L}=$

The smoothest basis of function space on the surface

Example Task: Shape Descriptors

Pointwise quantity

Descriptor Tasks

- Characterize local geometry Feature/anomaly detection
- Describe point's role on surface
Symmetry detection, correspondence

Descriptors We've Seen Before

http://www.sciencedirect.com/science/article/pii/S0010448510001983

Gaussian and mean curvature

Desirable Properties

- Distinguishing

Provides useful information about a point

- Stable

Numerically and geometrically

- Intrinsic

No dependence on embedding

Intrinsic Descriptors

Invariant under

- Rigid motion
- Bending without stretching

Intrinsic Descriptor

Theorema Egregium ("Totally Awesome Theorem"):
 Gaussian curvature is intrinsic.

End of the Story?

Second derivative quantity

Desirable Properties

Incorporates neighborhood information in an intrinsic fashion

Stable under small deformation

Shape Context

Shape Context

+ Translational invariance + Scale invariance
- Rotational invariance

Shape Context

Idea!

Compute angles relative to the tangent

+ Translational invariance
+ Scale invariance
+ Rotational invariance
- Isometry invariance

Recall:

Connection to Physics

Heat equation

Intrinsic Observation

Heat diffusion patterns are not affected if you bend a surface.

Global Point Signature

"Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation" Rustamov, SGP 2007

Global Point Signature

$$
\begin{gathered}
\mathbf{1}_{\mathbf{2}} \\
\mathbf{3} \\
\operatorname{GPS}(p)
\end{gathered}:=\left(\begin{array}{llllll}
\mathbf{4} & \mathbf{5} & \mathbf{7} & \mathbf{8} & \mathbf{9} & \mathbf{1 0} \\
\sqrt{\lambda_{1}}
\end{array} \phi_{1}(p),-\frac{1}{\sqrt{\lambda_{2}}} \phi_{2}(p),-\frac{1}{\sqrt{\lambda_{3}}} \phi_{3}(p), \cdots\right) .
$$

If surface does not self-intersect, neither does the GPS embedding.

Proof: Laplacian eigenfunctions span $L^{2}(\Sigma)$; if $\operatorname{GPS}(p)=\operatorname{GPS}(q)$, then all functions on Σ would be equal at p and q.

Global Point Signature

GPS is isometry-invariant.

Proof: Comes from the Laplacian.

Drawbacks of GPS

- Assumes unique λ 's
- Potential for eigenfunction "switching"
- Nonlocal feature

New idea:

PDE Applications of the Laplacian

http://graphics.stanford.edu/courses/cs468-10fall/LectureSlides/11_shape_matching.pdf

Heat equation

PDE Applications of the Laplacian

$\frac{\partial^{2} u}{\partial t^{2}}=-i \Delta u$

Image courtesy G. Peyré
Wave equation

PDE Applications of the Laplacian

Use this behavior to
characterize shape.
$\overline{\partial t^{2}}=-i \Delta u$

Image courtesy G. Peyré

Wave equation

Solutions in the LB Basis

$\frac{\partial u}{\partial t}=-\Delta u$
Heat equation

$$
\begin{aligned}
u & =\sum_{n=0}^{\infty} a_{n} e^{-\lambda_{n} t} \phi_{n}(x) \\
a_{n} & =\int_{\Sigma} u_{0}(x) \cdot \phi_{n}(x) d A
\end{aligned}
$$

Heat Kernel Signature (HKS)

$$
k_{t}(x, x)=\sum_{n=0}^{\infty} e^{-\lambda_{i} t} \phi_{n}(x)^{2}
$$

Continuous function of $t \in[0, \infty)$

How much heat diffuses from x to itself in time t?

Heat Kernel Signature (HKS)

$$
k_{t}(x, x)=\sum_{n=0}^{\infty} e^{-\lambda_{i} t} \phi_{n}(x)^{2}
$$

"A concise and provably informative multi-scale signature based on heat diffusion" Sun, Ovsjanikov, and Guibas; SGP 2009

Heat Kernel Signature (HKS)

$$
k_{t}(x, x)=\sum_{n=0}^{\infty} e^{-\lambda_{i} t} \phi_{n}(x)^{2}
$$

Small t : we 'see' small local features Large t : we 'see' large neighborhoods

"A concise and provably informative multi-scale signature based on heat diffusion" Sun, Ovsjanikov, and Guibas; SGP 2009

Heat Kernel Signature (HKS)

$$
k_{t}(x, x)=\sum_{n=0}^{\infty} e^{-\lambda_{i} t} \phi_{n}(x)^{2}
$$

Good properties:

- Isometry-invariant
- Multiscale
- Not subject to switching
- Easy to compute
- Related to curvature at small scales

Heat Kernel Signature (HKS)

$$
k_{t}(x, x)=\sum_{n=0}^{\infty} e^{-\lambda_{i} t} \phi_{n}(x)^{2}
$$

Bad properties:

- Issues remain with repeated eigenvalues
- Theoretical guarantees require (near-)isometry

Wave Kernel Signature (WKS)

"The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis" Aubry, Schlickewei, and Cremers; ICCV Workshops 2012

Wave Kernel Signature (WKS)

$$
\mathrm{WKS}(E, x)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|\psi_{E}(x, t)\right|^{2} d t=\sum_{n=0}^{\infty} \phi_{n}(x)^{2} f_{E}\left(\lambda_{n}\right)^{2}
$$

Wave Kernel Signature (WKS)

$$
\mathrm{WKS}(E, x)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|\psi_{E}(x, t)\right|^{2} d t=\sum_{n=0}^{\infty} \phi_{n}(x)^{2} f_{E}\left(\lambda_{n}\right)^{2}
$$

Good properties:

- [Similar to HKS]
- Localized in frequency
- Stable under some non-isometric deformation
- Some multi-scale properties

Wave Kernel Signature (WKS)

$\operatorname{WKS}(E, x)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|\psi_{E}(x, t)\right|^{2} d t=\sum_{n=0}^{\infty} \phi_{n}(x)^{2} f_{E}\left(\lambda_{n}\right)^{2}$

Bad properties:

- [Similar to HKS]
- Can filter out large-scale
features

Many Others

Lots of spectral descriptors in terms of Laplacian eigenstructure.

Combination with Machine Learning

$$
p(x)=\sum_{k} f\left(\lambda_{k}\right) \phi_{k}^{2}(x)
$$

Learning Spectral Descriptors for Deformable Shape Correspondence Litman and Bronstein; PAMI 2014

Application: Feature Extraction

Maxima of $k_{t}(x, x)$ over x for large t.
A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion Sun, Ovsjanikov, and Guibas; SGP 2009

Feature points

Preview: Correspondence

http://graphics.stanford.edu/projects/lgl/papers/ommg-opimhk-10/ommg-opimhkhttp://www.cs.princeton.edu/~funk/sig11.pdf

Descriptor Matching

Simply match closest points in

descriptor space.

Descriptor Matching Problem

Symmetry

Heat Kernel Map

$$
\operatorname{HKM}_{p}(x, t):=k_{t}(p, x)
$$

How much heat diffuses from \boldsymbol{p} to \boldsymbol{x} in time \boldsymbol{t} ?
One Point Isometric Matching with the Heat Kernel
Ovsjanikov et al. 2010

Heat Kernel Map

$$
\operatorname{HKM}_{p}(x, t):=k_{t}(p, x)
$$

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel

Self-Map: Symmetry

Intrinsic symmetries become extrinsic in GPS space!

Global Intrinsic Symmetries of Shapes
Ovsjanikov, Sun, and Guibas 2008

"Discrete intrinsic" symmetries

All Over the Place

Laplacians appear everywhere in shape analysis and geometry
processing.

Biharmonic Distances

"Biharmonic distance"
Lipman, Rustamov \& Funkhouser, 2010

Biharmonic Distances

$$
d_{b}(p, q):=\left\|g_{p}-g_{q}\right\|_{2}, \text { where } \Delta g_{p}=\delta_{p}
$$

"Biharmonic distance"
Lipman, Rustamov \& Funkhouser, 2010

Geodesic Distances

$$
d_{g}(p, q)=\lim _{t \rightarrow 0} \sqrt{-4 t \log k_{t, p}(q)}
$$

"Geodesics in heat"
Crane, Weischedel, and Wardetzky; TOG 2013

Finding geodesics

Algorithm 1 The Heat Method
I. Integrate the heat flow $\dot{u}=\Delta u$ for time t.
II. Evaluate the vector field $X=-\nabla u /|\nabla u|$.
III. Solve the Poisson equation $\Delta \phi=\nabla \cdot X$.

Crane, Weischedel, and Wardetzky. "Geodesics in Heat." TOG, 2013.

Mean Curvature Flow

∂x
 $\frac{\partial t}{\partial t}=\Delta(x) \cdot x$

Mean Curvature Flow

"Implicit fairing of irregular meshes using diffusion and curvature flow" Desbrun et al., 1999

Mean Curvature Flow

"Implicit fairing of irregular meshes using diffusion and curvature flow" Desbrun et al., 1999

Recall:

Another fairing

Screened Poisson Equation

$E(G)=\alpha^{2}\|G-F\|^{2}+\left\|\nabla_{M} G-\beta \nabla_{M} F\right\|^{2}$

Useful Technique

$$
\begin{aligned}
\frac{\partial f}{\partial t} & =-\Delta f \text { (heat equation) } \\
\rightarrow M \frac{\partial f}{\partial t} & =L f \text { after discretization in space } \\
\rightarrow M \frac{f_{T}-f_{0}}{T} & =L f_{T} \text { after time discretization }
\end{aligned}
$$

Choice: Evaluate at time T
Unconditionally stable, but not necessarily accurate for large T!

> Implicit time stepping

Parameterization: Harmonic Map

(a) Original mesh tile

(b) Harmonic embedding
"Multiresolution analysis of arbitrary meshes"

Others

- Shape retrieval from Laplacian eigenvalues "Shape DNA" [Reuter et al., 2006]

Quadrangulation

 Nodal domains [Dong et al., 2006]- Surface deformation "As-rigid-as-possible" [Sorkine \& Alexa, 2007]

How can we use L?

- (useful properties of the Laplacian)
- In Computer Graphics and Geometry Modeling/Processing
- In Machine Learning

Semi-Supervised Learning

"Semi-supervised learning using Gaussian fields and harmonic functions" Zhu, Ghahramani, \& Lafferty 2003

Semi-Supervised Technique

Given: ℓ labeled points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell}, y_{\ell}\right) ; y_{i} \in\{0,1\}$ u unlabeled points $x_{\ell+1}, \ldots, x_{\ell+u} ; \ell \ll u$

$$
\begin{array}{ll}
\min & \frac{1}{2} \sum_{i j} w_{i j}(f(i)-f(j))^{2} \\
& 5 \\
3 & 5 \\
2
\end{array}
$$

Related Method

- Step 1:

Build \boldsymbol{k}-NN graph

- Step 2:

Compute \boldsymbol{p} smallest Laplacian eigenvectors

- Step 3: Solve semi-supervised problem in subspace
"Using Manifold Structure for Partially Labelled Classification" Belkin and Niyogi; NIPS 2002

Manifold Regularization

Regularized learning: $\arg \min _{f \in \mathcal{H}} \frac{1}{\ell} \sum_{i=1}^{\ell} V\left(f\left(x_{i}\right), y_{i}\right)+\gamma\|f\|^{2}$

Dirichlet energy

"Manifold Regularization:
A Geometric Framework for Learning from Labeled and Unlabeled Examples"
Belkin, Niyogi, and Sindhwani; JMLR 2006

Examples of Manifold Regularization

- Laplacian-regularized least squares (LapRLS)

$$
\arg \min _{f \in \mathcal{H}} \frac{1}{\ell} \sum_{i=1}^{\ell}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\gamma\|f\|_{I}^{2}+\text { Other }[f]
$$

- Laplacian support vector machine (LapSVM) $\arg \min _{f \in \mathcal{H}} \frac{1}{\ell} \sum_{i=1}^{\ell} \max \left(0,1-y_{i} f\left(x_{i}\right)\right)+\gamma\|f\|_{I}^{2}+$ Other $[f]$ Belkin, Niyogi, Sindhwani; AISTATS 2005

Diffusion Maps

Embedding from first k eigenvalues/vectors:

$$
\Psi_{t}(x):=\left(\lambda_{1}^{t} \psi_{1}(x), \lambda_{2}^{t} \psi_{2}(x), \ldots, \lambda_{k}^{t} \psi_{k}(x)\right)
$$

Roughly:
$\left|\Psi_{t}(x)-\Psi_{t}(y)\right|$ is probability that x, y diffuse to the same point in time t.

Coifman and Lafon; Applied and Computational Harmonic Analysis, 2006

