IFT 6113 MESH PARAMETERIZATION tiny.cc/ift6173

Image from https://doc.cgal.org/latest/Surface_mesh_parameterization/index.html
Mikhail Bessmeltsev

What is Parameterization?

world

atlas
\mathbb{R}^{3}

surface parameter domain

Problem Definition

Given: surface $S \subseteq \mathbb{R}^{3}$
domain $D \subset \mathbb{R}^{2}$
Find a bijective $f: S \rightarrow D$

Recall:

Tangent Space

Typical domains:

Sphere (no boundary)

Typical domains:

Why Do We Need It?

Texture Mapping

Morphing

Databases

Normal Mapping

Mesh Completion

Remeshing

Detail Transfer

Editing

Surface Fitting

Why Do We Need It?

AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

Thibault Groueix ${ }^{1}$, Matthew Fisher ${ }^{2}$, Vladimir G. Kim 2, Bryan C. Russell ${ }^{2}$, Mathieu Aubry ${ }^{1}$
${ }^{1}$ LIGM (UMR 8049), École des Ponts, UPE, ${ }^{2}$ Adobe Research
http://imagine.enpc.fr/~groueixt/atlasnet/

(a) Possible Inputs

(b) Output Mesh for 2D Image

(c) Output Atlas (optimized)

(d) Textured Output

(e) 3D Printed Output

Figure 1. Given input as either a 2D image or a 3D point cloud (a), we automatically generate a corresponding 3D mesh (b) and its atlas parameterization (c). We can use the recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print the results (e).

Texture Mapping

- Define color for each point on object surface
- Map 2D texture to model surface:
- Texture pattern defined over 2D domain (u, v)
- Assign (u, v) coordinates to each point on surface

Normal/Bump mapping

Morphing/Properties Transfer

Require cross-parameterization

Morphing

Deformation Transfer

THEORY/BACKGROUND

Mesh Parameterization

Surface $S \subset \mathbb{R}^{3}$
$f: \Omega \rightarrow S$, s. t.
$-f$ is piecewise linear

- $\left.f\right|_{t}$ is linear
$-f$ is bijective
- at least locally

Earth maps!

- Distortion is inevitable
- But we can preserve some properties exactly

orthographic ~ 500 B.C.

Mercator 1569
conformal
(angle-preserving)

Lambert 1772

Recall:

Intrinsic Descriptor

Theorema Egregium ("Totally Awesome Theorem"):
 Gaussian curvature is intrinsic.

What is Distortion?

- Distortion (at x): How different is $f(D)$ from D
- How to measure?

How to quantify distortion? Study differential/Jacobian.

$$
f(y)=\underbrace{f(x)+\left(\frac{\partial f}{\partial x_{i}}\right)(y-x)}_{\text {linearization } \tilde{f}(y)}+O\left(\|y-x\|^{2}\right)
$$

Semiaxes: $r \sigma_{1}, r \sigma_{2}$

Linear Map Surgery

- Singular Value Decomposition (SVD) of J_{f}

$$
J_{f}=U \Sigma V^{T}=U\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right) V^{T}
$$

with rotations $U \in \mathbb{R}^{3 \times 3}, V \in \mathbb{R}^{2 \times 2}$ and scale factors (singular values) $\sigma_{1}, \sigma_{2} \geq 0$

How to quantify distortion?
 Study Metric Tensor = $1^{\text {st }}$ fundamental form.

$$
I=\left(\begin{array}{ll}
f_{u} \cdot f_{u} & f_{u} \cdot f_{v} \\
f_{u} \cdot f_{v} & f_{v} \cdot f_{v}
\end{array}\right)
$$

How to quantify distortion?
Study Metric Tensor $=1$ st fundamental form.

$$
I=\left(\begin{array}{ll}
f_{u} \cdot f_{u} & f_{u} \cdot f_{v} \\
f_{u} \cdot f_{v} & f_{v} \cdot f_{v}
\end{array}\right)=J_{f}^{T} J_{f}
$$

How to quantify distortion?
Study Metric Tensor $=1^{\text {st }}$ fundamental form.

$$
\begin{gathered}
I=\left(\begin{array}{ll}
f_{u} \cdot f_{u} & f_{u} \cdot f_{v} \\
f_{u} \cdot f_{v} & f_{v} \cdot f_{v}
\end{array}\right)=J_{f}^{T} J_{f} \\
=\left(U \Sigma V^{T}\right)^{T}\left(U \Sigma V^{T}\right)=V\left(\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right) V^{T}
\end{gathered}
$$

Pointwise distortion

Isometric

$$
\sigma_{1}=\sigma_{2}=\mathbf{1}
$$

Conformal or angle-preserving

$$
\sigma_{1}=\sigma_{2}
$$

Equiareal or area-preserving

$$
\sigma_{1} \cdot \sigma_{2}=1
$$

Defined pointwise on Ω

Measuring Distortion

- Local distortion measure function of σ_{1} and σ_{2}

$$
E:\left(\mathbb{R}_{+} \times \mathbb{R}_{+}\right) \rightarrow \mathbb{R}, \quad\left(\sigma_{1}, \sigma_{2}\right) \mapsto E\left(\sigma_{1}, \sigma_{2}\right)
$$

- Overall distortion

$$
E(f)=\int_{\Omega} E\left(\sigma_{1}(u, v), \sigma_{2}(u, v)\right) d u d v / \operatorname{Area}(\Omega)
$$

- On mesh constant per triangle

$$
E(f)=\sum_{t \in \Omega} E(t) A(t) / \sum_{t \in \Omega} A(t)
$$

CONFORMAL MAPS

Stereographic Projection

Image from Wikipedia

Stereographic Projection

parameterization: $\quad f(u, v)=\left(2 u d, 2 v d,\left(1-u^{2}-v^{2}\right) d\right) \quad$ with $\quad d=\frac{1}{1+u^{2}+v^{2}}$

$$
\text { Jacobian: } \quad J_{f}=\left(\begin{array}{cc}
2 d-4 v^{2} d^{2} & -4 u v d^{2} \\
-4 u v d^{2} & 2 d-4 v^{2} d^{2} \\
-4 u d^{2} & -4 v d^{2}
\end{array}\right)
$$

first fundamental form: $\quad \mathbf{I}_{f}=\left(\begin{array}{cc}4 d^{2} & 0 \\ 0 & 4 d^{2}\end{array}\right)$

$$
\begin{array}{cc}
\text { eigenvalues: } & \lambda_{1}=4 d^{2}, \quad \lambda_{2}=4 d^{2} \\
\sigma_{1}=\sigma_{2}=2 d \quad \Rightarrow \quad \text { conformal }
\end{array}
$$

Stereographic Projection

Image from Wikipedia

Stereographic Projection

Does conformal map exist?

Uniformization theorem

"Every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces:

1. open unit disk
2. complex plane
3. Riemann sphere"

Parameterization: Practice

MESH PARAMETERIZATION METHODS

Fixed Boundary
Bijectivity: easy
Distortion: may be large

Free boundary
Bijectivity: hard Distortion: minimum

MESH PARAMETERIZATION METHODS

Fixed Boundary
Bijectivity: easy
Distortion: may be large

Free boundary
Bijectivity: hard

Spring Model

- Fix boundary vertices on a convex polygon
- Edges \rightarrow springs
- Let go of the springs
- "Relaxation"

Spring Model

Hooke's Law:

Energy of spring between p_{i} and p_{j}

$$
E_{i j}=0.5 D_{i j}\left\|u_{i}-u_{j}\right\|_{2}^{2}
$$

Total energy

$$
E=\sum_{(i, j) \in E} \frac{1}{2} D_{i j}\left\|u_{i}-u_{j}\right\|^{2}
$$

Spring Model

Hooke's Law:

Energy of spring between p_{i} and p_{j}

Will this provide a bijective parameterization?

Total energy
$E=\sum_{(i, j) \in E} \frac{1}{2} D_{i j}\left\|u_{i}-u_{j}\right\|^{2}$

Spring Model

$$
E=\sum_{(i, j) \in E} \frac{1}{2} D_{i j}\left\|u_{i}-u_{j}\right\|^{2}=\frac{1}{2} \sum_{i=1}^{n} \sum_{j \in N_{i}} \frac{1}{2} D_{i j}\left\|u_{i}-u_{j}\right\|^{2}
$$

Spring Model

$$
E=\frac{1}{2} \sum_{i=1}^{n} \sum_{j \in N_{i}} \frac{1}{2} D_{i j}\left\|u_{i}-u_{j}\right\|^{2}
$$

Stable state \Leftrightarrow minimum of total energy

Spring Model

$$
\begin{gathered}
E=\frac{1}{2} \sum_{i=1}^{n} \sum_{j \in N_{i}} \frac{1}{2} D_{i j}\left\|u_{i}-u_{j}\right\|^{2} \\
\text { Stable state } \Leftrightarrow \text { minimum of total energy } \\
\frac{\partial E}{\partial u_{i}}=\sum_{j \in N_{i}} D_{i j}\left(u_{i}-u_{j}\right)=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { Spring Model } \\
& E=\frac{1}{2} \sum_{i=1}^{n} \sum_{j \in N_{i}} \frac{1}{2} D_{i j}\left\|u_{i}-u_{j}\right\|^{2}
\end{aligned}
$$

$$
\sum_{j \in N_{i}} D_{i j}\left(u_{i}-u_{j}\right)=0
$$

Rewrite:

$$
u_{i}=\sum_{j \in N_{i}} \lambda_{i j} u_{j} \quad \lambda_{i j}=D_{i j} / \sum_{k \in N_{i}} D_{i k}
$$

$$
\begin{gathered}
\text { Spring Model } \\
E=\frac{1}{2} \sum_{i=1}^{n} \sum_{j \in N_{i}} \frac{1}{2} D_{i j}\left\|u_{i}-u_{j}\right\|^{2}
\end{gathered}
$$

$$
\sum_{j \in N_{i}} D_{i j}\left(u_{i}-u_{j}\right)=0
$$

Rewrite:

$$
u_{i}=\sum_{j \in N_{i}} \lambda_{i j} u_{j}
$$

$$
\lambda_{i j}=D_{i j} / \sum_{k \in N_{i}} D_{i k}
$$

A generalization of barycentric coordinates

Linear System

- Let's rearrange the variables:

$$
u_{i}-\sum_{j \in N_{i, j} \leq n} \lambda_{i j} u_{j}=\underbrace{\sum_{j \in N_{i, j}>n} \lambda_{i j} u_{j}=\bar{u}_{i}}_{\text {unknown parameter points }}
$$

- Linear system

$$
\begin{gathered}
A U=\bar{U} \\
A=\left\{\begin{array}{c}
1, i=j \\
-\lambda_{i j}, j \in N_{i} \\
0, \text { else }
\end{array} \quad \lambda_{i j}=D_{i j} / \sum_{k \in N_{i}} D_{i k}\right.
\end{gathered}
$$

- Solve separately for u and v

Linear System

- Let's rearrange the variables:

$$
u_{i}-\sum_{j \in N_{i, j} \leq n} \lambda_{i j} u_{j}=\underbrace{\sum_{j \in N_{i}, j>n} \lambda_{i j} u_{j}=\bar{u}_{i}}_{\text {unknown parameter points }}
$$

- Linear system

What does the matrix remind you of?

$$
\begin{aligned}
& A U=\bar{U} \\
A=\left\{\begin{array}{c}
1, i=j \\
-\lambda_{i j}, j \in N_{i} \\
0, \text { else }
\end{array}\right. & \lambda_{i j}=D_{i j} / \sum_{k \in N_{i}} D_{i k}
\end{aligned}
$$

- Solve separately for u and v

Theorem [Tutte'63,Floater'01,Maxwel'1864]:
If G is a 3-connected planar graph
(triangular mesh) then any convex combination embedding $\left(\lambda_{i j}>0\right)$ provides bijective parameterization

Choice of Weights: Uniform (Tutte)

$$
D_{i j}=1 \quad \lambda_{i j}=\frac{1}{\# N_{i}}
$$

No shape preservation -equilateral triangles

Choice of Weights: Uniform (Tutte)

$$
D_{i j}=1 \quad \lambda_{i j}=\frac{1}{\# N_{i}}
$$

No shape preservation -equilateral triangles

Graph Laplacian!

$$
E=\sum_{(i, j) \in E} \frac{1}{2} D_{i j}\left\|u_{i}-u_{j}\right\|^{2} \text { is }
$$

Dirichlet energy discretized on a graph!

Choice of Weights: Barycentric Harmonic/Conformal/FEM Laplacian

$$
\begin{gathered}
\omega_{i j}=\cot \gamma_{i j}+\cot \gamma_{j i} \\
\lambda_{i j}=\omega_{i j} / \sum_{k} \omega_{i k}
\end{gathered}
$$

$$
E=\sum_{(i, j) \in E} \frac{1}{2} D_{i j}\left\|u_{i}-u_{j}\right\|^{2} \text { is }
$$

Dirichlet energy discretized on a mesh!

Issue

Point is inside, but the coordinate can be <0

Figure 1. Star-shaped polygon.

Issue

Point is inside, but the coordinate can be <0

$$
\Rightarrow \exists \lambda_{i j}<0
$$

Figure 1. Star-shaped polygon.

Issue

Point is inside, but the coordinate can be <0

$$
\Rightarrow \exists \lambda_{i j}<0
$$

Local non-bijectivity

Figure 1. Star-shaped polygon.

Recall:

Harmonic Functions

$\Delta f \equiv 0$

Mean value property:

Choice of Weights: Mean Value

$$
\begin{aligned}
\omega_{i j} & =\frac{\tan \frac{\alpha_{i j}}{2}+\tan \frac{\beta_{j i}}{2}}{r_{i j}} \\
\lambda_{i j} & =\frac{\omega_{i j}}{\sum_{k \in N_{i}} \omega_{i k}}
\end{aligned}
$$

Choice of Weights: Mean Value

$$
\omega_{i j}=\frac{\tan \frac{\alpha_{i j}}{2}+\tan \frac{\beta_{j i}}{2}}{r_{i j}}
$$

Always nonnegative

Harmonic/Mean-Value Mappings

- Quasi-Conformal

- Linear precision
- Reproduce planar inputs (same boundary)

Bijectivity (fold-overs)

harmonic

mean value

- Can have fold-overs for negative coordinates
- Mean-value coordinates guaranteed to be positive

Boundary Mapping

Chordal parameterization around convex shape

- circle
- rectangle
- triangle
- Choice often application specific
- Reconstruction - rectangle
- Mapping to base mesh- triangle

Examples

Parameterization with uniform weights [Tutte 1963] on a circular domain.

Parameterization with harmonic weights [Eck et al. 1995] on a circular domain.

Parameterization with mean value weights [Floater 2003] on a circular domain.

Parameterization: Free Boundary

Free Boundary Methods

- Direct energy minimization
- Example: Least Squares Conformal Map (LSCM)....
- Indirect
- Example: Angle Based Flattening (ABF)....

ights [Floater 2003] on a circular domain.

Free vs Fixed

LSCM - Geometric Interpretation

We're minimizing conformal energy

$$
E_{C}=\left(\sigma_{1}-\sigma_{2}\right)^{2} / 2
$$

Geometric Interpretation:

- Use triangle similarity

- Given angles $\alpha_{1}, \alpha_{2}, \alpha_{3}$ of a triangle $P_{1} P_{2} P_{3}$ in 2D we have

$$
\begin{gathered}
P_{3}-P_{1}=\frac{\sin \alpha_{2}}{\sin \alpha_{3}} R_{\alpha_{1}}\left(P_{2}-P_{1}\right) \\
R_{\alpha}=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)
\end{gathered}
$$

LSCM

- In map from 3D to 2D might be impossible to keep angles exactly
- Use least-squares

$$
\min \sum_{i}\left(P_{3}{ }^{i}-P_{1}^{i}-\frac{\sin \alpha^{i}{ }_{2}}{\sin \alpha_{3}^{i}} R_{\alpha^{i}}{ }_{1}\left(P_{2}^{i}-P_{1}{ }^{i}\right)\right)^{2}
$$

- To solve need to fix two vertices
- Obtain linear system
- Choice of vertices affects solution
- Can have flips

Examples

Parameterization with mean value weights [Floater 2003] on a circular domain.

Parameterization with LSCM [Lévy et al. 2002].

ABF: Angle Based Flattening

- Triangular 2D mesh is defined by its angles
- Formulate parameterization as problem in angle space
- Angle based formulation:
- Distortion as function of angles (conformality)
- Validity: set of angle constraints
- Convert solution to UV

ABF Formulation

Tetrahedron (3D)

- Distortion:
-2D/3D angle difference

$$
\sum_{t \in r_{j}, 1.3} w_{j}^{t}\left(\alpha_{j}^{t}-\beta_{j}^{t}\right)^{2}, w_{j}^{t}=1 / \beta_{j}^{t^{2}}
$$

ABF Formulation

- Constraints:
- Triangle validity:
$\forall t \in T, \quad \alpha_{1}^{t}+\alpha_{2}^{t}+\alpha_{3}^{t}-\pi=0 ;$
- Planarity:
$\forall v \in V_{\text {int }}, \quad \sum \alpha_{k}^{t}-2 \pi=0$
- Reconstruction
$\forall v \in V_{\text {int }}, \quad \prod_{(t, k) \in v^{*}} \sin \alpha_{k \oplus 1}^{t}-\prod_{(t, k) \in v^{*}} \sin \alpha_{k \ominus 1}^{t}=0$
- Positivity

$$
\alpha_{j}^{t}>0
$$

Angle to UV Conversion

- Use computed angles as input to LSCM (it is a reproducing method..)

Examples

Parameterization with LSCM [Lévy et al. 2002].

Parameterization with ABF++ [Sheffer et al. 2005].

Examples

Parameterization with LSCM [Lévy et al. 2002].

Parameterization with ABF ++ [Sheffer et al. 2005].

Cone Singularities [Kharevych:06]

- What separates boundary from interior in angle space?
- Answer: Sum of angles at vertex
- Formulation specific
- ABF/ABF++
- Planarity \& Reconstruction

$$
\forall v \in V_{\text {int }}, \quad \sum_{(t, k) \in v^{*}} \alpha_{k}^{t}-2 \pi=0
$$

- But... reconstruction can be enforced on boundaries

$$
\forall v \in V_{i n t}, \quad \prod_{(t, k) \in v^{*}} \sin \alpha_{k \oplus 1}^{t}-\prod_{(t, k) \in v^{*}} \sin \alpha_{k \ominus 1}^{t}=0
$$

Cone Singularities

- Idea: Reduce boundary to small set of vertices
- Implementation:
- Enforce "interior" constraints at all other vertices
- To unfold choose any sequence of edges connecting "boundary" vertices

Circle Patterns + Cone Singularities

ABF + Cone Singularities

General Framework

- Choose an energy

Name	$\mathcal{D}(\mathbf{J})$	$\mathcal{D}(\sigma)$				
Symmetric Dirichlet	$\\|\mathbf{J}\\|_{F}^{2}+\left\\|\mathbf{J}^{-1}\right\\|_{F}^{2}$	$\sum_{i=1}^{n}\left(\sigma_{i}^{2}+\sigma_{i}^{-2}\right)$				
Exponential						
Symmetric Dirichlet	$\exp \left(s\left(\\|\mathbf{J}\\|_{F}^{2}+\left\\|\mathbf{J}^{-1}\right\\|_{F}^{2}\right)\right)$	$\exp \left(s \sum_{i=1}^{n}\left(\sigma_{i}^{2}+\sigma_{i}^{-2}\right)\right)$				
Hencky strain	$\left\\|\log \mathbf{J}^{\top} \mathbf{J}\right\\|_{F}^{2}$	$\sum_{i=1}^{n}\left(l_{0}^{2} \sigma_{i}\right)$				
AMIPS	$\exp \left(s \cdot \frac{1}{2}\left(\frac{\operatorname{tr}\left(\mathbf{J}^{\top} \mathbf{J}\right)}{\operatorname{det}(\mathbf{J})}\right.\right.$	$\exp \left(s\left(\frac{1}{2}\left(\frac{\sigma_{1}}{\sigma_{2}}+\frac{\sigma_{2}}{\sigma_{1}}\right)\right.\right.$				
Conformal AMIPS 2D $\frac{\operatorname{tr}\left(\mathbf{J}^{\top} \mathbf{J}\right)}{\operatorname{det}(\mathbf{J})}$	$\left.\frac{1}{4}\left(\sigma_{1} \sigma_{2}+\frac{1}{\sigma_{1} \sigma_{2}}\right)\right)$					
Conformal AMIPS 3D $\frac{\operatorname{tr}\left(\mathbf{J}^{\top} \mathbf{J}\right)}{\operatorname{det}(\mathbf{J})^{\frac{2}{3}}}$	$\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{\sigma_{1} \sigma_{2}}$					

Recall:

Gradient of a Hat Function

$$
\begin{gathered}
\|\nabla f\|=\frac{1}{\ell_{3} \sin \theta_{3}}=\frac{1}{h} \\
\nabla f=\frac{e \frac{1}{23}}{2 A} \\
\text { Length of } e_{23} \text { cancels } \\
\text { "base" in } \mathrm{A}
\end{gathered}
$$

Parameterization Jacobian

$$
\begin{aligned}
\mathbf{X} & =\frac{\mathbf{x}_{j}-\mathbf{x}_{i}}{\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|} \\
\mathbf{n} & =\frac{\mathbf{X} \times\left(\mathbf{x}_{k}-\mathbf{x}_{i}\right)}{\left\|\mathbf{X} \times\left(\mathbf{x}_{k}-\mathbf{x}_{i}\right)\right\|} \\
\mathbf{Y} & =\mathbf{n} \times \mathbf{X}
\end{aligned}
$$

Figure 5.9. Local X, Y basis in a triangle.

$$
\nabla u=\left[\begin{array}{l}
\partial u / \partial X \\
\partial u / \partial Y
\end{array}\right]=\underbrace{\frac{1}{2 A_{T}}\left[\begin{array}{ccc}
Y_{j}-Y_{k} & Y_{k}-Y_{i} & Y_{i}-Y_{j} \\
X_{k}-X_{j} & X_{i}-X_{k} & X_{j}-X_{i}
\end{array}\right]}_{=\mathrm{M}_{T}}\left(\begin{array}{l}
u_{i} \\
u_{j} \\
u_{k}
\end{array}\right)
$$

Parameterization Jacobian

$$
\nabla u=\left[\begin{array}{l}
\partial u / \partial X \\
\partial u / \partial Y
\end{array}\right]=\underbrace{\frac{1}{2 A_{T}}\left[\begin{array}{lll}
Y_{j}-Y_{k} & Y_{k}-Y_{i} & Y_{i}-Y_{j} \\
X_{k}-X_{j} & X_{i}-X_{k} & X_{j}-X_{i}
\end{array}\right]}_{=\mathrm{M}_{T}}\left(\begin{array}{l}
u_{i} \\
u_{j} \\
u_{k}
\end{array}\right)
$$

$$
\mathbf{J}_{T}=\left[\begin{array}{ll}
\partial u / \partial X & \partial v / \partial X \\
\partial u / \partial Y & \partial v / \partial Y
\end{array}\right]
$$

Conformal Energies

- Conformal energy

$$
E_{C}=\left(\sigma_{1}-\sigma_{2}\right)^{2} / 2
$$

[Pinkall \& Polthier 1993]
[Lévy et al. 2002]
[Desbrun et al. 2002]

- MIPS energy

$$
E_{M}=\kappa_{F}\left(J_{f}\right)=\left\|J_{f}\right\|_{F}\left\|J_{f}^{-1}\right\|_{F}=\frac{\sigma_{1}}{\sigma_{2}}+\frac{\sigma_{2}}{\sigma_{1}}
$$

[Hormann \& Greiner 2000]

- Riemann theorem: any C^{1} continuous surface in R^{3} can be mapped conformally to fixed domain in R^{2}
- Nearly true for meshes

Detailed Example

Given a triangle T with 2D texture coordinates p_{1}, p_{2}, p_{3}, $p_{i}=\left(s_{i}, t_{i}\right)$, and corresponding 3D coordinates q_{1}, q_{2}, q_{3}, the unique affine mapping $S(p)=S(s, t)=q$ is

$$
S(p)=\left(\left\langle p, p_{2}, p_{3}\right\rangle q_{1}+\left\langle p, p_{3}, p_{1}\right\rangle q_{2}+\left\langle p, p_{1}, p_{2}\right\rangle q_{3}\right) /\left\langle p_{1}, p_{2}, p_{3}\right\rangle
$$

$$
\begin{aligned}
S_{s}= & \partial S / \partial s=\left(q_{1}\left(t_{2}-t_{3}\right)+q_{2}\left(t_{3}-t_{1}\right)+q_{3}\left(t_{1}-t_{2}\right)\right) /(2 A) \\
S_{t}= & \partial S / \partial t=\left(q_{1}\left(s_{3}-s_{2}\right)+q_{2}\left(s_{1}-s_{3}\right)+q_{3}\left(s_{2}-s_{1}\right)\right) /(2 A) \\
& A=\left\langle p_{1}, p_{2}, p_{3}\right\rangle=\left(\left(s_{2}-s_{1}\right)\left(t_{3}-t_{1}\right)-\left(s_{3}-s_{1}\right)\left(t_{2}-t_{1}\right)\right) / 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Singular values: } \sqrt{0.5\left((a+c) \pm \sqrt{(a-c)^{2}+4 b^{2}}\right.} \\
& a=S_{S} \cdot S_{S}, \quad b=S_{S} \cdot S_{t}, \text { and } c=S_{t} \cdot S_{t}
\end{aligned}
$$

General Framework

- Choose an energy
- Start with an initial bijective parameterization
- E.g. Tutte

General Framework

- Choose an energy
- Start with an initial bijective parameterization - E.g. Tutte
- Use nonlinear optimization tools to minimize
- Gradient descent
- Quasi-Newton methods

General Framework

- Choose an energy
- Start with an initial bijective parameterization - E.g. Tutte
- Use nonlinear optimization tools to minimize
- Gradient descent
- Quasi-Newton methods
- How to preserve bijectivity?

What is gradient of $E W / r$ to positions?

What is gradient of $E W / r$ to positions?

A vector field!

Scaling vector field

- Find a scale parameter, s.t. nothing flips if we add the vector field
- Limit line search step to this value

Bijective Parameterization with Free Boundaries

Jason Smith*
Texas A\&M University

Scott Schaefer ${ }^{\dagger}$
Texas A\&M University

Issues

- Only local injectivity

Issues

- Only local injectivity
- Sometimes the step size is too small
- One almost inverted triangle is enough

