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What for?

• Animation!
• Mesh editing
• Image warping (2D)

This, and many other images in this presentation are from ‘Polygon Mesh Processing’ textbook by Botsch et al. 
or their website 



Warning:

TMI
This topic is immense

We’ll only see a few samples



Deformation: user interface

• Handles
• Cages
• Skeletons
• …

Ju et al., SIGGRAPH 2007

More on 
those later



Deformation models

Direct Variational

𝑣𝑣′ = ∑𝑤𝑤𝑗𝑗𝑇𝑇𝑗𝑗 𝑣𝑣 𝑣𝑣′ = argmin
𝑥𝑥

𝐸𝐸(𝑥𝑥)

• Linear Blend Skinning
• Dual Quaternion Skinning
• …

• Multiresolution editing
• As-Rigid-As-Possible 
• Laplacian Mesh Editing
• …



Deformation models

Direct Variational

𝑣𝑣′ = ∑𝑤𝑤𝑗𝑗𝑇𝑇𝑗𝑗 𝑣𝑣 𝑣𝑣′ = argmin
𝑥𝑥

𝐸𝐸(𝑥𝑥)

• Linear Blend Skinning
• Dual Quaternion Skinning
• …

• Multiresolution editing
• As-Rigid-As-Possible 
• Laplacian Mesh Editing
• …



Deformation: user interface

• Handles
• Cages
• Skeletons
• …



Modeling

Paint three surface areas:
• Constrained
• Smooth falloff
• Fixed



Formulation

Find displacement vector field 𝑑𝑑
• Smooth
• Satisfies constraints

𝑆𝑆

𝑑𝑑 known

𝑆𝑆 ′ = {𝑝𝑝 + 𝑑𝑑(𝑝𝑝)|𝑝𝑝 ∈ 𝑆𝑆 }

𝑑𝑑 = 0

𝑑𝑑 =?



Simplest idea

• 𝑑𝑑 = 𝑠𝑠 𝑝𝑝 ⋅ 𝐷𝐷
• 𝑠𝑠(𝑝𝑝) is a smooth function:

– 1 on green vertices
– 0 on grey ones 𝑑𝑑 known = 𝑫𝑫

𝑑𝑑 = 0

𝑑𝑑 =?



Dirichlet Energy

On board:

“Laplace equation”
“Harmonic function”

Images made by E. Vouga

Long time ago:



Harmonic Functions

Images made by E. Vouga

Long time ago:



How to find 𝑠𝑠(𝑝𝑝)?

• Something inversely proportional to 
geodesic distance

• Or our favorite:



Maximum principle

Reality     vs     Expectation



Deformation Energies

Initial state ∆ 2𝑑𝑑 = 0

∆ 2𝑝𝑝 = 0∆ 𝑝𝑝 = 0

∆ 𝑑𝑑 = 0
(Bilaplacian)(Membrane)



Deformation Energies

Initial state ∆ 2𝑑𝑑 = 0

∆ 2𝑝𝑝 = 0∆ 𝑝𝑝 = 0

∆ 𝑑𝑑 = 0
(Bilaplacian)(Membrane)

Higher order => 
more boundary 

conditions



Physically-Based

Find a deformation that preserves both 
fundamental forms

Express the fundamental forms of 𝑆𝑆𝑆 via vector field 𝑑𝑑
Expensive 

to optimize!

F F



Shell-Based Deformation

Find a deformation that preserves both 
fundamental forms

Linearize Express the fundamental forms of 𝑆𝑆𝑆 via vector 
field 𝑑𝑑



Physically-Based

Gateau derivative =>

−𝑘𝑘𝑠𝑠Δ𝑑𝑑 + 𝑘𝑘𝑏𝑏Δ2𝑑𝑑 = 0



Physically-Based

Gateau derivative =>

−𝑘𝑘𝑠𝑠Δ𝑑𝑑 + 𝑘𝑘𝑏𝑏Δ2𝑑𝑑 = 0
Bi-Laplacian

𝑥𝑥
𝑦𝑦
𝑧𝑧



• Very fast
• One linear solve!

• Physically-based
• Linearization => lose details

Solved?

Original Non-linear
deformation

Linear
deformation



• We need to rotate details
• Local rotation is nonlinear!

• Can we still survive with linear solves?

Issue

Original Non-linear
deformation

Linear
deformation



Multiresolution Editing

Frequency decomposition

Change low  
frequencies

Add high frequency details,  
stored in local frames



Multiresolution Editing

Multiresolution

Modeling

D
ec

om
po

si
tio

n

Detail  
Information

Freeform  

Modeling

R
econstruction



How to represent details?

• For example, normal displacements



Result

Global deformation
with intuitive detail

preservation



Limitations
Neighboring displacements are not coupled

– Surface bending changes their angle
– Leads to volume changes or self-intersections

Original Normal Displ. Nonlinear



Limitations
Neighboring displacements are not coupled

– Surface bending changes their angle
– Leads to volume changes or self-intersections

Original Normal Displ. Nonlinear



New coordinates?

Express shape in differential coordinates

Transform those,
then reconstruct the new shape



Mean Value Property

Value at v is average of neighboring values

Long time ago:



Laplacian Mesh Editing
Graph Laplacian:

𝛅𝛅𝑖𝑖 = 𝐯𝐯𝑖𝑖 −
1
𝑑𝑑𝑖𝑖

�
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

𝐯𝐯𝑗𝑗

𝛿𝛿 = 𝐿𝐿𝐿𝐿
Local 

coordinates!



Laplacian Mesh Editing

• Represent mesh using only 𝛿𝛿
• Find a surface whose Laplacian coordinates 

are as close as possible to 𝛿𝛿

s.t. 𝑝𝑝𝑖𝑖′ = 𝑝𝑝𝑖𝑖 , 𝑖𝑖 ∈ {𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐}



Laplacian Mesh Editing

Find a surface whose Laplacian coordinates are 
as close as possible to 𝛿𝛿

min ∑ 𝛿𝛿𝑖𝑖 − 𝐿𝐿(𝑝𝑝′𝑖𝑖) 2 + ∑𝑖𝑖∈𝑐𝑐 𝑝𝑝′𝑖𝑖 − 𝑝𝑝𝑖𝑖 2
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Physically-Based

Gateua derivative =>

−𝑘𝑘𝑠𝑠Δ𝑑𝑑 + 𝑘𝑘𝑏𝑏Δ2𝑑𝑑 = 0
Bi-Laplacian

𝑥𝑥
𝑦𝑦
𝑧𝑧

Before:

(almost) the same 
equation?



Issue
Reconstructing from differential coordinates 

makes sense only if they are 
rotation and translation invariant

Otherwise, you get this

Translating a handle induces local rotations!



Laplacian Coordinates

• Translation invariant
• Not rotation/scale invariant

δi

𝛿𝛿𝑖𝑖 = 𝐿𝐿(𝐯𝐯𝑖𝑖) = 𝐿𝐿(𝐯𝐯𝑖𝑖 + 𝐭𝐭);∀𝐭𝐭 ∈ ℝ3

δi
δi



Solutions
1. Transform, ignoring rotations or details
2. while (not converged)

– Estimate rotations (from normals)
– Rotate differential coordinates and solve

𝐸𝐸(𝐕𝐕′) = �
𝑖𝑖=1

𝑛𝑛

𝑅𝑅𝑖𝑖𝛿𝛿𝑖𝑖 − 𝐿𝐿(𝑝𝑝′𝑖𝑖) 2 + �
𝑖𝑖∈𝑐𝑐

𝑝𝑝𝑖𝑖′ − 𝑝𝑝𝑖𝑖 2

[Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi and H. P. Seidel,
"Differential coordinates for interactive mesh editing," Proceedings Shape Modeling
Applications, 2004]
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Rotations + scaling – invariant?
Add local transformations 𝑇𝑇𝑖𝑖 as variables

𝐸𝐸(𝐕𝐕𝐕) = �
𝑖𝑖=1

𝑛𝑛

𝑇𝑇𝑖𝑖𝛿𝛿𝑖𝑖 − 𝐿𝐿(𝑝𝑝′𝑖𝑖) 2 + �
𝑖𝑖∈𝑐𝑐

𝑝𝑝𝑖𝑖′ − 𝑝𝑝𝑖𝑖 2

[O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, H.-P. Seidel,
Laplacian Surface Editing, EUROGRAPHICS/Symposium on Geometry
Processing, 2004]
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Rotations + scaling – invariant?
Add local transformations 𝑇𝑇𝑖𝑖 as variables

[O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, H.-P. Seidel,
Laplacian Surface Editing, EUROGRAPHICS/Symposium on Geometry Processing, 2004]

𝑇𝑇𝑖𝑖 = translation + rotation + scaling

Represent (a linearization of) 𝑇𝑇𝑖𝑖 using 
translation/rotation/scaling parameters



Rotations + scaling – invariant?
Add local transformations 𝑇𝑇𝑖𝑖 as variables

𝐸𝐸(𝐕𝐕𝐕) = �
𝑖𝑖=1

𝑛𝑛

𝑇𝑇𝑖𝑖𝛿𝛿𝑖𝑖 − 𝐿𝐿(𝑝𝑝′𝑖𝑖) 2 + �
𝑖𝑖∈𝑐𝑐

𝑝𝑝𝑖𝑖′ − 𝑝𝑝𝑖𝑖 2

[O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, H.-P. Seidel,
Laplacian Surface Editing, EUROGRAPHICS/Symposium on Geometry Processing, 2004]

⇒ 𝑇𝑇𝑖𝑖 is a linear function of 𝑉𝑉′
⇒Quadratic optimization

⇒ Linear solve!





As-Rigid-As-Possible Surface 
Modelling

45



As-rigid-as-possible (ARAP)

46



As-rigid-as-possible (ARAP)
• “Intuitive” deformations 
◦ Smooth deformations at large scale

• Preserve local features
• Fast, for interactive mesh editing

47



ARAP in a nutshell…
1. Break mesh into overlapping pieces
2. Try to move each piece rigidly
3. Combine all local transformations into a 

smooth one

48



Pieces
Vertex Umbrella

–Covers entire surface
–One cell per vertex
–All triangles exist in 3 cells

49



Rigid motion
If cell i moved rigidly:

pi

pj p'i

p'j

𝑅𝑅𝑖𝑖

𝑝𝑝𝑗𝑗′ − 𝑝𝑝𝑖𝑖′ = 𝑅𝑅𝑖𝑖(𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑖𝑖)

∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖)



Deviation from rigid motion
If cell i moved rigidly:

𝑝𝑝𝑗𝑗′ − 𝑝𝑝𝑖𝑖′ = 𝑅𝑅𝑖𝑖(𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑖𝑖)

∀𝑗𝑗 ∈ 𝑁𝑁(𝑖𝑖)

𝐸𝐸 = �
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

𝑝𝑝𝑗𝑗′ − 𝑝𝑝𝑖𝑖′ − 𝑅𝑅𝑖𝑖(𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑖𝑖)
2



For the whole mesh

𝐸𝐸 = �
𝑖𝑖

�
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

𝑝𝑝𝑗𝑗′ − 𝑝𝑝𝑖𝑖′ − 𝑅𝑅𝑖𝑖(𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑖𝑖)
2



For the whole mesh

𝐸𝐸 = �
𝑖𝑖

�
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

𝒘𝒘𝒊𝒊𝒊𝒊 𝑝𝑝𝑗𝑗′ − 𝑝𝑝𝑖𝑖′ − 𝑅𝑅𝑖𝑖(𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑖𝑖)
2



Orthogonal Procrustes 
problem

How to find the best rotation matrix 
aligning 𝑉𝑉 with 𝑉𝑉𝑉?

vi vj1

vj2 v׳
i v׳

j1

v׳
j2

Ri



Orthogonal Procrustes 
problem

How to find the best rotation matrix 
aligning 𝑉𝑉 with 𝑉𝑉𝑉?

vi vj1

vj2 v׳
i v׳

j1

v׳
j2

Ri

argmin
𝑅𝑅

𝑅𝑅𝑅𝑅 − 𝐵𝐵 𝐹𝐹

s. t.𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼
???



Procrustes problem

1. Build covariance matrix S = ABT

2. SVD: S = UΣWT

3. Ri = UWT

vi vj1

vj2 v׳
i v׳

j1

v׳
j2

RiClosed-form 
solution!



Mesh Deformation

point constraints

Caveats:
• {𝒑𝒑′𝑖𝑖} and {𝑅𝑅𝑖𝑖} are unknown
• Non-linear optimization problem

57

min∑𝑖𝑖 ∑𝑗𝑗∈𝑁𝑁(𝑖𝑖)𝒘𝒘𝒊𝒊𝒊𝒊 𝑝𝑝𝑗𝑗′ − 𝑝𝑝𝑖𝑖′ − 𝑅𝑅𝑖𝑖(𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑖𝑖)
2

s.t. 𝑝𝑝𝑖𝑖′ = �𝑝𝑝𝑖𝑖



As-Rigid-As-Possible
1. Initialize 𝑅𝑅𝑖𝑖 = 𝐼𝐼 , for all i
2. Global Step. Given {𝑅𝑅𝑖𝑖}, minimize energy to find {𝒑𝒑′𝑖𝑖}
3. Local Step. Fix {𝒑𝒑′𝑖𝑖}, find optimal rotations {𝑅𝑅𝑖𝑖} via 

SVD.
4. Repeat steps 2 and 3 until convergence.

�
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

𝑤𝑤𝑖𝑖𝑖𝑖 𝒑𝒑′𝑖𝑖 − 𝒑𝒑′𝑗𝑗 = �
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

𝑤𝑤𝑖𝑖𝑖𝑖
2

𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑗𝑗 𝒑𝒑𝑖𝑖 − 𝒑𝒑𝑗𝑗

𝐿𝐿𝒑𝒑′ = 𝒃𝒃
58



Advantages
Laplacian 

– Depends only on original mesh
– Only needs to be factored once!

Rotations can be computed in parallel
• Each iteration reduces energy
◦ Updating rotations guaranteed to reduce cell-error
◦ Updating positions guaranteed to reduce global error

Guaranteed Convergence
12



Results (vs Poisson)

Poisson:

ARAP:

60



Deformation models

Direct Variational

𝑣𝑣′ = ∑𝑤𝑤𝑗𝑗𝑇𝑇𝑗𝑗 𝑣𝑣 𝑣𝑣′ = argmin
𝑥𝑥

𝐸𝐸(𝑥𝑥)

• Linear Blend Skinning
• Dual Quaternion Skinning
• …

• Multiresolution editing
• As-Rigid-As-Possible 
• Laplacian Mesh Editing
• …
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1) Rest pose

𝐯𝐯

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



2) Skinning transformations

𝐓𝐓1

𝐓𝐓2

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



3) Skinning weights

0

1

𝑤𝑤𝑖𝑖 ,1

65

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



3) Skinning 
weights

0

1

𝑤𝑤𝑖𝑖 ,2

66

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



67

Linear blend skinning (LBS)

𝑣𝑣′ = ∑𝑤𝑤𝑗𝑗𝑇𝑇𝑗𝑗 𝑣𝑣



LBS is used widely in the 
industry

Halo 3 Bolt

68

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



LBS: candy-wrapper 
artifact

69

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



LBS: candy-wrapper artifact

70



What went wrong?

𝑣𝑣′ = ∑𝑤𝑤𝑗𝑗𝑇𝑇𝑗𝑗 𝑣𝑣



What went wrong?

𝑣𝑣′ = ∑𝑤𝑤𝑗𝑗𝑇𝑇𝑗𝑗 𝑣𝑣

𝑹𝑹1 = 0
1 0 0

1 0
0 0 1

𝑹𝑹2 =
−1 0 0
0 −1 0
0 0 1



What went wrong?

𝑣𝑣′ = ∑𝑤𝑤𝑗𝑗𝑇𝑇𝑗𝑗 𝑣𝑣

𝑹𝑹1 = 0
1 0 0

1 0
0 0 1

𝑹𝑹2 =
−1 0 0
0 −1 0
0 0 1

Why can’t we just sum up rotation matrices?



Geometry of linear blending

SE(3)

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



𝐓𝐓1

75

𝐓𝐓2

SE(3)

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



𝐓𝐓1

76

𝐓𝐓2
𝐓𝐓blend

SE(3)

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



𝐓𝐓1

77
𝐓𝐓2

𝐓𝐓blend

SE(3)

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



Intrinsic blending

78

𝐓𝐓blend
𝐓𝐓1

𝐓𝐓2

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



79

𝐓𝐓blend
𝐓𝐓1

𝐓𝐓2

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



𝐓𝐓blend

80

𝐓𝐓1
𝐓𝐓2

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



Intrinsic blending using Lie algebras
[Buss and Fillmore 2001, Alexa 2002, Govindu 2004, Rossignac and Vinacua 2011]

argmin
𝑋𝑋

�
𝑋𝑋

𝑤𝑤𝑗𝑗𝑑𝑑 𝑋𝑋,𝑇𝑇𝑗𝑗

𝑑𝑑 𝐗𝐗, 𝐘𝐘 = log(𝐘𝐘𝐗𝐗−1)

81

2

Karcher / Frechet mean

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



Dual Quaternion Skinning



Where do the weights come from?

0

1

𝑤𝑤𝑖𝑖 ,1

83



Manual?



Automatic skinning 
weight computation



Weights should obtain a few basic 
qualities 

86Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson






[Shepard 1968],
[Schaefer et al. 2006], etc.

Inverse Euclidean distance weights are too crude,
show obvious artifacts
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weights optimized inside shape

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



[Shepard 1968],
[Schaefer et al. 2006], etc.

Inverse Euclidean distance weights 
are too crude
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weights optimized inside shape
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Discontinuous projection onto surface 
can be smoothed out

[Baran & Popović 2007]

Closest visible
bone
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Discontinuous projection onto surface 
can be smoothed out

[Baran & Popović 2007] 90
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smoothness

Discontinuous projection onto surface 
can be smoothed out

[Baran & Popović 2007] 91
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Discontinuous projection onto surface 
can be smoothed out

[Baran & Popović 2007]

“data”
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Discontinuous projection onto surface 
can be smoothed out

[Baran & Popović 2007] 93
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Gradient energy weights not smooth at 
handles
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Gradient energy weights not smooth at 
handles
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Gradient energy weights not smooth at 
handles
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Point constraints for
Laplace equation

https://www.facebook.com/521399544544480/photos/a.523048724379562/80096825992093
9/?type=1&theater , Facebook group “Circus tents and circus equipment”

https://www.facebook.com/521399544544480/photos/a.523048724379562/800968259920939/?type=1&theater
https://www.facebook.com/521399544544480/photos/a.523048724379562/800968259920939/?type=1&theater


Non-negative, local weights are mandatory
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[Botsch & Kobbelt 2004]
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Spurious extrema cause distracting artifacts

local max

local min
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Must explicitly prohibit spurious 
extrema

local max

local min
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Previous methods fail in one way or another

Euclidean ∆wj ∆2wj

smooth ✓ − ✓
non-negative ✓ ✓ -

shape-aware − ✓ ✓
local -/✓ − -

monotonic - ✓ -

arbitrary handles - ✓ ✓
[Shepard 1968,
Sibson 1980,
Schaefer et al. 2006]

[Baran & Popovic 2007, 
Joshi et al. 2007]

[Botsch & Kobbelt 2004, 
Sorkine et al. 2004, 
Finch et al. 2011]
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Constrained optimization ensures 
satisfaction of all properties

102

+ shape-aware
+ smoothness

[Botsch & Kobbelt 2004, Sorkine et al. 2004, Joshi & Carr 2008, Jacobson et al. 2010, Finch et al. 2011, Andrews et al. 2011]
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Constrained optimization ensures 
satisfaction of all properties
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+ shape-aware
+ smoothness
+ arbitrary handles

[Botsch & Kobbelt 2004, Sorkine et al. 2004, Joshi & Carr 2008, Jacobson et al. 2010, Finch et al. 2011, Andrews et al. 2011]
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Constrained optimization ensures 
satisfaction of all properties
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+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity

[Jacobson et al. 2011]
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Constrained optimization ensures 
satisfaction of all properties
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+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality

[Jacobson et al. 2011]
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[Rustamov 2011]

Constrained optimization ensures 
satisfaction of all properties
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+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality
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[Rustamov 2011]

Constrained optimization ensures 
satisfaction of all properties
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+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality
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[Rustamov 2011]

Constrained optimization ensures 
satisfaction of all properties
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+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality
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Constrained optimization ensures 
satisfaction of all properties
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+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality
+ monotonicity

[Weinkauf et al. 2011, Jacobson et al. 2012, Günther et al. 2014]
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Previous methods fail in one way or 
another

Euclidean ∆wj = u ∆2wj

smooth ✓ − ✓
non-negative ✓ ✓ -

shape-aware − ✓ ✓
local -/✓ − -

monotonic - ✓ -

arbitrary handles - ✓ ✓
[Shepard 1968,
Sibson 1980,
Schaefer et al. 2006]

[Baran & Popovic 2007, 
Joshi et al. 2007]

[Botsch & Kobbelt 2004, 
Sorkine et al. 2004, 
Finch et al. 2011]
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Constrained optimization ensures 
satisfaction of all properties
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+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality
+ monotonicity

[Weinkauf et al. 2011, Jacobson et al. 2012, Günther et al. 2014]
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Weights retain nice properties in 3D
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