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Geodesic Distance

Extrinsically close
Intrinsically far

Image © https://www.purewow.com/wellness /advanced-yoga-poses



Geodesic Distance

Length of a shortest path on a surface

O

Small Euclidean distance -*:1)-,
Large geodesic distance ‘&—%

Image © https://www.purewow.com/wellness /advanced-yoga-poses



Geodesics

Locally shortest
Non-unique!

Straightest Geodesics on Polyhedral Surfaces (Polthier and Schmies)



Possible questions

Locally shortest Single source

Y -

https:/ /www.ceremade.dauphine.fr /~peyre /teaching /manifold /tp3.html http:/ /www.sciencedirect.com/science /article /pii/S0010448511002260



Mesh ~ Graph
find shortest path?




Mesh ~ Graph
find shortest path?

N
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Mesh ~ Graph
find shortest path?




Mesh ~ Graph
find shortest path?




Mesh ~ Graph

find shortest path?
. N

May not converge
under refinement




Mesh ~ Graph
find shortest path?




Mesh ~ Graph
find shortest path?

No,
but for a good mesh, it may
be a good approximation

http:/ /www.cse.ohio-state.edu/~tamaldey /isotopic.html



How to discretize geodesic distance?



Euclidean Space

 Globally shortest path
* Local minimizer of length

* Locally straight path



Surfaces: choose one

 Globally shortest path

 Local minimizer of length

* Locally straight path

Not the same!



Surfaces: choose one

 Globally shortest path

Let’s find |Local minimizer of length

* Locally straight path

Not the same!



Fooall!
Arc Length

b
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Wouldn't It be nice?

b
f O



Energy of a Curve

Not the length, but turns out we can optimize it instead!

b
L= f Iy ©lde

Note: we do not assume arclength parameterization

1 b
E= j Iy (Ol12dt
a

Lemma: L* < 2(b—a)FE

= when parameterized by arc length.



First Variation of Arc Length

Lemma. Lety;:[a b] - S be a family of curves with
fixed endpoints in surface S; assume y is
parameterized by arc length at t=0. Then,

= [ (D) oy st s

t=0

Corollary. y: [a,b] — S is a geodesic iff
/!
s Y (s)] =0




INntuition

PYOJT,Y(S)S 7' (s)] =0
» The only acceleration is out of the surface
» No steering wheel!




INntuition

V@)Y (t) =0
» The only acceleration is out of the surface
» No steering wheel!




INntuition

V@)Y (t) =0
“parallel transport along the curve
preserves the tangent vector to the curve”




Two Local Perspectives

proj. s 11" ()] = 0

» Boundary value problem
— Given: y(0),y(1)

» Initial value problem (ODE)
— Given: y(0),y'(0)



Exponential Map

expp(fu) = Y, (1)

vY,(1) where y,, 1s
(unique) geodesic
from p with velocity v.

https:/ /en.wikipedia.org /wiki/Exponential_map_(Riemannian_geometry)



Instability of Geodesics

Locally minimizing
distance is not enough
to be a shortest path!

http:/ /parametricwood2011.files.wordpress.com/2011/01/cone-with-three-geodesics.png



Eikonal Equation

0.1

=01

=02

-0.3

-0.4

https:/ /www.mathworks.com/matlabcentral /fileexchange /24827-hamilton-jacobi-solver-on-unstructured-triangular-
grids /content /HJB_Solver_ Package /@SolveEikonal /SolveEikonal.m



\end{math}



Starting Point for Algorithms

Graph shortest path algorithms are
well-understood.

Can we use them (carefully) to compute geodesics?



Useful Principles

“Shortest path had to
come from somewhere.”

“All pieces of a shortest path
are optimal.”



Dijkstra’s Algorithm

Vo = Source vertex
d; = Current distance to vertex 2

S = Vertices with known optimal distance

Initialization:
dog =0

S =17



Dijkstra’s Algorithm

Vo = Source vertex
d; = Current distance to vertex 2

S = Vertices with known optimal distance

Iteration k:

k =arg min dy
v, €V\S

S < Vi
dy <+ min{dy, di + di¢} V neighbors vy of vy

inductive During each iteration, S
proof: remains optimal.



Advancing Fronts

0000000000



Example

t/uploads /2011/09 /dijkstra.gif

http://www .iekucukcay.



Example



Fast Marching

Approximately solving Eikonal
equation with a (modified)
Dijkstra algorithm



Problem



Planar Front Approximation

‘tp:/ /research .microsoft .com/en-us/um/people /hoppe /geodesics.pdf



At Local Scale




Notation

d(x) - geodesic distance (from a fixed
vertex x)

e also time



Fast Marching: algorithm

» Initialization:
d(xy) =0
Mark x, as black
Red = N(x,)
All other vertices are green
» While not everything is black
— Find a red vertex x; with min d

— Update neighbor triangles of x;
« Update only non-black vertices
« Mark those as red

— Mark x; as black



Fast Marching: Update Step

L2

d(xo) /"f d(x)

L1

d(x1)
0

Vertex x updated from triangle 3 x

Distance computed from the other triangles vertices

Image from Bronstein et al., Numerical Geometry of Nonrigid Shapes



Given:

X1, X2, X3: In-plane

coordinates (assume
X3

Xg3 = O)

d, d,: geodesic
distance /time for xq, x,

Find:
d.?

Derivalion from Bronstein et al., Numerical Geometry of Nonrigid Shapes



Planar Calculations

Given:

di1 = nTxl .

T
X9 d2 — N X2 _|_p
d — VTTl+p12X1

Find(:)
ds=n'pi+p=rp

Derivalion from Bronstein et al., Numerical Geometry of Nonrigid Shapes



Planar Calculations

d — VTn —|—p12><1

21;_><1Q12><1 2p12x1Qd+dTQd
Q= V')



Planar Calculations

1 = p2 ' 1;_><1Q12><1 —2p - 1;_><1Qd + dTQd

Quadratic equation for p



Two Roots

T

gmaller root: Larger root:
acute obtuse

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Two orientations for the normal



Larger Root: Consistent

Reaches
x1? xz
before x,

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Two orientations for the normal



Additional Issue

Update should be
from a different
triangle!

T1 L2

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Front from outside the triangle



Condition for Front Direction

OVin<0

T1 L2

Bronstein et al., Numerical Geometry of Nonrigid S

Front from outside the triangle



Obtuse Triangles

Bronstein et al., Numerical Geometry of Nonrigid S

Must reach x, after x, and x,



FIXing the Issues

» Alternative edge-based update:

d3 < min{ds, d1 + ||z1||,d2 + [|z2]| }

 Add connections as needed
[Kimmel and Sethian 1998]

Obstuse angle
and splitting section



Summary:. Update Step

b2

N O W

input : non-obtuse triangle with the vertices x1, x2, r3, and the
corresponding arrival times dq, ds, d3
output : updated ds

Solve the quadratic equation

2><1Q@'Jr \/ 2><1Qd —12,,Qlayy - (dTQd — 1)
T 1Qlaxq '

where V = (21 — 23, 22 — 23), and d = (dy, d2)"
Compute the front propagation direction n = V"1 (d —p - lax1)

if (VIV)"'V1Tn <0 then

d3 —— min{ds, p}
else

ds «—— min{ds, dy + ||z1]|, d2 + ||z2]}
end

Bronstein, Numerical Geometry of Nonrigid Shapes




Fast Marching vs. Dijkstra

» Modified update step

» Update all triangles
adjacent to a given
vertex



Eikonal Equation

Vd| =1

Greek: “Image”

Solutions are geodesic distance



STILL AN
APPROXIMATION




Modifying Fast Marching

[Novotni and Klein 2002]:
Circular wavefront



Modifying Fast Marching

Raster

SCall

and /or
parallelize

Bronstein, Numerical Geometry of Nonrigid Shapes

Grids and parameterized surtaces



Alternative to Fast Marching

Algorithm 1 The Heat Method

I. Integrate the heat flow u = Aw for time .
I1. Evaluate the vector field X = —Vu/|Vu
III. Solve the Poisson equation A¢p = V - X,

Crane, Weischedel, and Wardetzky. “Geodesics in Heat.” TOG 2013.



Tracing Geodesic Curves

Trace gradient of distance function



INnitial Value Problem

Equal left and
right angles

Polthier and Schmies. “Shortest Geodesics on Polyhedral Surfaces.”
SIGGRAPH course notes 2006.

Trace a single geodesic exactly



Exact Geodesics

SIAM J. COMPUT. © 1987 Society for Industrial and Applied Mathematics
Vol. 16, No. 4, August 1987 005

THE DISCRETE GEODESIC PROBLEM*

JOSEPH S. B. MITCHELL?t, DAVID M. MOUNT+ AND CHRISTOS H. PAPADIMITRIOUS$

Abstract. We present an algorithm for determining the shortest path between a source and a destination
on an arbitrary (possibly nonconvex) polyhedral surface. The path is constrained to lie on the surface, and
distances are measured according to the Euclidean metric. Our algorithm runs in time O(n®logn) and
requires O(n?) space, where n is the number of edges of the surface. After we run our algorithm, the distance
from the source to any other destination may be determined using standard techniques in time O(log n) by
locating the destination in the subdivision created by the algorithm. The actual shortest path from the source
to a destination can be reported in time O(k+log n), where k is the number of faces crossed by the path.
The algorithm generalizes to the case of multiple source points to build the Voronoi diagram on the surface,
where n is now the maximum of the number of vertices and the number of sources.

Key words. shortest paths, computational geometry, geodesics, Dijkstra’s algorithm

AMS(MOS) subject classification. 68E99




MMP Algorithm: Big Idea

S
Dijkstra-style front
with windows
explaining source.
w

Surazhsky et al. “Fast Exact and Approximate Geodesics on Meshes.” SIGGRAPH 2005.



Practical Implementation

Fast Exact and Approximate Geodesics on Meshes

Vitaly Surazhsky

University of Oslo

Tatiana Surazhsky
University of Oslo

Abstract

The computation of geodesic paths and distances on trangle
meshes 15 a common operation in many computer graphics applica-
tions. We present several practical algorithms for computing such
geondesics from a source point to one or all other points efficiently.
First, we describe an implementation of the exact “single source,
all destination”™ algorithm presented by Mitchell, Mount, and Pa-
padimitriou (MMP). We show that the algorithm mmns nuch faster
in practice than suggested by worst case analysis. Next, we extend
the algorithm with a merging operation to obtain computationally
efficient and accurate approximations with bounded error. Finally,
to compute the shortest path between fiwo given points. We use a
lower-bound property of our approximate geodesic algorithm to ef-
ficiently prune the frontier of the MMP algorithm. thereby obtain-
ing an exact solution even more quickly.

Keywords: shortest path, geodesic distance.

1 Introduction

In this paper we present practical methods for computing both exact
and approximate shortest (1.e. geodesic) paths on a triangle mesh.
These geodesic paths typically cut across faces in the mesh and are
therefore not found by the traditional graph-based Dijkstra algo-
rithm for shortest paths.

The computation of geodesic paths is a conumon operation in many
computer graphics applications. For example, parameterizing a
mesh often mwvolves cutting the mesh into one or more charts
(e.g. [Enshnamurthy and Levo
the result generally has less dist
if the cuts are geodesic.

LoT-Y e 3 A

Daml Kirsanov

Harvard University

Steven J. Gortler
Harvard University

Hugues Hoppe
Microsoft Fesearch

Figure 1; Geodesic paths from a source veriex, and isolines of the
geodesic distance function.

tance function over the edges, the implementation is actually prac-
tical even though. to our knowledge, it has never been done pre-
viously. We demonstrate that the algorithm’s worst case mnning
time of O(n” logn) is pessimistic, and that in practice, the algo-
rithm mns in sub-quadratic fime. For instance, we can compute
the exact geodesic distance from a source point to all vertices of a
400E-triangle mesh in about one minute.

Approximation algorithm We extend the algorithm with a merg-
ing operation fo obtain computationally efficient and accurate ap-
proximations with bounded error. In practice, the algorithm mns in

http://code.google.com,/p/geodesic/



Fuzzy Geodesics

G, ,(x) = exp(—|d(p,z) + d(x,q) — d(p,q)|/o)

Function on surface
expressing difference
in triangle inequality

“Intersection” by
pointwise multiplication

Sun, Chen, Funkhouser. “Fuzzy geodesics and
consistent sparse correspondences for deformable
shapes.” CGF2010.

Stable version of geodesics




Stable Measurement

Morphological
operators to fill holes
rather than remeshing

Campen and Kobbelt. “Walking On Broken Mesh: Defect-Tolerant Geodesic
Distances and Parameterizations.” Eurographics 2011.



All-Pairs Distances

Sample Geodesic  Triangulate
points field (Delaunay)

Fix edges

embedding)

Xin, Ying, and He. “Constant-time all-pairs geodesic distance query on triangle
meshes.” 13D 2012.



Geodesic Voronol & Delaunay

N = 10000 samples Triangulation

Fig. 4.12 Geodesic remeshing with an increasing number of poinls.

From Geodesic Methods in Computer Vision and Graphics (Peyré et al., FnT 2010)



High-Dimensional Problems

Figure 1: Discrete geodesic computed from two input poses (leftmost and rightmost hand).

Heeren et al. Time-discrete geodesics in the space of shells. SGP 2012.



INn ML: Be Careful!

Shortest path distance in random k-nearest neighbor graphs

Morteza Alamgir! MORTEZAOQTUEBINGEN.MPG.DE
Ulrike von Luxburg'* ULRIKE.LUXBURG@TUEBINGEN. MPG.DE

I Max Planck Institute for Intelligent Systems, Titbingen, Germany
2 Department. of Computer Science, University of Hamburg, Germany

Abstract The first question has already been studied in some

special cases. Tenenbaum et al. (2000) discuss the case

Consider a weighted or unweighted k-nearest of = and kNN graphs when p is uniform and D is the

neighbor graph that has been built on n data geodesic distance. Sajama & Orlitsky (2005) extend

points drawn randomly according to some these results to s-graphs from a general density p by
density p on R?. We study the convergepgges . . . -

the shortest path distance in such gra

the sample size tends to infinity. We ) We' pI'O.Ve
that for unweighted kNN graphs, thi that f()]’_‘ unwelghted kNN gra,phsj th]S dlS—
tance converges to an unpleasant dis .
function on the underlying space whose tance Converges tO all Unpleasant d]-Sta’nce
erties are detrimental to machine le:
We also study the behavior of the sh

function on the underlying space whose prop-
path distance in weighted kNN graphs. el"ties are detrimental to maChiﬂe 1earning.

traryr doanaity w



INn ML: Be Careful!

Geodesic Exponential Kernels: When Curvature and Linearity Conflict

Aasa Feragen Francgois Lauze S¢ren Hauberg
DIKU, University of Copenhagen DIKU, University of Copenhagen DTU Compute
Denmark Denmark Denmark
aasaf@diku.dk francois@diku.dk sohau@dtu.dk
Abstract | Extends to general
Kernel | Metric spaces | Riemannian manifolds
. . . Gassian (g — 2) | Mo (only if flat) Mo {only if Euclidean)
We consider kernel methods on general geodesic metric Laplacian (g = 1) | Yes, iff metric is CND | Yes, iff metric is CND
spaces and provide both negative and positive results. First Geodesic exp. (g > 2) | Not known No

Table 1. Overview of results: For a geodesic metric, when is the
geodesic exponential kernel (1) positive definite for all A = 0?

we show that the common Gaussian kernel can only be gen-
eralized 1o a positive definite kernel on a geodesic metric
space if the space is flat. As a resull, for data on a Rieman-

:Zﬂdz?:f{i’ﬁE;f‘.?fdmf {ia"m‘f; J Ther:n.'em 2... {_,et M b:e.' a compfef‘e, ‘:rmaorh Rier:rmnnian
t k ernel 1S ¢ manifold with its associated geodesic distance metric d. As-
Hea s X sume, moreover, that k(zx,y) = exp(—Ad?(z,y)) is a PD
PD! n B geodesic Gaussian kernel for all A > 0. Then the Rieman-

: o remere wepnitl) pian manifold M is isometric to a Euclidean space.
that geodesic Laplacian kernels can be §

curved spaces, including spheres and hyperbolic spaces. and show the following results, summarized in Table 1.
Our theoretical results are verified empirically.
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