
IFT 6113
A (VERY) SHORT INTRO TO

COMPUTATIONAL GEOMETRY
tiny.cc/ift6113

Mikhail Bessmeltsev

Pic from https://www.cs.cmu.edu/~quake/triangle.defs.html

Some slides from Alla Sheffer

Today

• Intro
• Orientation and convex hulls
• Line segment intersection
• Polygons and triangulations
• Voronoi diagrams
• Delaunay triangulations

Credit: most of images and ideas from Dave Mount’s lecture notes
http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf

And David Kirkpatrick’s lectures

http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf

Focus: 2D algorithms

• Typical problem: shortest paths

Focus: 2D algorithms

• Typical problem: shortest paths

→ graph → Dijkstra algorithm?

Focus: 2D algorithms

• Typical problem: shortest paths

→ graph → Dijkstra algorithm?

Use geometric ideas!→
more efficient algorithms

Complexity Analysis

• Big O notation
• Mostly worst case (sometimes average)
• Less attention to constants…

Main objects

Convex hulls

Image from CGAL manual

Main objects

Triangulations

Main objects

Line arrangements

Image from CGAL manual

Main objects

Delaunay triangulations and Voronoi
diagrams

Main objects

Queries:
• Nearest neighbors?
• Range searches?

CONVEX HULLS

Why do we need
convex hulls?

• Collision detecton

• Reconstructing convex objects from
point clouds

• Farthest distance computation

Convexity?

• A set 𝑆 is convex, if
– for any two points 𝑝, 𝑞 ∈ 𝑆, the line segment 𝑝𝑞 ∈ 𝑆

Convexity?

• A set 𝑆 is convex, if
– for any two points 𝑝, 𝑞 ∈ 𝑆, the line segment 𝑝𝑞 ∈ 𝑆

Convex hull of a set of points 𝑆 =

• the smallest convex set that contains 𝑆

𝑆

Convex hull of a set of points 𝑆 =

• the smallest convex set that contains 𝑆
• intersection of all convex sets containing 𝑆

𝑆

Equivalent definitions
(not obvious, see Carathéodory’s theorem)

CH: Representation

• A sequence of points!

Simplest algorithm

• Ideas?

Simplest algorithm

• Ideas?

• Try every possible 𝑝𝑞 ∈ 𝑆, test if all the
other points lie on one side

• Complexity?

Better: Gift Wrapping

• Start with some extreme point 𝑝!	
– (e.g. leftmost)
– It belongs to CH

• Choose the next point so that 𝑝"#$𝑝" has all
other points on the right
– Sort by angle, choose minimum
– 𝑂(𝑛)

• Repeat

Gift Wrapping

• Start with some
extreme point 𝑝!	

• Choose 𝑝", s.t.
𝑝"#$𝑝" has all
other points on
the right

• Repeat

Image from Wikipedia

Gift Wrapping

Image from Wikipedia

Output-sensitive complexity

𝑂 𝑛ℎ

ℎ - number of vertices on the CH

Graham’s Scan

• Lower hull:
• Store CH vertices in a stack: (… , 𝐻%, 𝐻$)
• Sort points by angle
• Take new point	𝑝, check if the (𝑝, 𝐻$, 𝐻%)

is counterclockwise
– Yes → push!
– No → pop!

Graham’s Scan

Graham’s Scan

• Complexity?

Divide-and-Conquer CH

• Sort by x
• Split by the median point
• Recursively find CH for left and right parts
• Merge

Divide-and-Conquer CH

• Sort by x
• Split by the median point
• Recursively find CH for left and right parts
• Merge

Divide-and-Conquer CH

• Sort by 𝑥: 𝑂(𝑛 log 𝑛)
• Split by the median point
• Recursively find CH for left and right parts
• Merge
– Find common tangent line, 𝑂(𝑛)

Today

üIntro
üOrientation and convex hulls
• Line segment intersection
• Polygons and triangulations
• Halfplane intersection and LP
• Voronoi diagrams
• Delaunay triangulations
• Point location

Credit: most of images and ideas from Dave Mount’s lecture notes
http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf

And David Kirkpatrick’s lectures

http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf

Line Segment Intersection

• Max # of intersections: 𝑂(𝑛%)
• Need an output sensitive algorithm!
• 𝐼 - # of intersections

Plane Sweep

• Sweep virtual line
• Stop at events
– segment started/finished
– intersection

Image from geomalgorithms.com

Plane Sweep
• Presort the endpoints
• How to detect next intersection?

– If two segments are adjacent along the sweep line,
– Check if they intersect to the right of the sweep line

Today

üIntro
üOrientation and convex hulls
üLine segment intersection
• Polygons and triangulations
• Voronoi diagrams
• Delaunay triangulations

Credit: most of images and ideas from Dave Mount’s lecture notes
http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf

And David Kirkpatrick’s lectures

http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf

Polygons and triangulations

• Why?
– Decomposition of complex shapes
• How to compute area of a polygon?

– Art gallery problem
• How many cameras and where?

Art Gallery Problem

Art Gallery Problem

Art Gallery Problem

Art Gallery Problem

Art Gallery Problem
𝑛/3 cameras are

enough!

Is it optimal?

Triangulations

• How to find a triangulation?

Triangulations

Diagonal: line segment connecting two
vertices completely within the polygon

Triangulations

Diagonal: line segment connecting two
vertices completely within the polygon

Every polygon has at least 1 diagonal!

Triangulations

Triangulations

Triangulations

• Algorithm: add diagonal, repeat for the
two new polygons

Triangulations

• Algorithm: add diagonal, repeat for the
two new polygons
– Bottleneck?
– Complexity?

A better algorithm

• 𝑂 𝑛 log 𝑛
• Input: cyclic list of vertices
– Presorted!

1. Learn how to triangulate monotone polygons
2. Subdivide arbitrary polygon into monotone ones
3. Profit!

https://www.smead.com/hot-topics/organized-to-do-list-1023.asp

Monotone polygons
Polygonal chain is x-monotone ó

every vertical line intersects chain in
at most 1 point

Polygon is x-monotone ó
can be split into two x-monotone chains

Triangulating monotone
polygons

• Sort vertices left to right
– Doesn’t require actual sorting (why?)
– Requires 𝑂(𝑛) time

• Line sweep
– Triangulate everything to the left of the

sweep line
– Discard the triangulated part
– Testing diagonals is now constant-time
• Why?

Triangulating monotone
polygons

𝑂(𝑛)

Triangulating monotone
polygons

𝑂(𝑛)

Testing diagonals =
keeping track of edge

orientations

Today

üIntro
üOrientation and convex hulls
üLine segment intersection
üPolygons and triangulations
• Voronoi diagrams
• Delaunay triangulations

Credit: most of images and ideas from Dave Mount’s lecture notes
http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf

And David Kirkpatrick’s lectures

http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf

Triangulation Quality:
Delaunay Criterion

circumcircle

Empty Circle Property (definition of Delaunay Triangulation)

No other vertex is contained
within the circumcircle of any triangle

Non-Delaunay
Triangulation

Delaunay Triangulation

Delaunay Triangulation

ü Exists for any set of vertices*

ü Is unique*

* up to degenerate cases

FUN FACTS ABOUT DT

Theorem.
The exterior polygon of the DT is the convex
hull.

DT is the best triangulation you can get in 2D.

THE BEST HOW?

Take all angles, sort = Sequence of numbers
9°, 11°, 12°, 15°, …

DT’s sequence is the last lexicographically

How to test if

• To test – enough to check pairs of
triangles sharing common edge

Edge flipping

Start with any triangulation
1. Find a non-Delaunay edge
2. Flip edge
3. Repeat

Converges to Delaunay

Edge test

𝛼 + 𝛽 > 𝜋
Image modified, Original: https://commons.wikimedia.org/wiki/User:Jespa

Flip

𝛾 + 𝛿 ≤ 𝜋
Image modified, Original: https://commons.wikimedia.org/wiki/User:Jespa

Edge flipping

Start with any triangulation
1. Find a non-Delaunay edge
2. Flip edge
3. Repeat

Converges to Delaunay
Slow: 𝑶(𝒏𝟐)

Vertex Insertion

Start with a Delaunay mesh covering domain
Insert one vertex at a time
• Add vertex to mesh
• Flip edges locally to maintain Delaunay property

Boundary recovery

Expected time: 𝑂(𝑛 log 𝑛)

Vertex Insertion

Start with a Delaunay mesh covering domain
Insert one vertex at a time
• Add vertex to mesh
• Flip edges locally to maintain Delaunay property

Boundary recovery

Expected time: 𝑂(𝑛 log 𝑛)

X

Vertex Insertion

• Locate triangle
containing X

• Subdivide
triangle

• Recursively
check adjoining
triangles to
ensure empty-
circle property

X

Vertex Insertion

• Locate triangle
containing X

• Subdivide triangle

• Recursively check
adjoining triangles
to ensure empty-
circle property

• Flip if needed
• Very small number

of flips

),(yx

Starting triangle

Terminal triangle

Locate Triangle

Use Barycentric Coordinates
• Test inside triangle

• If outside - outside which edge?

Vertex Insertion

• Start with Delaunay mesh covering
domain
– Typically 2 triangle bounding box

• Insert one vertex at a time
– Add vertex to mesh (locate triangle to split)
– Flip edges (locally) to preserve Delaunay

property
• Boundary recovery

Create bounding triangles

Example: Boundary Insertion

Boundary Insertion

Insert vertices using Delaunay method

Boundary Insertion

Insert vertices using Delaunay method

Boundary Insertion

Insert vertices using Delaunay method

Boundary Insertion

Insert vertices using Delaunay method

Boundary Insertion

Insert vertices using Delaunay method

Vertex Insertion

• Start with Delaunay mesh covering
domain
– Typically 2 triangle bounding box

• Insert one vertex at a time
– Add vertex to mesh (locate triangle to split)
– Flip edges (locally) to preserve Delaunay

property
• Boundary recovery

Boundary Recovery

Delete outside triangles (if can)
– Delaunay triangulation does not have to

obey polygon boundary

Boundary Recovery

Delaunay triangulation does not
always obey polygon boundary

Boundary Recovery

Boundary Conforming Solution
– Add vertices at intersections
– Repeat if necessary

Boundary Recovery -
Constrained

Not always can add boundary
vertices (shared edges)

Boundary Recovery -
Constrained

• Swap edges between adjacent pairs of triangles
• Repeat till recover the boundary

Boundary Recovery -
Constrained

• Swap edges between adjacent pairs of triangles
• Repeat till recover the boundary

Boundary Recovery -
Constrained

• Swap edges between adjacent pairs of triangles
• Repeat till recover the boundary

Boundary Recovery -
Constrained

Not actually Delaunay

Voronoi Diagram
Dual to Delaunay Triangulation
• Vertices → faces
• Voronoi edges =
• perpendicular bisectors
of Delaunay edges

Voronoi Diagram

union of all locations at equal distance from ≥ 2 vertices
• Consists of
– straight lines: vertex bisectors
– vertices: bisector intersections

for given set of vertices

• Diagram partitions space into regions “closer” to
one vertex than other

• Can define using weighted distance function

Voronoi Diagram
for given set of vertices

Imsge from Prof. Joseph S.B. Mitchell’s AMS 345

Historical Origins and Diagrams in
Nature

René Descartes
1596-1650
1644: Gravitational
Influence of stars

Dragonfly wing

Honeycomb
Constrained soap bubbles

Giraffe pigmentation

Slides from Prof. Joseph S.B. Mitchell’s AMS 345 course materials

Historical Origins and Diagrams in
Nature

René Descartes
1596-1650
1644: Gravitational
Influence of stars

Dragonfly wing

Honeycomb
Constrained soap bubbles

Giraffe pigmentation

Slides from Prof. Joseph S.B. Mitchell’s AMS 345 course materials

Voronoi Applications

• Voronoi + point location search: nearest
neighbor queries

• Facility location: Largest empty disk
(centered at a Voronoi vertex)

• Shape description/approximation:
medial axis

Slides from Prof. Joseph S.B. Mitchell’s AMS 345 course materials

Post Office Problem
Post officesQuery point

Starbucks

Slides from Prof. Joseph S.B. Mitchell’s AMS 345 course materials

Voronoi Diagram

Partition the plane into cells:

Voronoi cell of pi is open, convex

“cell complex” Slides from Prof. Joseph S.B. Mitchell’s AMS 345 course materials

Example

Voronoi cell of p

pp

Slides from Prof. Joseph S.B. Mitchell’s AMS 345 course materials

Constructing Voronoi
Diagrams

Given a half plane intersection algorithm…

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu

Constructing Voronoi
Diagrams

Given a half plane intersection algorithm…

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu

Constructing Voronoi
Diagrams

Given a half plane intersection algorithm…

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu

Constructing Voronoi Diagrams

Given a half plane intersection algorithm…

Repeat for each site

Running Time:
O(n2 log n)

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu

Constructing Voronoi Diagrams

• Half plane intersection O(n2 log n)
• Fortune’s Algorithm
– Sweep line algorithm
• Voronoi diagram constructed as horizontal line

sweeps the set of sites from top to bottom
• Incremental construction à maintains portion

of diagram which doesn’t change as we sweep
down

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu

Constructing Voronoi Diagrams

Idea: line sweep?

Constructing Voronoi Diagrams

What is the invariant we are looking for?

Maintain a representation of the locus of points q that are closer
to some site pi above the sweep line than to the line itself (and

thus to any site below the line).

e
v

pi

Sweep Line

q

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu

Constructing Voronoi Diagrams
Which points are closer to a site above the

sweep line than to the sweep line itself?

Sweep Line

pi

q

Beach line: lower envelope of all parabolas

Equidistance

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu

Constructing Voronoi Diagrams
Break points trace out Voronoi edges.

Equidistance

Sweep Line

pi

q

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu

Constructing Voronoi Diagrams
Arcs flatten out as sweep line moves down.

Sweep Line

pi

q

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu

Eventually, the middle arc disappears.
Constructing Voronoi Diagrams

Sweep Line

pi

q

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu

We have detected a circle that is empty (contains
no sites) and touches 3 or more sites.

Constructing Voronoi Diagrams

Sweep Line

pi

q

Voronoi vertex!

Beach Line properties

• Voronoi edges are traced by the break
points

• Voronoi vertices are identified when
two break points fuse
– Decimation of an old arc identifies new

vertex

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu

Fortune’s Algorithm

• Trace out the cells by line sweep
• Maintain and track the beach line
• No need to store parabolas, just store

the participating vertex

• 𝑂(𝑛 log 𝑛) time

Fortune’s Algorithm

Voronoi Diagram and Medial Axis

Voronoi Diagram and Medial Axis

Medial axis vs Voronoi diagram

“On the Evaluation of the Voronoi-Based Medial Axis”
by Adriana Schulz, Francisco Ganacim and Leandro Cruz

http://www.impa.br/~aschulz/
http://www.impa.br/~ganacim/
http://www.impa.br/~lcruz/

Medial axis vs Voronoi diagram

“On the Evaluation of the Voronoi-Based Medial Axis”
by Adriana Schulz, Francisco Ganacim and Leandro Cruz

http://www.impa.br/~aschulz/
http://www.impa.br/~ganacim/
http://www.impa.br/~lcruz/

Looks familiar?

cgal.org

