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Today

• Intro
• Orientation and convex hulls
• Line segment intersection
• Polygons and triangulations
• Voronoi diagrams
• Delaunay triangulations

Credit: most of images and ideas from Dave Mount’s lecture notes
http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf

And David Kirkpatrick’s lectures

http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf


Focus: 2D algorithms

• Typical problem: shortest paths
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Focus: 2D algorithms

• Typical problem: shortest paths

→ graph → Dijkstra algorithm?

Use geometric ideas!→ 
more efficient algorithms



Complexity Analysis

• Big O notation
• Mostly worst case (sometimes average)
• Less attention to constants…



Main objects

Convex hulls

Image from CGAL manual



Main objects

Triangulations



Main objects

Line arrangements

Image from CGAL manual



Main objects

Delaunay triangulations and Voronoi 
diagrams



Main objects

Queries:
• Nearest neighbors?
• Range searches?



CONVEX HULLS



Why do we need 
convex hulls?

• Collision detecton

• Reconstructing convex objects from 
point clouds

• Farthest distance computation



Convexity?

• A set 𝑆 is convex, if 
– for any two points 𝑝, 𝑞 ∈ 𝑆, the line segment 𝑝𝑞 ∈ 𝑆



Convexity?

• A set 𝑆 is convex, if 
– for any two points 𝑝, 𝑞 ∈ 𝑆, the line segment 𝑝𝑞 ∈ 𝑆



Convex hull of a set of points 𝑆 = 

• the smallest convex set that contains 𝑆

𝑆



Convex hull of a set of points 𝑆 = 

• the smallest convex set that contains 𝑆
• intersection of all convex sets containing 𝑆

𝑆

Equivalent definitions
(not obvious, see Carathéodory’s theorem)



CH: Representation

• A sequence of points!



Simplest algorithm

• Ideas?



Simplest algorithm

• Ideas?

• Try every possible 𝑝𝑞 ∈ 𝑆, test if all the 
other points lie on one side

• Complexity?



Better: Gift Wrapping

• Start with some extreme point 𝑝!	
– (e.g. leftmost)
– It belongs to CH

• Choose the next point so that 𝑝"#$𝑝" has all 
other points on the right
– Sort by angle, choose minimum
– 𝑂(𝑛)

• Repeat



Gift Wrapping

• Start with some 
extreme point 𝑝!	

• Choose 𝑝", s.t. 
𝑝"#$𝑝" has all 
other points on 
the right

• Repeat

Image from Wikipedia



Gift Wrapping

Image from Wikipedia



Output-sensitive complexity

𝑂 𝑛ℎ

ℎ - number of vertices on the CH



Graham’s Scan

• Lower hull:
• Store CH vertices in a stack: (… , 𝐻%, 𝐻$)
• Sort points by angle
• Take new point	𝑝, check if the (𝑝, 𝐻$, 𝐻%) 

is counterclockwise
– Yes → push!
– No → pop!



Graham’s Scan



Graham’s Scan

• Complexity?



Divide-and-Conquer CH

• Sort by x
• Split by the median point
• Recursively find CH for left and right parts
• Merge
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Divide-and-Conquer CH

• Sort by 𝑥: 𝑂(𝑛 log 𝑛)
• Split by the median point
• Recursively find CH for left and right parts
• Merge
– Find common tangent line, 𝑂(𝑛)



Today

üIntro
üOrientation and convex hulls
• Line segment intersection
• Polygons and triangulations
• Halfplane intersection and LP
• Voronoi diagrams
• Delaunay triangulations
• Point location

Credit: most of images and ideas from Dave Mount’s lecture notes
http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf

And David Kirkpatrick’s lectures

http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf


Line Segment Intersection

• Max # of intersections: 𝑂(𝑛%)
• Need an output sensitive algorithm!
• 𝐼 - # of intersections



Plane Sweep

• Sweep virtual line
• Stop at events 
– segment started/finished
– intersection

Image from geomalgorithms.com



Plane Sweep
• Presort the endpoints
• How to detect next intersection?

– If two segments are adjacent along the sweep line,
– Check if they intersect to the right of the sweep line



Today

üIntro
üOrientation and convex hulls
üLine segment intersection
• Polygons and triangulations
• Voronoi diagrams
• Delaunay triangulations

Credit: most of images and ideas from Dave Mount’s lecture notes
http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf

And David Kirkpatrick’s lectures

http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf


Polygons and triangulations

• Why?
– Decomposition of complex shapes
• How to compute area of a polygon?

– Art gallery problem
• How many cameras and where?



Art Gallery Problem



Art Gallery Problem



Art Gallery Problem



Art Gallery Problem



Art Gallery Problem
𝑛/3  cameras are 

enough!

Is it optimal?



Triangulations

• How to find a triangulation?



Triangulations

Diagonal: line segment connecting  two 
vertices completely within the polygon



Triangulations

Diagonal: line segment connecting  two 
vertices completely within the polygon

Every polygon has at least 1 diagonal!



Triangulations



Triangulations



Triangulations

• Algorithm: add diagonal, repeat for the 
two new polygons



Triangulations

• Algorithm: add diagonal, repeat for the 
two new polygons
– Bottleneck?
– Complexity?



A better algorithm

• 𝑂 𝑛 log 𝑛
• Input: cyclic list of vertices
– Presorted!

1. Learn how to triangulate monotone polygons
2. Subdivide arbitrary polygon into monotone ones
3. Profit!

https://www.smead.com/hot-topics/organized-to-do-list-1023.asp



Monotone polygons
Polygonal chain is x-monotone ó

every vertical line intersects chain in 
at most 1 point

Polygon is x-monotone ó
can be split into two x-monotone chains



Triangulating monotone 
polygons

• Sort vertices left to right
– Doesn’t require actual sorting (why?)
– Requires 𝑂(𝑛) time

• Line sweep
– Triangulate everything to the left of the 

sweep line
– Discard the triangulated part
– Testing diagonals is now constant-time
• Why?



Triangulating monotone 
polygons

𝑂(𝑛)



Triangulating monotone 
polygons

𝑂(𝑛)

Testing diagonals = 
keeping track of edge 

orientations



Today

üIntro
üOrientation and convex hulls
üLine segment intersection
üPolygons and triangulations
• Voronoi diagrams
• Delaunay triangulations

Credit: most of images and ideas from Dave Mount’s lecture notes
http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf

And David Kirkpatrick’s lectures

http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf


Triangulation Quality:
Delaunay Criterion

circumcircle

Empty Circle Property (definition of Delaunay Triangulation)

No other vertex is contained 
within the circumcircle of any triangle 



Non-Delaunay 
Triangulation 

Delaunay Triangulation



Delaunay Triangulation

ü Exists for any set of vertices* 

ü Is unique*

* up to degenerate cases



FUN FACTS ABOUT DT

Theorem. 
The exterior polygon of the DT is the convex 
hull.
 

DT is the best triangulation you can get in 2D.



THE BEST HOW?

Take all angles, sort = Sequence of numbers
9°, 11°, 12°, 15°, …

DT’s sequence is the last lexicographically



How to test if 

• To test – enough to check pairs of 
triangles sharing common edge



Edge flipping

Start with any triangulation 
1. Find a non-Delaunay edge
2. Flip edge
3. Repeat

Converges to Delaunay



Edge test

𝛼 + 𝛽 > 𝜋
Image modified, Original: https://commons.wikimedia.org/wiki/User:Jespa



Flip

𝛾 + 𝛿 ≤ 𝜋
Image modified, Original: https://commons.wikimedia.org/wiki/User:Jespa



Edge flipping

Start with any triangulation 
1. Find a non-Delaunay edge
2. Flip edge
3. Repeat

Converges to Delaunay
Slow: 𝑶(𝒏𝟐)



Vertex Insertion

Start with a Delaunay mesh covering domain
Insert one vertex at a time 
• Add vertex to mesh 
• Flip edges locally to maintain Delaunay property

Boundary recovery

Expected time: 𝑂(𝑛 log 𝑛)



Vertex Insertion

Start with a Delaunay mesh covering domain
Insert one vertex at a time 
• Add vertex to mesh 
• Flip edges locally to maintain Delaunay property

Boundary recovery

Expected time: 𝑂(𝑛 log 𝑛)



X

Vertex Insertion

• Locate triangle 
containing X

• Subdivide 
triangle

• Recursively 
check adjoining 
triangles to 
ensure empty-
circle property



X

Vertex Insertion

• Locate triangle 
containing X

• Subdivide triangle

• Recursively check 
adjoining triangles 
to ensure empty-
circle property

• Flip if needed
• Very small number 

of flips



),( yx

Starting triangle

Terminal triangle

Locate Triangle

Use Barycentric Coordinates
• Test inside triangle

• If outside - outside which edge?



Vertex Insertion

• Start with Delaunay mesh covering 
domain
– Typically 2 triangle bounding box

• Insert one vertex at a time 
– Add vertex to mesh (locate triangle to split)
– Flip edges (locally) to preserve Delaunay 

property
• Boundary recovery 



Create bounding triangles

Example: Boundary Insertion



Boundary Insertion

Insert vertices using Delaunay method
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Boundary Insertion

Insert vertices using Delaunay method



Boundary Insertion

Insert vertices using Delaunay method



Boundary Insertion

Insert vertices using Delaunay method



Vertex Insertion

• Start with Delaunay mesh covering 
domain
– Typically 2 triangle bounding box

• Insert one vertex at a time 
– Add vertex to mesh (locate triangle to split)
– Flip edges (locally) to preserve Delaunay 

property
• Boundary recovery



Boundary Recovery

Delete outside triangles (if can)
– Delaunay triangulation does not have to 

obey polygon boundary



Boundary Recovery

Delaunay triangulation does not 
always obey polygon boundary



Boundary Recovery

Boundary Conforming Solution 
– Add vertices at intersections
– Repeat if necessary  



Boundary Recovery - 
Constrained

Not always can add boundary 
vertices (shared edges)   



Boundary Recovery - 
Constrained

• Swap edges between adjacent pairs of triangles
• Repeat till recover the boundary



Boundary Recovery - 
Constrained
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• Repeat till recover the boundary



Boundary Recovery - 
Constrained

• Swap edges between adjacent pairs of triangles
• Repeat till recover the boundary



Boundary Recovery - 
Constrained

Not actually Delaunay



Voronoi Diagram
Dual to Delaunay Triangulation 
• Vertices → faces
• Voronoi edges =
•  perpendicular bisectors 
of Delaunay edges



Voronoi Diagram 

union of all locations at equal distance from ≥ 2 vertices
• Consists of 
– straight lines: vertex bisectors
– vertices: bisector intersections

for given set of vertices



• Diagram partitions space into regions “closer” to 
one vertex than other

• Can define using weighted distance function

Voronoi Diagram 
for given set of vertices

Imsge from Prof. Joseph S.B. Mitchell’s AMS 345



Historical Origins and Diagrams in 
Nature

René Descartes
1596-1650 
1644: Gravitational
Influence of stars

Dragonfly wing

Honeycomb
Constrained soap bubbles

Giraffe pigmentation

Slides from Prof. Joseph S.B. Mitchell’s AMS 345 course materials



Historical Origins and Diagrams in 
Nature

René Descartes
1596-1650 
1644: Gravitational
Influence of stars

Dragonfly wing

Honeycomb
Constrained soap bubbles

Giraffe pigmentation

Slides from Prof. Joseph S.B. Mitchell’s AMS 345 course materials



Voronoi Applications

• Voronoi + point location search: nearest 
neighbor queries

• Facility location: Largest empty disk 
(centered at a Voronoi vertex)

• Shape description/approximation: 
medial axis

Slides from Prof. Joseph S.B. Mitchell’s AMS 345 course materials



Post Office Problem
Post officesQuery point

Starbucks

Slides from Prof. Joseph S.B. Mitchell’s AMS 345 course materials



Voronoi Diagram

Partition the plane into cells:

Voronoi cell of pi is open, convex

“cell complex” Slides from Prof. Joseph S.B. Mitchell’s AMS 345 course materials



Example

Voronoi cell of  p

pp

Slides from Prof. Joseph S.B. Mitchell’s AMS 345 course materials



Constructing Voronoi 
Diagrams

Given a half plane intersection algorithm…

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu
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Constructing Voronoi 
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Constructing Voronoi Diagrams

Given a half plane intersection algorithm…

Repeat for each site

Running Time: 
O( n2 log n )

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu



Constructing Voronoi Diagrams

• Half plane intersection O( n2 log n )
• Fortune’s Algorithm
– Sweep line algorithm
• Voronoi diagram constructed as horizontal line 

sweeps the set of sites from top to bottom
• Incremental construction à maintains portion 

of diagram which doesn’t change as we sweep 
down

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu



Constructing Voronoi Diagrams

Idea: line sweep?



Constructing Voronoi Diagrams

What is the invariant we are looking for?

Maintain a representation of the locus of points q that are closer 
to some site pi above the sweep line than to the line itself (and 

thus to any site below the line).

e
v

pi

Sweep Line

q

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu



Constructing Voronoi Diagrams
Which points are closer to a site above the 

sweep line than to the sweep line itself?

Sweep Line

pi

q

Beach line: lower envelope of all parabolas

Equidistance

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu



Constructing Voronoi Diagrams
Break points trace out Voronoi edges.

Equidistance

Sweep Line

pi

q

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu



Constructing Voronoi Diagrams
Arcs flatten out as sweep line moves down.

Sweep Line

pi

q

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu



Eventually, the middle arc disappears.
Constructing Voronoi Diagrams

Sweep Line

pi

q

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu



We have detected a circle that is empty (contains 
no sites) and touches 3 or more sites.

Constructing Voronoi Diagrams

Sweep Line

pi

q

Voronoi vertex!



Beach Line properties

• Voronoi edges are traced by the break 
points

• Voronoi vertices are identified when 
two break points fuse
– Decimation of an old arc identifies new 

vertex

Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu



Fortune’s Algorithm

• Trace out the cells by line sweep
• Maintain and track the beach line
• No need to store parabolas, just store 

the participating vertex

• 𝑂(𝑛 log 𝑛) time



Fortune’s Algorithm



Voronoi Diagram and Medial Axis



Voronoi Diagram and Medial Axis



Medial axis vs Voronoi diagram

“On the Evaluation of the Voronoi-Based Medial Axis”
by Adriana Schulz, Francisco Ganacim and Leandro Cruz

http://www.impa.br/~aschulz/
http://www.impa.br/~ganacim/
http://www.impa.br/~lcruz/


Medial axis vs Voronoi diagram

“On the Evaluation of the Voronoi-Based Medial Axis”
by Adriana Schulz, Francisco Ganacim and Leandro Cruz

http://www.impa.br/~aschulz/
http://www.impa.br/~ganacim/
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Looks familiar?



cgal.org


