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Foview:

Rough Intuition

http:/ /pngimg.com /upload /hammer_PNG3886.png

~~ You can learn a lot
about a shape by
hitting it (lightly)
with a hammer!



Foview:

Spectral Geom etry

What can you learn about its shape
from

vibration frequencies and
oscillation patterns?

Af =\f



““THE COTANGENT LAPLACIAN

0 otherwise



Laplacian 1s sparse!

i Induced by the connectivity of
the triangle mesh.
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How can we use L?

» (useful properties of the Laplacian)

 In Computer Graphics and
Geometry Modeling /Processing

 In Machine Learning



How can we use L?

» (useful properties of the Laplacian)

 In Computer Graphics and
Geometry Modeling /Processing

 In Machine Learning



One Object,Many Interpretations

1 it v ~ w

Lyw=A—D =< —degree(v) ifv=w
0 otherwise

Labeled graph Degree matrix Adjacency matrix Laplacian matrix
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https:/ /en.wikipedia.org /wiki/Laplacian_matrix

Deviation from neighbors



One Object,Many Interpretations
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Decreasing E

Elf] = /S IV/IZdA = - /S F(2)Af(z) dA(2)

Images made by E. Vouga

Dirichlet energy: Measures smoothness



One Object,Many Interpretations

A = Ay

Vibration modes of
surface (not volume!)

http:/ /alice loria.fr /publications /papers /2008 /ManifoldHarmonics / /photo /dragon_mhb

Vibration modes



Key Observation (in discrete case)

50
e 3 2 . p(cotap +cot Bi)  if i =7
ij — 65(601‘) vy -+ cot BZ]) if ¢ ~ ]
otherwise

one-ring area ‘r o

adjacent area r
o if 1 # 3

Can be written in

terms of angles
and areas!



After (More) Trigonom etry

[ = Y iueow Luw when v = w
1 T)~ (6, — 06—,
Uy = 3 g MS—/E(T’()_l(ﬁ e >_£,2) when v ~ w
| 0 otherwise

Image /formula in “Functional Characterization of Instrinsic and Extrinsic Geometry,” TOG 2017 (Corman et al.)

Laplacian only depends on edge lengths



Isometry

Bending without stretching.



Lots of Interpretations

Global isometry

di(z,y) = dao(f(2), f(y))

Local isometry
g1 = J"g2
gl(an) — QQ(f*U,f*w)



Intrinsic Techniques

http:/ /www.revedreams.com/crochet/yarncrochet/nonorientable-crochet/

[sometry invariant



Isometry Invariance: Hope




Isometry Invariance: Reality

“Rig idity”

tp://www.4tnz.com/content/got-to

Few shapes can deform 1sometrlcally



Isometry Invariance: Reality

“Rigl.dl.tyn

~1sometrles?

http:/ /www.4tnz.com/content/got-toilet-paper

Few shapes can deform 1sometrlcally



Useful Fact

Graphical Models 74 (2012) 121-129

Contents lists available at SciVerse ScienceDirect
Graphical Mo

Graphical Models

journal homepage: www.elsevier.com/locate/gmod

Discrete heat kernel determines discrete Riemannian metric

Wei Zeng **, Ren GuoP, Feng Luo®, Xianfeng Gu?

* Department of Compuier Science, Siony Brook University, Stony Brook, NY 11794, USA
® Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA
 Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA

ARTICLE INFO ABSTRACT
Article history: The Laplace-Beltrami operator of a smooth Riemannian manifold is determined by the
Received 5 March 2012 Riemannian metric. Conversely, the heat kemnel constructed from the eigenvalues and

Accepted 28 March 2012

) ! : eigenfunctions of the Laplace-Beltrami operator determines the Riemannian metric. This
Available online 12 April 2012

waork proves the analogy on Euclidean polyhedral surfaces (triangle meshes), that the dis
crete heat kernel and the discrete Riemannian metric (unique up to a scaling) are mutually
gmm Ferngd determined by each other. Given a Euclidean polyhedral surface, its Riemannian metric is

iscrete heal kerne ) represented as edge lengths, satisfying triangle inequalities on all faces. The Laplace-
Discrete Riemannian metric . p . H .
Laplace—Beltrami operator Beltrami operator is formulated using the cotangent formula, where the edge weight is
Legendre duality principle defined as the sum of the cotangent of angles against the edge. We prove that the edge
Discrete curvature Bow lengths can be determined by the edge weights unigue up to a scaling using the variational
approach.

The constructive proof leads to a computational algorithm that finds the unigue metric
on a triangle mesh from a discrete Laplace-Beltrami operator matrix.

Published by Elsevier Inc.

1. Introduction 1.1. Motivation

Laplace—

I role in The Laplace—Beltrami operator on a Riemannian mani-

Gellram OIC el ol ILNGAMENLAL Tole 10 RIEMANNAN_ Se0meLrt

Beltrami operator plays a fundamenta



But
calculations on
q volume are
expensive!

Figure 1: Deformations of a glove (left) and a solid
hand (right) are an illustration of the difference be-
tween boundary and volume isometries.

Image from: Raviv et al. “Volumetric Heat Kernel Signatures.” 3DOR 2010.

Not the same.



Why Study the Laplacian?

« Encodes intrinsic geometry

Edge lengths on triangle mesh, Riemannian metric on
manifold

e Multi-scale

Filter based on frequency

» Geometry through linear algebra

Linear /eigenvalue problems, sparse positive definite
matrices

- Connection to physics



How can we use L?

» (useful properties of the Laplacian)

 In Computer Graphics and
Geometry Modeling /Processing

 In Machine Learning



Eigenhomers

Eigenfunctions of L =
basis of function space on the surface
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Leodll: Another Interpretation of
Eigenfunctions

Find critical points of E|f

http: / /www.math.udel.edu/~driscoll /research /gww1-4.gif

Small eigenvalue: smooth function



Eigenhom ers

Eigenfunctions of L =
The smoothest basis of function space
on the surface
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Example Task:Shape Descriptors

http:/ /liris.cnrs.fr /meshbenchmark /images /fig_attacks.jpg

Pointwise quantity



Descriptor Tasks

 Characterize local geometry
Feature /anomaly detection

» Describe point’s role on

surface
Symmetry detection, correspondence



Descriptors We'’ve Seen Before

K = Ki1R9 = det II

http:/ /www.sciencedirect.com/science /article /pii/S0010448510001983

Gaussian and mean curvature



Desirable Properties

» Distinguishing
Provides useful information about a
point

« Stable

Numerically and geometrically

 Intrinsic N
No dependence on embedding  undesirable!



Intrinsic Descriptors

Invariant under

* Rigid motion

» Bending without
stretching



Intrinsic Descriptor

Theorema Egregium

(“Totally Awesome
Theorem?”):

(Gaussian curvature 1S
intrinsic.

K = Ki1R9 = det II

http:/ /www.sciencedirect.com/science/article /pii/S0010448510001983



End ofthe Story?

Second derivative quantity



Desirable Properties

Incorporates neighborhood
information in an intrinsic fashion

Stable under small deformation



Shape Context
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Shape Context

+ Translational invariance
+ Scale invariance
- Rotational invariance



Shape Context

Compute angles relative to the tangent

+ Translational invariance
+ Scale invariance

+ Rotational invariance

- [sometry invariance



Pocall:

Connection to Physics

ou _
ot
Heat equation

—Au



Intrinsic Observation

Heat diffusion patterns are
not affected if you bend a
surface.



Global Point Signature

“Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation’
Rustamov, SGP 2007



Global Point Signature
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If surface does not self-intersect,
neither does the GPS embedding.

Proof: Laplacian eigenfunctions span L?(X); if GPS(p)=GPS(q), then all
functions on X would be equal at p and q.

GPS(p) = ( b1(0).



Global Point Signature

. a ~ :
v 9‘ ....‘* . ® b " o»tw
n .' - -e ‘-.. -
2 3 4 5 6 7 8 9 10
1 1 1
GPS(p) := (—\/—)\Tqﬁl (p), —\/—)\72@ (p), —\/—)\—3

GPS is isometry-invariant.

Proof: Comes from the Laplacian.

¢3(p),- -



Drawbacks of GPS

» Assumes unique A’s

» Potential for
eigenfunction
“switching”

* Nonlocal feature



New idea:

PDE Applications of the
Laplacian

ou
T A
ot “

hp//gph l°dd/

Heat equation



PDE Applications of the
Laplacian

Image courtesy G. Peyré

Wave equation



PDE Applications of the
Laplacian
) D

| S A8
- ,,-'irr"'r- .‘:w

Use this behavior to
characterize shape.
A T :_:h.' — = —1Au

) Ot?

Wave equation




Solutions in the LB Basis

ou

— = —Au
ot
Heat equation

O

u = Z ane” "t ()

n=0

a4y = /Z wo () - () dA



Heat Kernel Signature (HKS)

O
ky (ZC‘, ZE) — Z G_Ait¢n(x)2
n=0
Continuous function of t €
[0, )

How much heat
diffuses from x to
itself in time t?



Heat Kernel Signature (HKS)

O

ko(,7) = Y €N ()’

“A concise and provably informative multi-scale signature based on heat diffusion”
Sun, Ovsjanikov, and Guibas; SGP 2009



Heat Kernel Signature (HKS)

O

k() = 3 N (2)°

n=0

/gl scaled HKS

———————————

Small t : we ‘see’ small local features
Large t : we ‘see’ large neighborhoods

“A concise and provably informative multi-scale signature based on heat diffusion”
Sun, Ovsjanikov, and Guibas; SGP 2009




Heat Kernel Signature (HKS)

O

ko(,7) = Y €N ()’

n=0
Good properties:

» [sometry-invariant

» Multiscale

» Not subject to switching

* Easy to compute

» Related to curvature at small scales



Heat Kernel Signature (HKS)

O

ko(,7) = Y €N ()’

n=0

Bad properties:

« [ssues remain with repeated
eigenvalues

» Theoretical guarantees require
(near-)isometry



Wave Kernel Signature (W KS)

T — o0

1t
WKS(E,z) = lim T/o (e, )| di — Zgbn

Average probability
over time that particle
is at x.

[nitial energy
distribution

“The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis”
Aubry, Schlickewei, and Cremers; ICCV Workshops 2012



Wave Kernel Signature (W KS)

WKS(E,z) = hm —/ Ve (x, )] dt = Zgbn *fe (A




Wave Kernel Signature (W KS)

WKS(E,z) = lim —/ [ Yg(z,t)|? dt = Zgbn *fe()

T—)oo

Good properties:
- [Similar to HKS]
» Localized in frequency

e Stable under some non-isometric
deformation

» Some multi-scale properties



Wave Kernel Signature (W KS)

WKS(E,z) = lim —/ [ Yg(z,t)|? dt = Zgbn *fe()

T—)oo

Bad properties:
- [Similar to HKS]

» Can filter out large-scale features



Many Others

Lots of spectral descriptors
in terms of Laplacian
eigenstructure.



Combimation with Machine
Learning

p(z) =) f(A)dr(x)

Fig. 3. Correspondences computed on TOSCA shapes using the spectral
matching algorithm [30]. Shown are the matches with geodesic distance distortion
below 10 percent of the shape diameter, from left to right: HKS (34 matches), WKS
(30 matches), and trained descriptor (54 matches).

Learning Spectral Descriptors for Deformable Shape Correspondence
Litman and Bronstein; PAMI 2014



Application: Feature Extraction

Maxima of k,(x,x) over x for large t.

A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion
Sun, Ovsjanikov, and Guibas; SGP 2009

Feature points



Preview: Correspondence

http:/ /graphics.stanford.edu/projects /1gl /papers /ommg-opimhk-10 /ommg-opimhk-
10.pdf
http:/ /www.cs.princeton.edu/~funk/sigll.pdf

1 Y .



Descriptor Matching

Simply match closest points
in descriptor space.



Descriptor Matching Problem

Symmetry



Heat Kernel Map

Heat Kernel Map kM (p, x)

. 0.3
time ¢

HKM,(z,t) := ki(p, )

How much heat ditfuses from p to x in time t?

One Point Isometric Matching with the Heat Kernel
Ovsjanikov et al. 2010



Heat Kernel Map

Heat Kernel Map kM (p, x)

t

HKM,(z,t) := ki(p, )

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel /f/l/ /l/
Ovsjanikov et al. 2010



Selt-Map: Symm etry

Intrinsic
symmetries become
extrinsic in GPS
space!

Global Intrinsic Symmetries of Shapes
Ovsjanikov, Sun, and Guibas 2008

“Discrete intrinsic” symmetries



All Overthe Place

Laplacians appear
everywhere in shape

analysis and geometry
processing.




Biharmonic Distances
2
d,(p.q) = z (¢:(p) . $:(q))

2
[

“Biharmonic distance”
Lipman, Rustamov & Funkhouser, 2010



Biharm onic Distances

dp(p, q):

|9p — 9qll2, where Ag,

“Biharmonic distance”
Lipman, Rustamov & Funkhouser, 2010



Geodesic Distances

dg(p,q) = lim \/ —4tlog ky,p(q)

“V aradhan, S
Theorem”

“Geodesics in heat”
Crane, Weischedel, and Wardetzky; TOG 2013



Finding geodesics

Algorithm 1 The Heat Method

I. Integrate the heat flow u = Aw for time .
I1. Evaluate the vector field X = —Vu/|Vu
III. Solve the Poisson equation A¢p = V - X,

Crane, Weischedel, and Wardetzky. “Geodesics in Heat.” TOG, 2013.



Mean Curvature Flow

/]




Mean Curvature Flow

“Implicit fairing of irregular meshes using diffusion and curvature flow”
Desbrun et al., 1999



Mean Curvature Flow

TR

s

“Implicit fairing of irregular meshes using diffusion and curvature flow”
Desbrun et al., 1999



Recall:




Another fairing

Screened Poisson Equation
E(G) = &?||G—F|]* +||ViuG — BV F|

2




Useful Technique

0
a—{ = —Af (heat equation)
of . o
— M 5 = L f{ after discretization in space
— M fT; Jo = L fr after time discretization
t

Choice: Evaluate at time T

Unconditionally stable, but not necessarily accurate for large T

Implicit time stepping



Param eterization: Harm onic Map

(@ Original mesh til (b) Harmonic embedding
Recall:
Mean value principl

“Multiresolution analysis of arbitrary meshes”
Eck et al., 1995 (and many others!)



Others

» Shape retrieval from

Laplacian eigenvalues
“Shape DNA” [Reuter et al., 2006]

* Quadrangulation
Nodal domains [Dong et al., 2006 ]

e Surface deformation

“As-rigid-as-possible” [Sorkine & Alexa,
2007]




How can we use L?

» (useful properties of the Laplacian)

 In Computer Graphics and
Geometry Modeling /Processing

» In Machine Learning



Semi1-Supervised Learning

“Semi-supervised learning using Gaussian fields and harmonic functions”
Zhu, Ghahramani, & Lafferty 2003




Semi1-Supervised Technique

Given: / labeled points (21,91), ..., (ze,ye);y; € {0,1}
u unlabeled points xpi1,..., Tl < u

min 53w (£4) = £)°

s.t. f(k) fixed Vk < ¢

O =~ N w b oo

| I
N [N



Related Method

« Step 1:
Build k-NN graph

« Step 2:
Compute p smallest Laplacian eigenvectors

* Step 3:
Solve semi-supervised problem in
subspace

“Using Manifold Structure for Partially Labelled Classification”
Belkin and Niyogi; NIPS 2002



Manifold Regularization

Regularized learning: arg min — F(x:),v:) + 7| sz

17112 = / |Vf(@)|2de~ fTLf

“Manifold Regularization:

A Geometric Framework for Learning from Labeled and Unlabeled Examples”
Belkin, Niyogi, and Sindhwani; JMLR 2006



Examples of Manifold Regularization

. Laplacian—regularized least squares (LapRLS)

Oth
arg}rggll )? + || f|I7 + Other|[f]

. Lapla(nan support vector machine (LapSVM)

arg min Zmax (0,1 =i f(z:)) + |l flI7 + Other][]

Laplacian SVM

1.5 1.5 1.5
“On Manifold Regularization” || ¥y = | e, | 0 e,
Belkin, Niyogi, Sindhwani; AISTATS 2005 o-*- BNy g o RS g L RS
0.5 Eab -05 £ b 8° 05 B




Diffusion Maps

Embedding from first k eigenvalues /vectors:

\Ijt(aj) = (Xi% (ZL‘), A§¢2($)7 RO )‘ wk( ))

Roughly:
|P(x) — W, (y)| is probability that x, y diffuse to the same point in time t.

I Vs i J A"K-'B.J’\ |
L1, “e—3 1% % )
B ¥ .", & ‘__i N _{\_' Y
I \ : \ L',;‘;/'\VL/’/} {
- 3 ,':' )I ) E -
i ) MR Vass
] - [_Jp.‘ p : 5o 2
- ] -’ Z g A
L . iR = ‘\,,: f
— e . % ¥ v d -
I At 4 Robust to

sampling and
noise

“Diffusion Maps”

Coifman and Lafon; Applied and Computational Harmonic Analysis, 2006

Image from http://users.math.yale.edu /users/ gw289 / CDSC 445 545 / Shdes /CPSC445%20-%20Topic%2010%20-

e o o~ e . v o o~ =



http://users.math.yale.edu/users/gw289/CpSc-445-545/Slides/CPSC445%20-%20Topic%2010%20-%20Diffusion%20Maps.pdf
http://users.math.yale.edu/users/gw289/CpSc-445-545/Slides/CPSC445%20-%20Topic%2010%20-%20Diffusion%20Maps.pdf
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