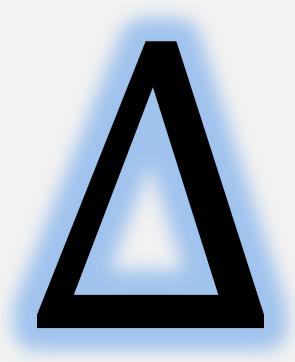
IFT 6113 DISCRETE LAPLACIAN

http://tiny.cc/ift6113

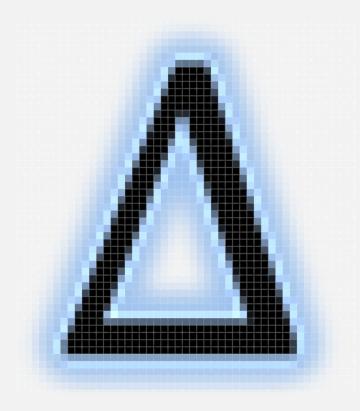


Mikhail Bessmeltsev

Some slides by Justin Solomon

IFT 6113 DISCRETE LAPLACIAN

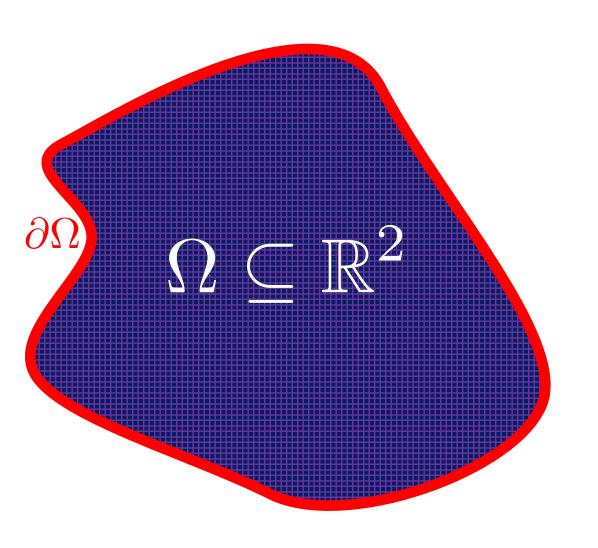
http://tiny.cc/ift6113



Mikhail Bessmeltsev

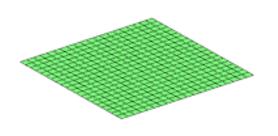
Recall:

Planar Region



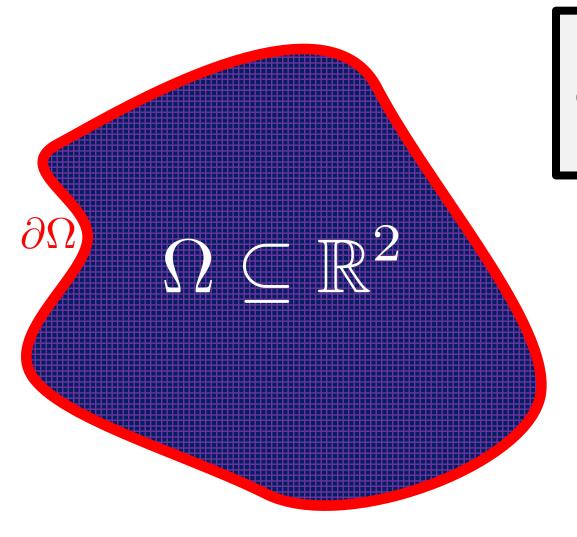
Wave equation:

$$\frac{\partial^2 u}{\partial t^2} = \Delta u$$
$$\Delta := \sum_{i} \frac{\partial^2}{\partial x_i^2}$$



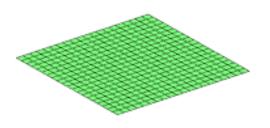
Recall:

Planar Region



How to discretize on a mesh?

$$\Delta := \sum \frac{\partial^2}{\partial x^2}$$

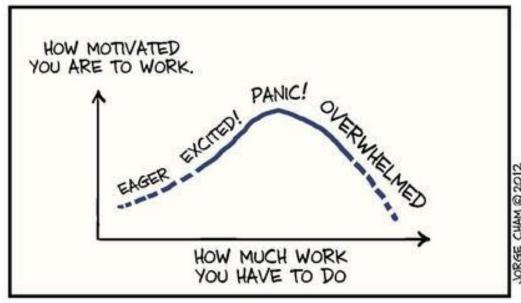


Discretizing the Laplacian

$$\Delta f = \frac{1}{\sqrt{|g|}} \partial_i \left(\sqrt{|g|} g^{ij} \partial_j f \right)$$

BRACE YOURSELVES

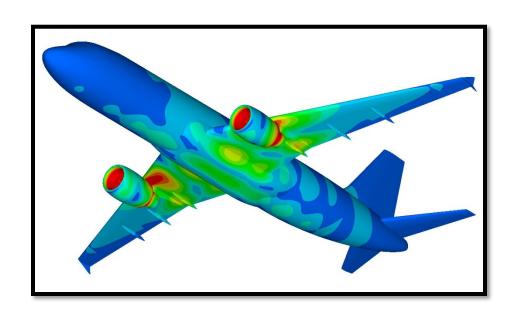
- A2 out, due **Oct 21**st
- Project proposal due: Oct 20th Oct 25th
- Paper title due: Oct 29th



Today's Approach

First-order Galerkin

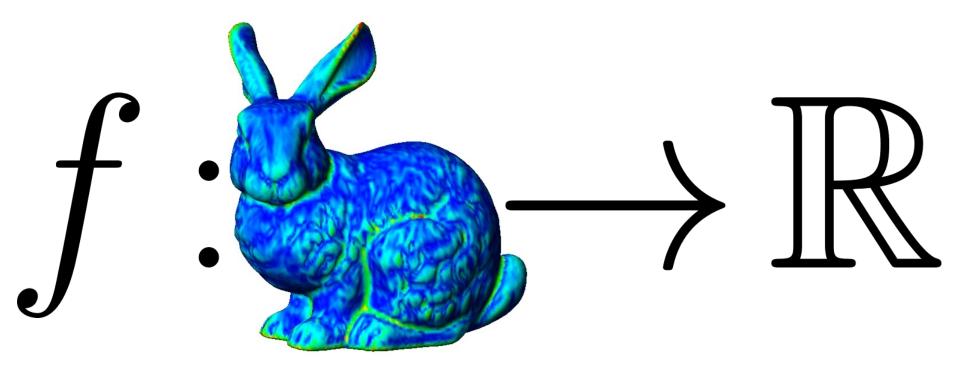
Finite element method (FEM)



TODO: Discretize

- □A function on a mesh
- ☐Gradient of a function
- □ Laplacian operator

Scalar Functions



http://www.ieeta.pt/polymeco/Screenshots/PolyMeCo_OneView.jpg

Map points to real numbers

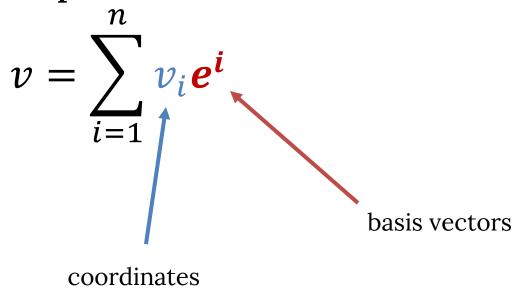
Discrete Scalar Functions

$$f \in \mathbb{R}^{|V|}$$

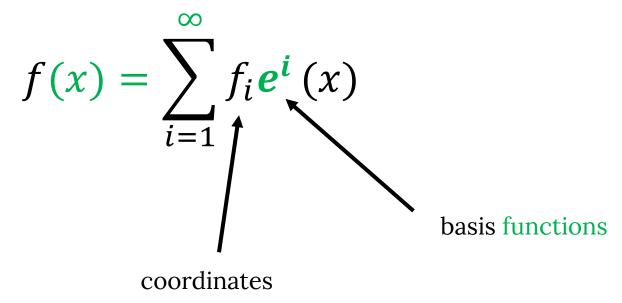
http://www.ieeta.pt/polymeco/Screenshots/PolyMeCo_OneView.jpg

Map vertices to real numbers

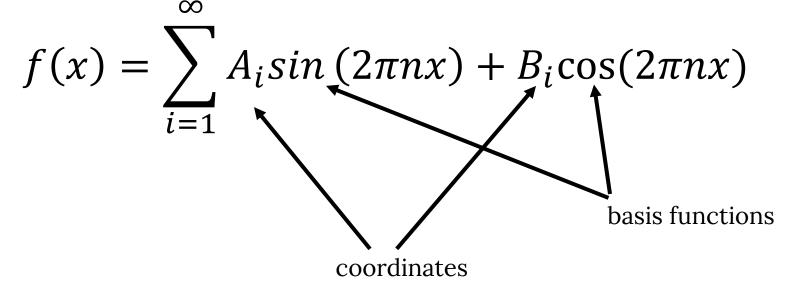
In vector space we can find



Can we do the same for functions?



For example, Fourier basis for $f: [0,1] \to \mathbb{R}$



$$f \in \mathbb{R}^{|V|}$$
$$f(x) = \sum_{i=1}^{|V|} ?i$$

First Order Finite Elements

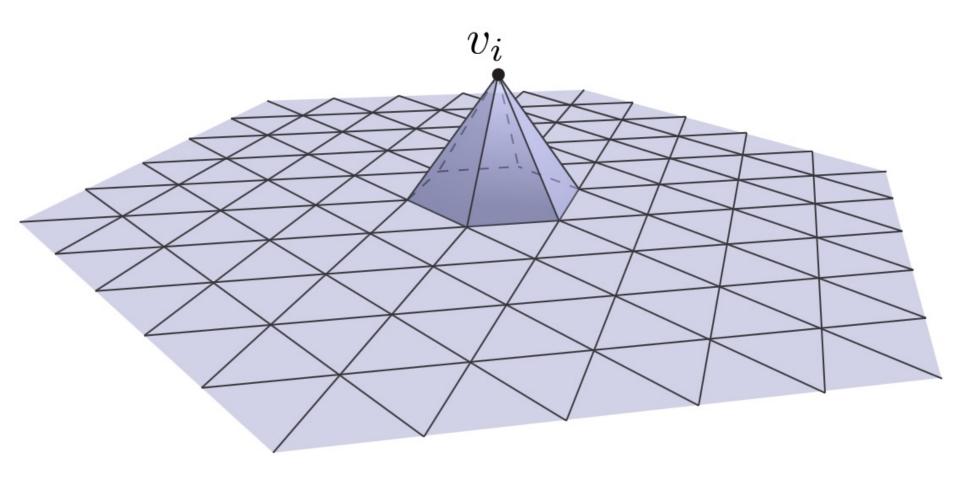
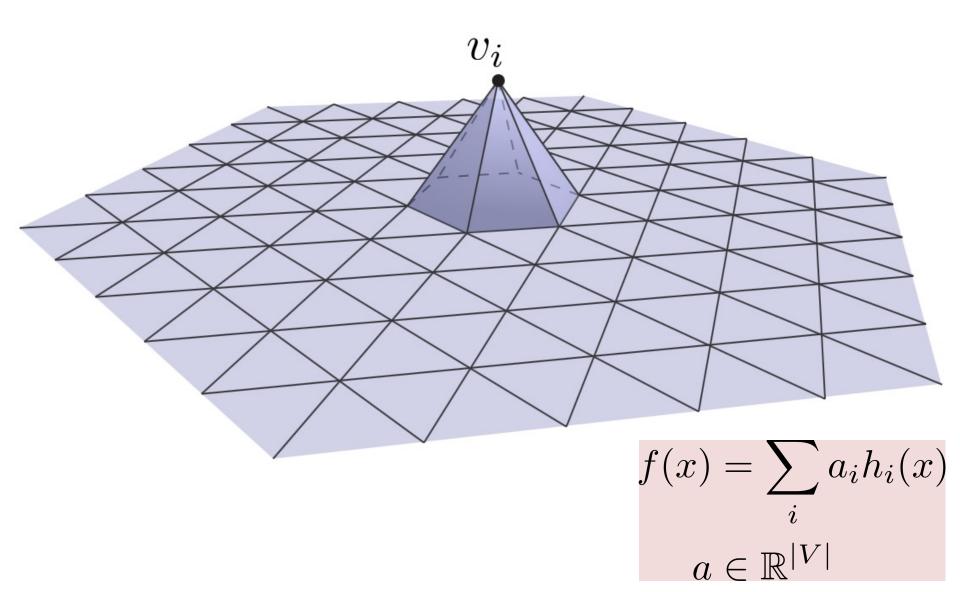


Image courtesy K. Crane, CMU

One "hat function" per vertex

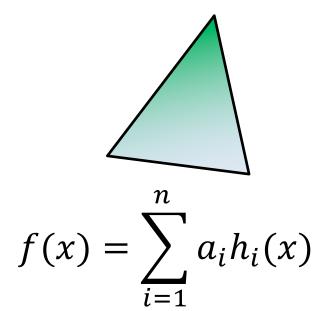
Representing Functions



TODO: Discretize

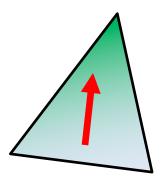
- ✓ A function on a mesh
- ☐Gradient of a function
- □ Laplacian operator

Gradient discretization



 ∇f ?

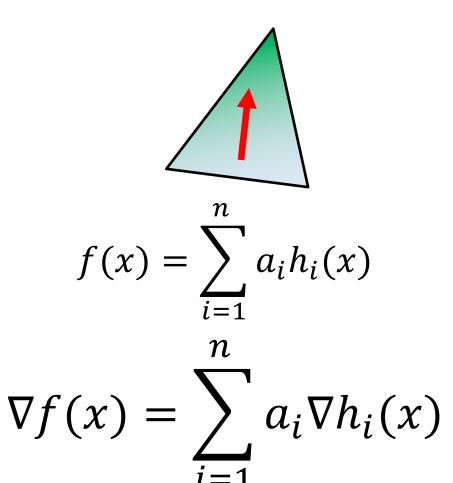
Gradient discretization



 ∇f

One vector per face

Gradient discretization



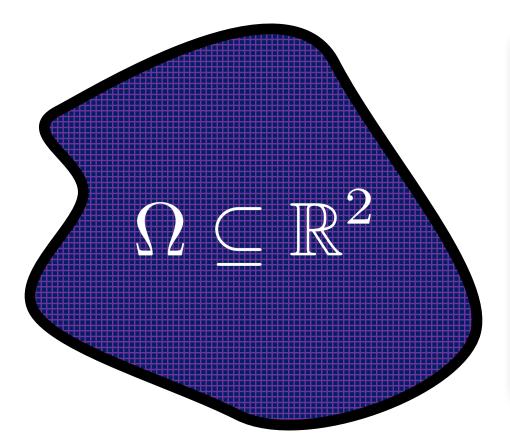
One vector per face

TODO: Discretize

- ✓ A function on a mesh
- **←**Gradient of a function
- □ Laplacian operator

Integration by Parts to the Rescue

$$\int_{\Omega} f \Delta g \, dA = \text{boundary terms} - \int_{\Omega} \nabla f \cdot \nabla g \, dA$$



INTEGRATION BY PARTS:

GIVEN A PROBLEM OF THE FORM:

$$\int f(x)g(x)dx = ?$$

CHOOSE VARIABLES U AND V SUCH THAT:

$$u = f(x)$$

 $dv = g(x) dx$

NOW THE ORIGINAL EXPRESSION BECOMES:

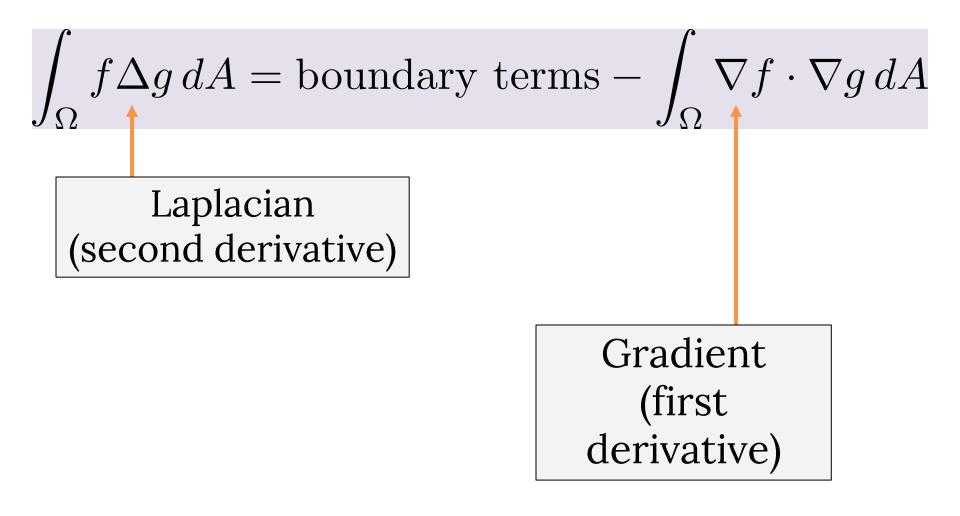
WHICH DEFINITELY LOOKS EASIER.

ANYWAY, I GOTTA RUN.

BUT GOOD LUCK!

https://xkcd.com/1201/

Slightly Easier?



Galerkin FEM Approach

$$g = \Delta f$$

Galerkin FEM Approach

$$g = \Delta f \qquad \Rightarrow \langle g, \psi \rangle = \langle \Delta f, \psi \rangle$$

For any **test** function ψ

Galerkin FEM Approach

$$g = \Delta f$$

$$\Longrightarrow \int \psi g \, dA = \int \psi \Delta f \, dA$$

For any **test** function ψ

Galerkin FEM Approach

$$g = \Delta f$$

$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = -\int (\nabla \psi \cdot \nabla f) \, dA$$

For any **test** function ψ

Galerkin FEM Approach

$$g = \Delta f$$

$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = -\int (\nabla \psi \cdot \nabla f) \, dA$$

If we have a function basis $\{\psi_i\}$

$$f = \sum_{i=0}^{\infty} a_i \psi_i$$

$$g = \sum_{i=0}^{\infty} b_i \psi_i$$

Galerkin FEM Approach

We only need to test $\psi = \psi_i$

$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = -\int (\nabla \psi \cdot \nabla f) \, dA$$

If we have a function basis $\{\psi_i\}$

$$f = \sum_{i=0}^{\infty} a_i \psi_i$$

$$g = \sum_{i=0}^{\infty} b_i \psi_i$$

Galerkin FEM Approach

$$g = \Delta f$$

$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = -\int (\nabla \psi \cdot \nabla f) \, dA$$

Approximate
$$f \approx \sum_{i} a_{i} \psi_{i}$$
 and $g \approx \sum_{i} b_{i} \psi_{i}$

$$\Longrightarrow$$
 Linear system $\sum_{i} b_i \langle \psi_i, \psi_j \rangle = -\sum_{i} a_i \langle \nabla \psi_i, \nabla \psi_j \rangle$

Galerkin FEM Approach

$$g = \Delta f$$

$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = -\int (\nabla \psi \cdot \nabla f) \, dA$$

Approximate
$$f \approx \sum_{i} a_{i} \psi_{i}$$
 and $g \approx \sum_{i} b_{i} \psi_{i}$

$$\Longrightarrow$$
 Linear system $\sum_{i} b_i \langle \psi_i, \psi_j \rangle = -\sum_{i} a_i \langle \nabla \psi_i, \nabla \psi_j \rangle$

Mass matrix:
$$M_{ij} := \langle \psi_i, \psi_j \rangle$$

Stiffness matrix:
$$L_{ij} := \langle \nabla \psi_i, \nabla \psi_j \rangle$$

$$\Longrightarrow Mb = La$$

Which basis?

Important to Note

Not the only way

to approximate the Laplacian operator.

- Divided differences
- Higher-order elements
- Boundary element methods
- Discrete exterior calculus

•

1² Dual of a Function

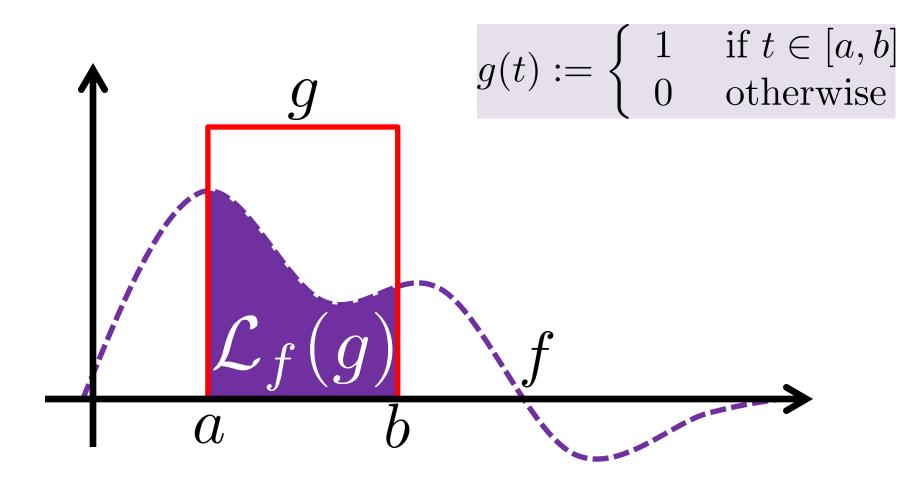
Function
$$f:M o \mathbb{R}$$

Operator
$$\mathcal{L}_f: L^2(M) o \mathbb{R}$$

$$\mathcal{L}_f[g] := \int_M f(x)g(x) \, dA$$

Test function

Observation



Can recover function from dual

Dual of Laplacian

Space of test functions (no boundary!):
$$\{g\in L^\infty(M): g|_{\partial M}\equiv 0\}$$

$$\mathcal{L}_{\Delta f}[g] = \int_{M} g \Delta f \, dA$$
$$= -\int_{M} \nabla g \cdot \nabla f \, dA$$

Use Laplacian without evaluating it!

Galerkin's Approach

Choose one of each:

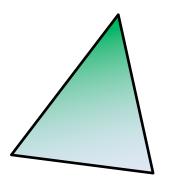
•Function space

Test functions

Often the same!

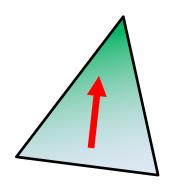
One Derivative is Enough

$$\mathcal{L}_{\Delta f}[g] = -\int_{M} \nabla g \cdot \nabla f \, dA$$



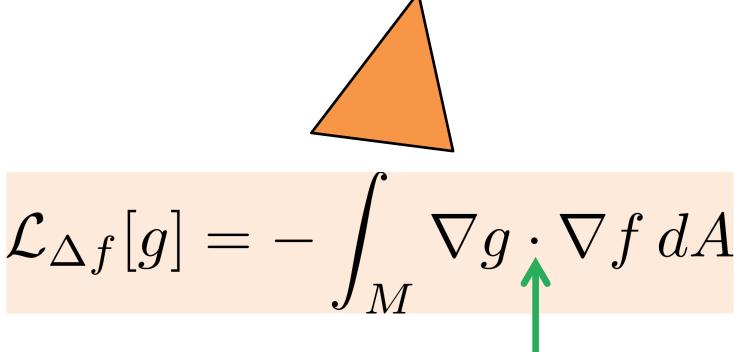
$$\mathcal{L}_{\Delta f}[g] = -\int_{M} \nabla g \cdot \nabla f \, dA$$

Linear combination of hats (piecewise linear)

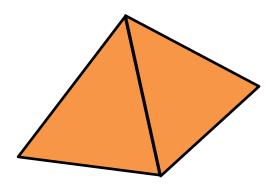


$$\mathcal{L}_{\Delta f}[g] = -\int_{M} \nabla g \cdot \nabla f \, dA$$

One vector per face

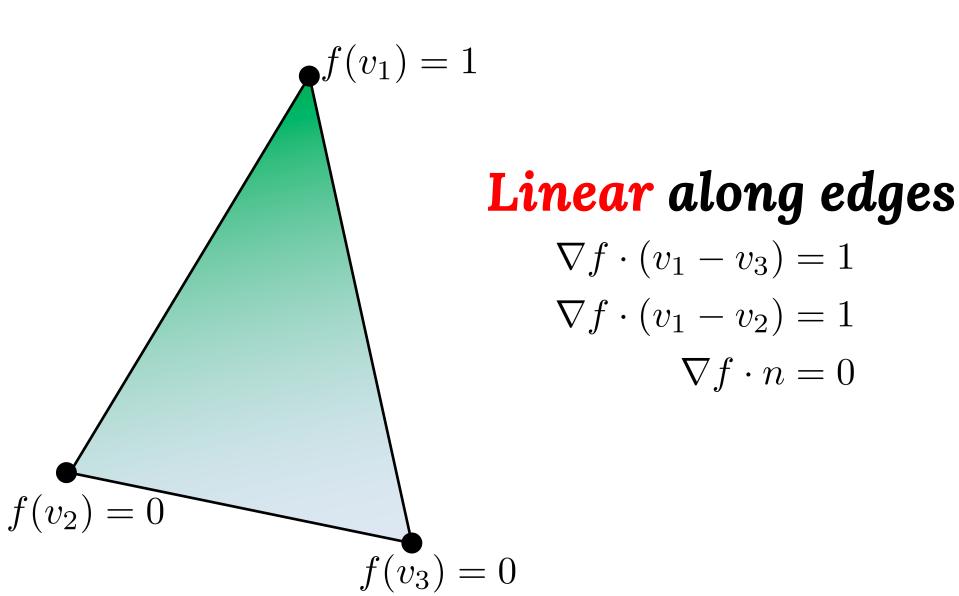


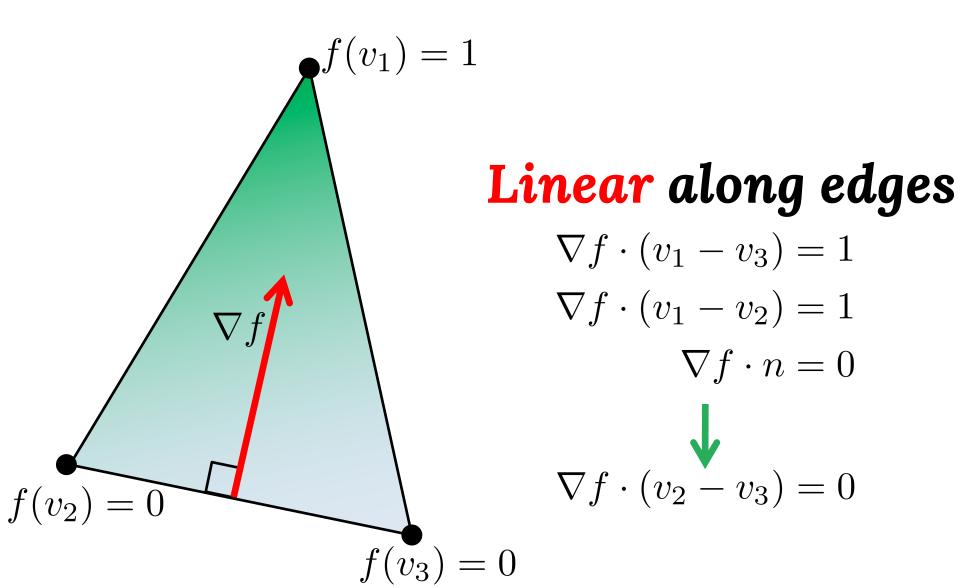
One scalar per face

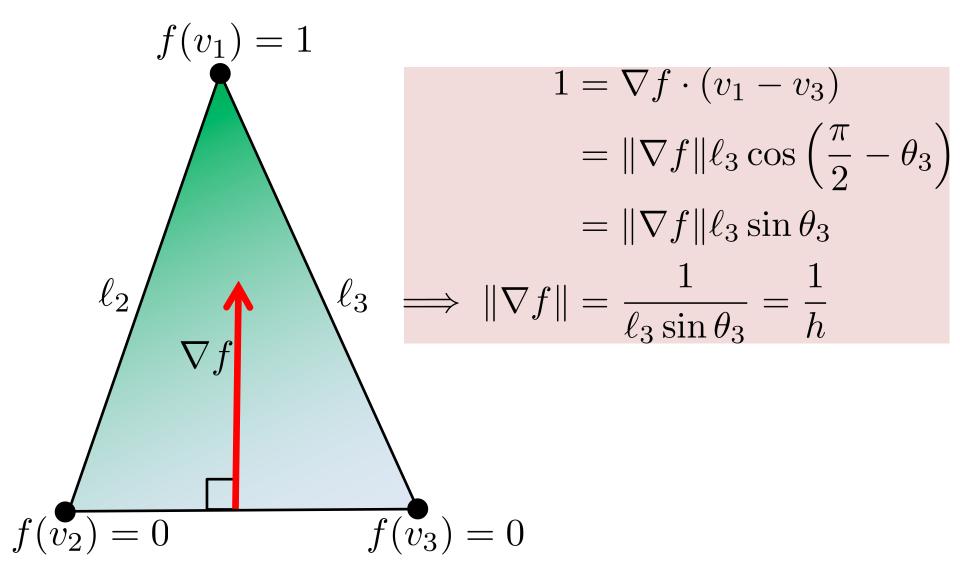


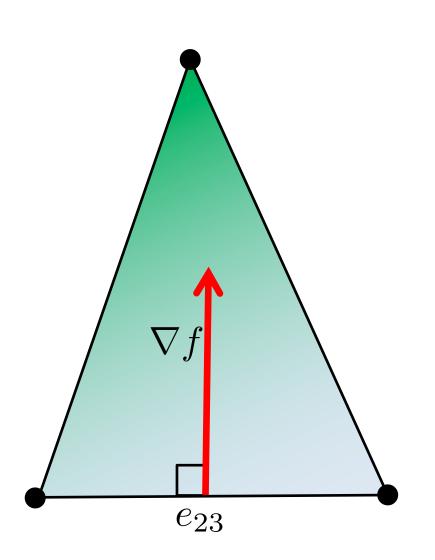
$$\mathcal{L}_{\Delta f}[g] = -\int_{M} \nabla g \cdot \nabla f \, dA$$

Sum scalars per face multiplied by face areas









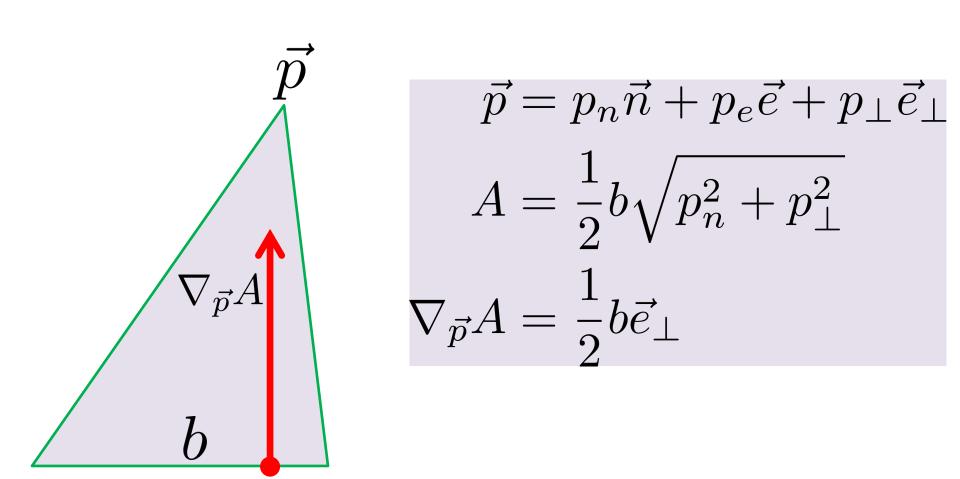
$$\|\nabla f\| = \frac{1}{\ell_3 \sin \theta_3} = \frac{1}{h}$$

$$\nabla f = \frac{e_{23}^{\perp}}{2A}$$

Length of e_{23} cancels "base" in A

Recall:

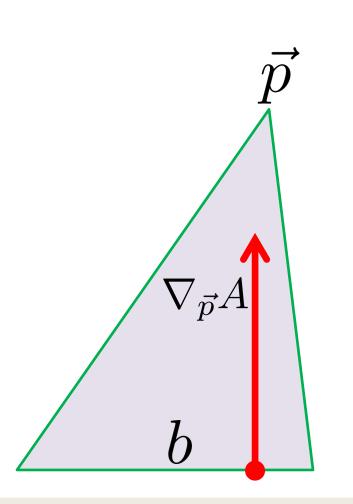
Single Triangle: Complete



Similar expression

Recall:

Single Triangle: Complete



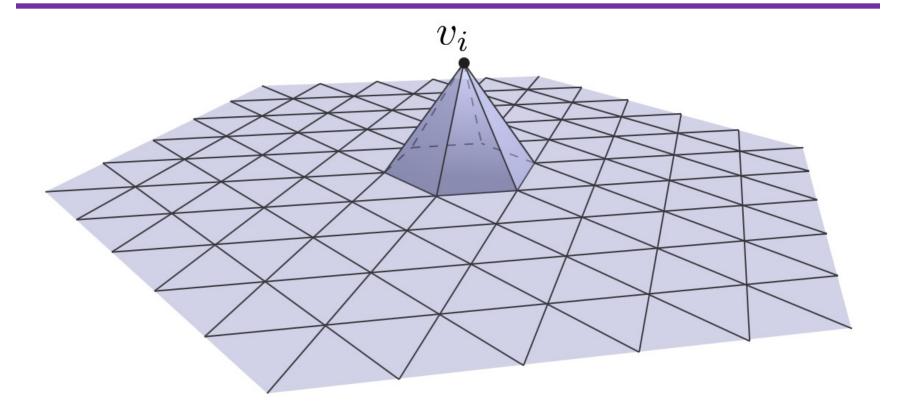
$$ec{p} = p_n ec{n} + p_e ec{e} + p_\perp ec{e}_\perp$$
 $A = \frac{1}{2} b \sqrt{p_n^2 + p_\perp^2}$
 $\nabla_{\vec{p}} A = \frac{1}{2} b \vec{e}_\perp$

$$\nabla f = \frac{e_{23}^\perp}{2A} = \frac{\vec{e}_\perp}{b} = \frac{\nabla_{\vec{p}} A}{A}$$

Similar expression

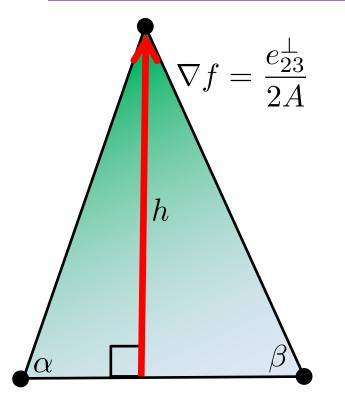
What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = -\int_{M} \nabla g \cdot \nabla f \, dA$$



What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = -\int_{M} \nabla g \cdot \nabla f \, dA$$



Case 1: Same vertex

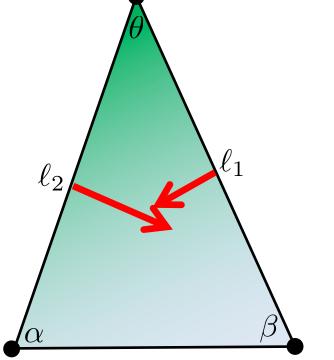
$$\int_{T} \langle \nabla f, \nabla f \rangle dA = A \|\nabla f\| 2$$

$$= \frac{A}{h^{2}} = \frac{b}{2h}$$

$$= \frac{1}{2} (\cot \alpha + \cot \beta)$$

What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = -\int_{M} \nabla g \cdot \nabla f \, dA$$



Case 2: Different vertices

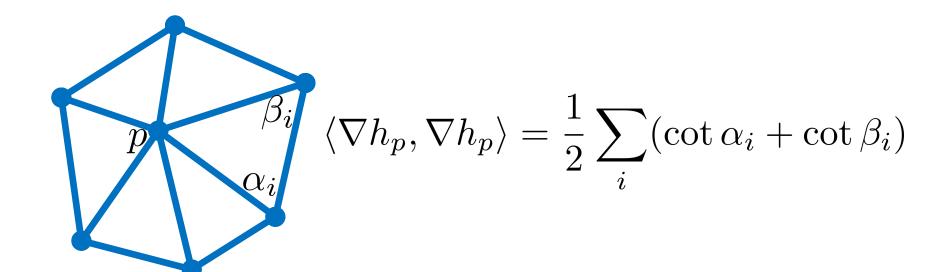
$$\int_{T} \langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle \, dA = A \langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle$$

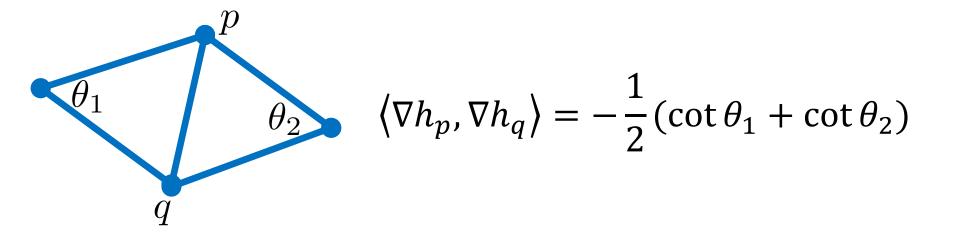
$$= \frac{1}{4A} \langle e_{31}^{\perp}, e_{12}^{\perp} \rangle = -\frac{\ell_{1} \ell_{2} \cos \theta}{4A}$$

$$= \frac{-h^{2} \cos \theta}{4A \sin \alpha \sin \beta} = \frac{-h \cos \theta}{2b \sin \alpha \sin \beta}$$

$$= -\frac{\cos \theta}{2 \sin(\alpha + \beta)} = -\frac{1}{2} \cot \theta$$

Summing Around a Vertex

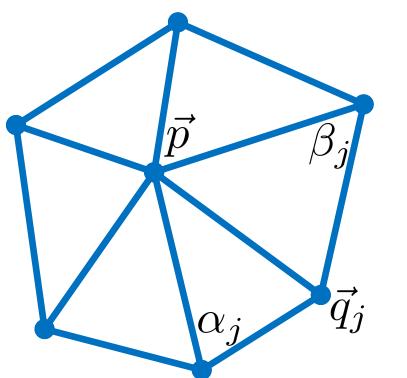




Recall:

Summing Around a Vertex

$$\nabla_{\vec{p}} A = \frac{1}{2} \sum_{j} (\cot \alpha_j + \cot \beta_j) (\vec{p} - \vec{q}_j)$$



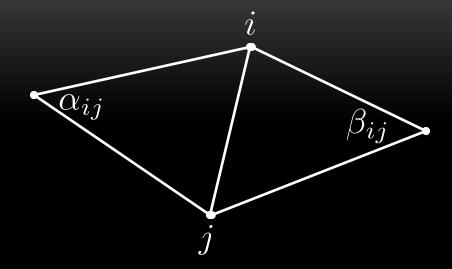
$$\nabla_{\vec{p}} A = \frac{1}{2} ((\vec{p} - \vec{r}) \cot \alpha + (\vec{p} - \vec{q}) \cot \beta)$$

Same weights up to sign!

THE COTANGENT LAPLACIAN

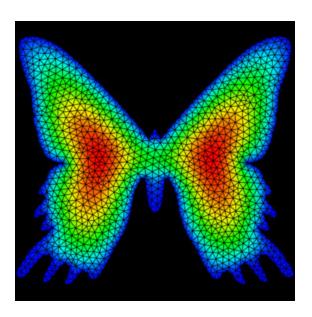
$$L_{ij} = \begin{cases} \frac{1}{2} \sum_{i \sim k} (\cot \alpha_{ik} + \cot \beta_{ik}) & \text{if } i = 0 \\ -\frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) & \text{if } i = 0 \\ 0 & \text{other} \end{cases}$$

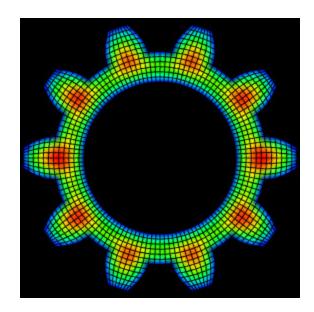
if i = jif $i \sim j$ otherwise



Poisson Equation

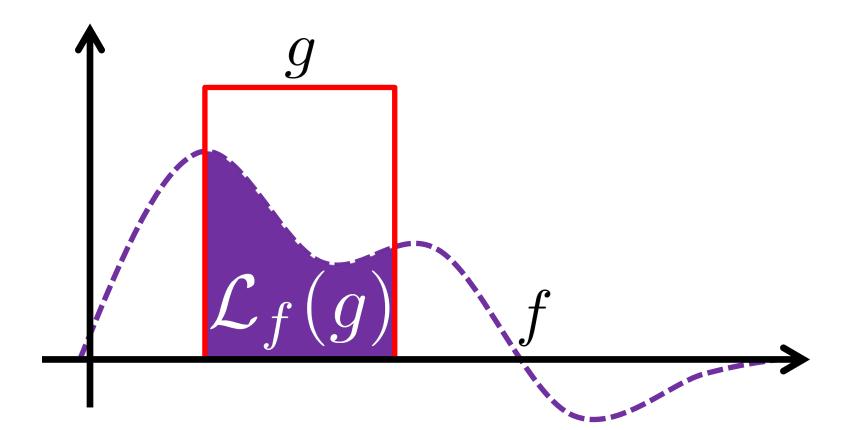
$$\Delta f = g$$





Weak Solutions

$$\int_{M} \phi \Delta f \, dA = \int_{M} \phi g \, dA \, \forall \text{ test functions } \phi$$



FEM Hat Weak Solutions

$$\int_{M} h_{i} \Delta f \, dA = \int_{M} h_{i} g \, dA \, \forall \text{ hat functions } h_{i}$$

$$\int_{M} h_{i} \Delta f \, dA = -\int_{M} \nabla h_{i} \cdot \nabla f \, dA$$

$$= -\int_{M} \nabla h_{i} \cdot \nabla \sum_{j} a_{j} h_{j} \, dA$$

$$= -\sum_{j} a_{j} \int_{M} \nabla h_{i} \cdot \nabla h_{j} \, dA$$

$$= \sum_{j} L_{ij} a_{j}$$

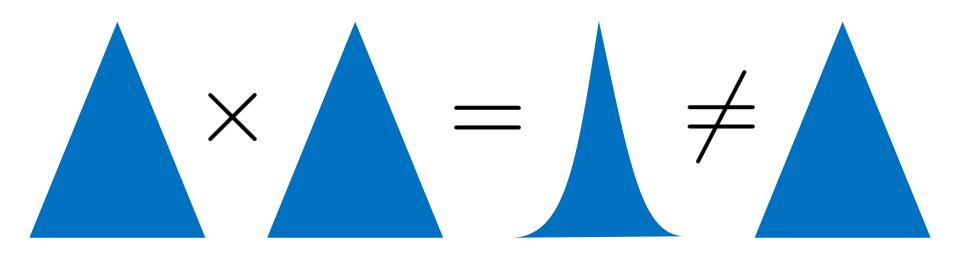
Stacking Integrated Products

$$\begin{pmatrix} \int_{M} h_{1} \Delta f \, dA \\ \int_{M} h_{2} \Delta f \, dA \\ \vdots \\ \int_{M} h_{|V|} \Delta f \, dA \end{pmatrix} = \begin{pmatrix} \sum_{j} L_{1j} a_{j} \\ \sum_{j} L_{2j} a_{j} \\ \vdots \\ \sum_{j} L_{|V|j} a_{j} \end{pmatrix} = L\vec{a}$$

Multiply by Laplacian matrix!

Problematic Right-Hand Side

$$\int_{M} h_{i} \Delta f \, dA = \int_{M} h_{i} g \, dA \, \forall \text{ hat functions } h_{i}$$



Product of hats is quadratic

A Few Ways Out

• Just do the integral "Consistent" approach

• Approximate some more

· Redefine g

A Few Ways Out

Just do the integral

"Consistent" approach

• Approximate some more

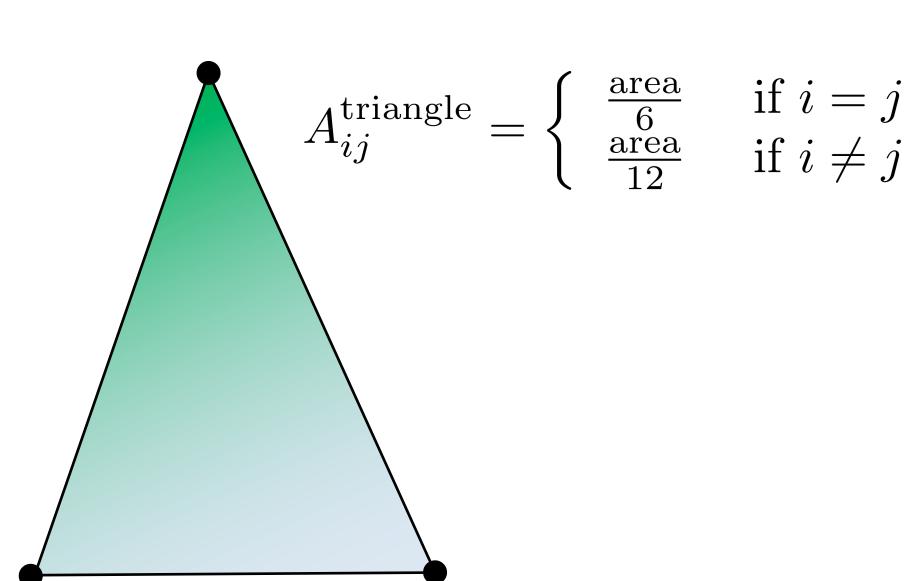
· Redefine g

The Mass Matrix

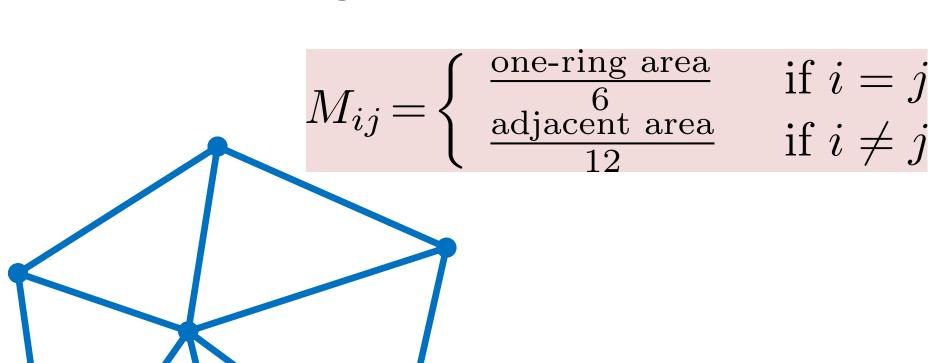
$$A_{ij} := \int_{M} h_i h_j \, dA$$

- Diagonal elements:
 Norm of h_i
- Off-diagonal elements: Overlap between h_i and h_j

Consistent Mass Matrix



Non-Diagonal Mass Matrix



Properties of Mass Matrix

- Rows sum to one ring area
 / 3
- Involves only vertex and its neighbors
- Partitions surface area

Issue: Not trivial to invert!

Use for Integration

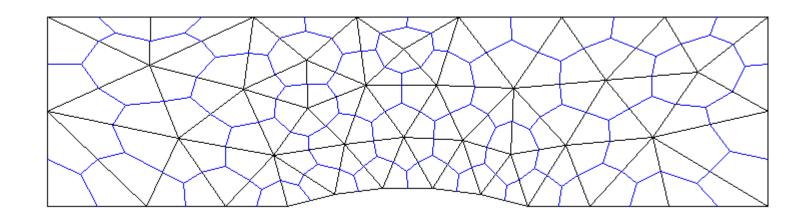
$$\int_{M} f = \int_{M} \sum_{j} a_{j} h_{j} (\cdot 1)$$

$$= \int_{M} \sum_{j} a_{j} h_{j} \sum_{i} h_{i}$$

$$= \sum_{ij} A_{ij} a_{j}$$

$$= \mathbf{1}^{T} A \vec{a}$$

Lumped Mass Matrix



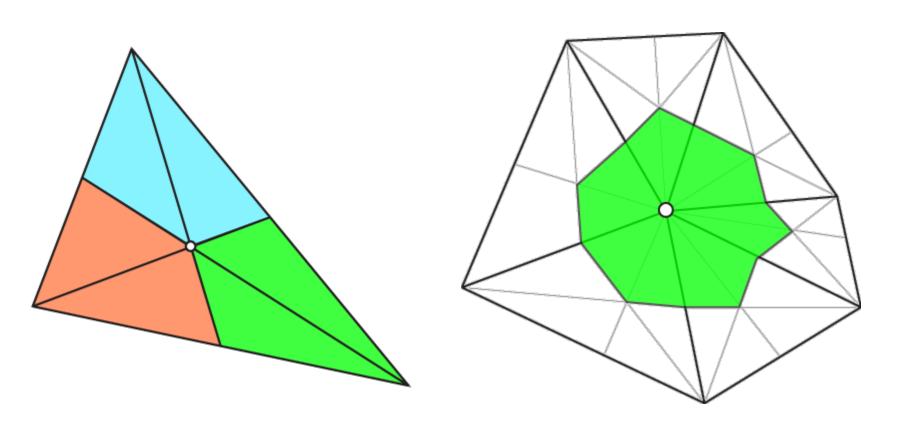
$$\tilde{a}_{ii} := \text{Area}(\text{cell } i)$$

Won't make big difference for smooth functions

http://users.led-inc.eu/~phk/mesh-dualmesh.htm

Approximate with diagonal matrix

Simplest: Barycentric Lumped Mass



http://www.alecjacobson.com/weblog/?p=1146

Area/3 to each vertex

Ingredients

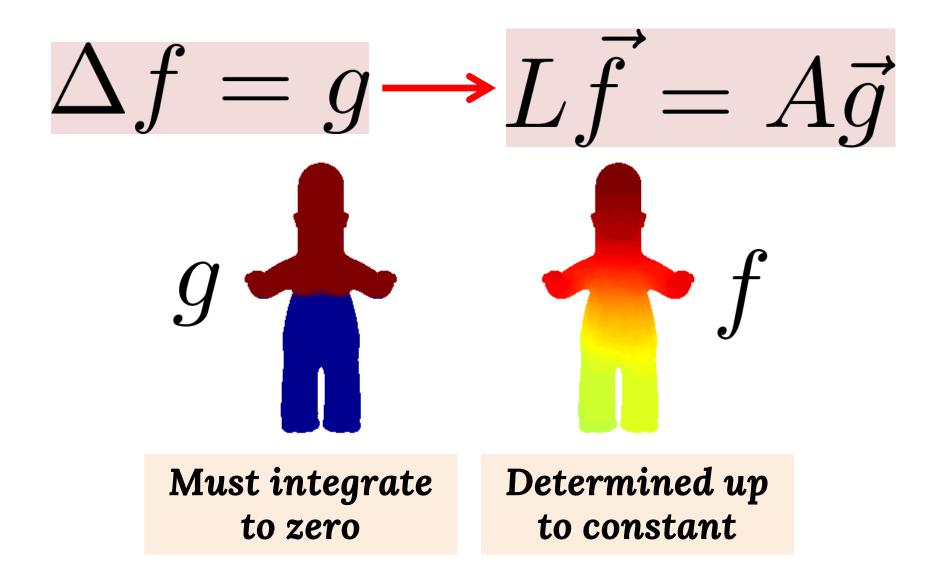
· Cotangent Laplacian L

Per-vertex function to integral of its Laplacian against each hat

Area weights A

Integrals of pairwise products of hats (or approximation thereof)

Solving the Poisson Equation



Helmholtz Equation

$$\Delta f = \lambda f$$

$$\int \Delta f \cdot \psi = -\int \nabla f \cdot \nabla \psi = \int \lambda f \cdot \psi$$

$$\Rightarrow La = \lambda Ma$$

Generalized Eigenvalue Problem

Important Detail: Boundary Conditions

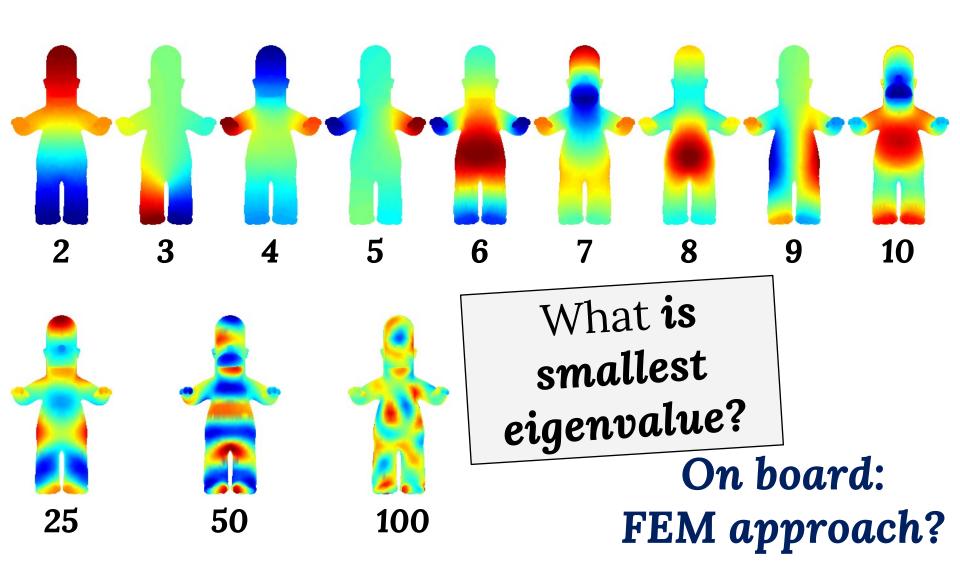
$$\Delta f(x) = g(x) \ \forall x \in \Omega$$
$$f(x) = u(x) \ \forall x \in \Gamma_D$$
$$\nabla f \cdot n = v(x) \ \forall x \in \Gamma_N$$

Strong form

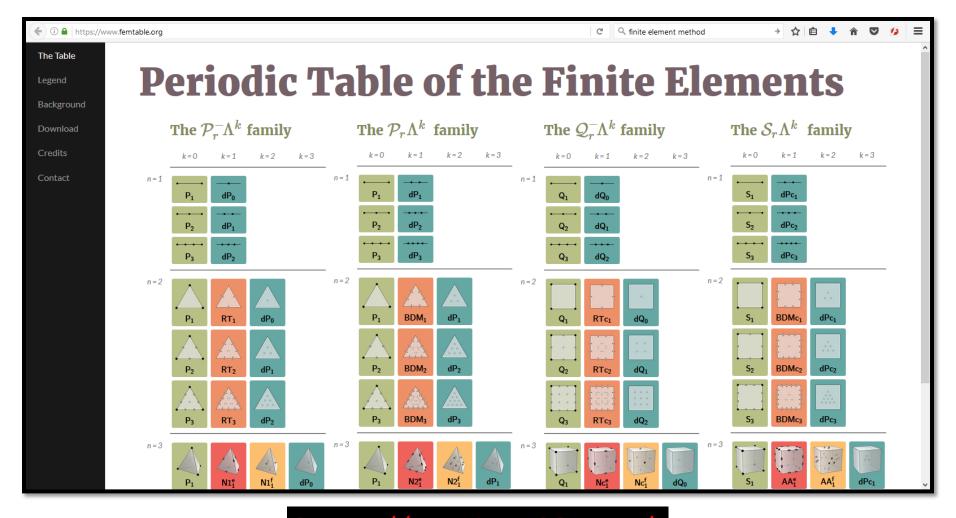
$$\int_{\Omega} \nabla f \cdot \nabla \phi = \int_{\Gamma_N} v(x)\phi(x) d\Gamma - \int_{\Omega} f(x)\phi(x) d\Omega$$
$$f(x) = u(x) \ \forall x \in \Gamma_D$$

Weak form

Eigenhomers



Higher-Order Elements



https://www.femtable.org/

Point Cloud Laplace: Easiest Option

$$W_{ij} = \exp\left(-\frac{\|x_i - x_j\|^2}{t}\right)$$

$$D_{ii} = \sum_{j} W_{ji}$$

$$L = D - W$$

$$Lf = \lambda Df$$