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ROUGH PLAN

• (intro) Matrices and Eigenvalues

• Linear problems

• Unconstrained optimization

• Equality-constrained optimization

• Variational problems



ON THE BOARD

• Vectors
• inner products and norms
• affine and vector spaces
• function spaces



MATRICES

How are those matrices special?

1 0 0
0 −2 0
0 0 5

1 −1 0
−1 2 0
0 0 5

0 −1 −2
1 0 4
2 −4 0

cos(0.4) − sin 0.4 0
sin(0.4) cos(0.4) 0

0 0 1

1 0 3
0 1 4
0 0 1



MATRICES

How are those matrices special?

1 0 0
0 −2 0
0 0 5

1 −1 0
−1 2 0
0 0 5

0 −1 −2
1 0 4
2 −4 0

cos(0.4) − sin 0.4 0
sin(0.4) cos(0.4) 0

0 0 1

1 0 3
0 1 4
0 0 1

Diagonal Symmetric
𝐴 = 𝐴!

Skew-symmetric
𝐴! = −𝐴

Orthogonal
𝐴"# = 𝐴!

Upper triangular



MATRICES
What is the geometric meaning of those?

1 0 0
0 −2 0
0 0 5

cos(0.4) − sin 0.4 0
sin(0.4) cos(0.4) 0

0 0 1

1 0 3
0 1 4
0 0 1

Diagonal

Orthogonal
𝐴"# = 𝐴!

Upper triangular



INTRO TO INTRO
What is the geometric meaning of those?

1 0 0
0 −2 0
0 0 5

cos(0.4) − sin 0.4 0
sin(0.4) cos(0.4) 0

0 0 1

1 0 3
0 1 4
0 0 1

ScalingNon-uniform scaling

Rotation Translation in 2D*



NO IDEA WHAT THOSE ARE?

https://umontreal.on.worldcat.org/oclc/829434522
Free online at UdeM library

Chapters I.3, I.4

https://umontreal.on.worldcat.org/oclc/829434522


EIGENVALUES AND 
EIGENVECTORS

𝐴𝑥 = 𝜆𝑥



EIGENVECTORS/VALUES

Geometric meaning?

Vectors which only get scaled
𝐴𝑥 = 𝜆𝑥



DIAGONAL MATRICES

• Eigenvalues on the diagonal
• Scaling along coordinate axes = eigenvectors

• Θ(𝑛) space to store
• 𝑂(𝑛) time to invert

1
−2

5
Diagonal



SYMMETRIC MATRICES

• All eigenvalues are real
• All eigenvectors are orthogonal

Can be diagonalized by an orthogonal matrix:
𝐷 = 𝑄!𝑨𝑄

1 −1 0
−1 2 0
0 0 5
Symmetric
𝐴 = 𝐴!



ORTHOGONAL MATRICES

• 𝐴𝐴! = 𝐼
• Columns have zero dot product
• Doesn’t change length of vectors or angles 

between them (isometry)
• Determinant is ±1

cos(0.4) − sin 0.4 0
sin(0.4) cos(0.4) 0

0 0 1

Orthogonal
𝐴"# = 𝐴!



MATRICES

• Geometric transformations
• Linear operators on (discrete) functions



MATRIX IS POSITIVE 
SEMIDEFINITE

𝐴 ≽ 0
ó

All eigenvalues are nonnegative

Geometric meaning?



ROUGH PLAN

• (intro) Matrices and Eigenvalues

• Linear problems

• Unconstrained optimization

• Equality-constrained optimization

• Variational problems



min
!∈ℝ%

𝑓(𝑥)

s.t. 𝑔 𝑥 = 0
ℎ 𝑥 ≥ 0



MOTIVATION

Numerical problems are everywhere 
in geometric modeling!



ROUGH PLAN

• (intro) Matrices and Eigenvalues

• Linear problems

• Unconstrained optimization

• Equality-constrained optimization

• Variational problems



OUR BIAS

Numerical analysis is a huge field.

Patterns, algorithms, & examples 
common in geometry.



EXAMPLES

How to flatten a mesh?

RI 3

RI 2

u

v

Pi

ui ,vi

Object space (3D) Texture space (2D)

“Mesh Parameterization: Theory and Practice” by Kai Hormann, Bruno Lévy, Alla Sheffer





EXAMPLES

How to flatten a mesh?

min
+!,-!∈ℝ"

𝑓(𝑢0, 𝑣0, … , 𝑢1, 𝑣1)
Fit a target 
2D shape?

Triangle 
distortion?

More sharp 
corners?



“Boundary First Flattening” by Rohan Sawhney and Keenan Crane



EXAMPLES

How to animate a character?

“Linear Subspace Design for Real-Time Shape Deformation” by Yu Wang, Alec Jacobson, Jernej Barbič, Ladislav Kavan



EXAMPLES

How to animate a character?

min
2!,3!∈ℝ"

𝑓(𝑥0, 𝑦0, … , 𝑥1, 𝑦1)

s.t. 𝑥" − 𝑥"# = 0
𝑦" − 𝑦"# = 0

Triangle 
distortion?

Some 
smoothness?

Known positions
𝑗 ∈ 𝐽



min
!∈ℝ%

𝑓(𝑥)

s.t. 𝑔 𝑥 = 0
ℎ 𝑥 ≥ 0



min
!∈ℝ%

𝑓(𝑥)

s.t. 𝑔 𝑥 = 0
ℎ 𝑥 ≥ 0

Objective function
(Energy)



min
!∈ℝ%

𝑓(𝑥)

s.t. 𝑔 𝑥 = 0
ℎ 𝑥 ≥ 0

Equality
constraints



min
!∈ℝ%

𝑓(𝑥)

s.t. 𝑔 𝑥 = 0
ℎ 𝑥 ≥ 0

Inequality 
constraints



min
!∈ℝ8

𝐴𝑥 − 𝑏 $
$𝐴𝑥 = 𝑏 ↔

EXAMPLES



min
!∈ℝ8

𝐴𝑥 $
$

s.t. 𝑥 − 1 = 0
𝐴𝑥 = 𝜆𝑥 ↔

EXAMPLES



VECTOR SPACES AND 
LINEAR OPERATORS



EIGENVALUES AND 
EIGENVECTORS

𝐴𝑥 = 𝜆𝑥

or

ℒ 𝑓(𝑥) = 𝜆𝑓(𝑥)

Discrete 
(matrix)

Continuous
(operator)



ABSTRACT EXAMPLE

Eigenvectors?



IN FINITE DIMENSIONS



LINEAR SYSTEM OF 
EQUATIONS

Simple “inverse problem”



COMMON STRATEGIES

• Gaussian elimination
– O(n3) time to solve Ax=b or to invert

• But:  Inversion is unstable and slower!

• Never ever compute A-1 if you can avoid it.



SIMPLE EXAMPLE

Discretization? 
On the board



SIMPLE EXAMPLE



STRUCTURE?



LINEAR SOLVER 
CONSIDERATIONS

• Never construct 𝑨!𝟏 explicitly
(if you can avoid it)

• Added structure helps
Sparsity, symmetry, positive definiteness, 
bandedness



LINEAR SYSTEMS: SOLVERS

• Direct (explicit matrix)
– Dense:  Gaussian elimination, LDLT (Cholesky ), LU, 

QR for least-squares
– Sparse: LDLT (Cholesky ), LU, QR for least-squares, 

Reordering (SuiteSparse, Eigen)

• Iterative (apply matrix repeatedly)
– Positive definite:  Conjugate gradients
– Symmetric:  MINRES, GMRES
– Generic:  LSQR



GENERIC ADVICE

Generic tools are often not too effective!



GENERIC ADVICE

Try the

simplest solver first.



VERY COMMON:  SPARSITY

Induced by the connectivity of 
the triangle mesh.

Iteration of CG has local effect
⇒ Precondition!



FOR IFT 6113
• No need to implement a linear solver

• If a matrix is sparse, your code should 
store it as a sparse matrix!

https://eigen.tuxfamily.org/dox/group__TutorialSparse.html



ROUGH PLAN

• (intro) Matrices and Eigenvalues

• Linear problems

• Unconstrained optimization

• Equality-constrained optimization

• Variational problems



UNCONSTRAINED
OPTIMIZATION

min
$∈ℝ!

𝑓(𝑥)

Trivial when 𝑓 𝑥  is linear

Easy when 𝑓(𝑥) is quadratic

Hard in case of generic non-linear



UNCONSTRAINED
OPTIMIZATION

min
$∈ℝ!

𝑓(𝑥)



NOTIONS FROM CALCULUS

Gradient

𝑓 𝑥, 𝑦 = 3𝑥" − 𝑦

∇𝑓 =
𝜕𝑓
𝜕𝑥
,
𝜕𝑓
𝜕𝑦

= (6𝑥,−1)

Geometric meaning?



NOTIONS FROM CALCULUS

Gradient
https://en.wikipedia.org/?title=Gradient



NOTIONS FROM CALCULUS

Gradient
https://en.wikipedia.org/?title=Gradient



NOTIONS FROM CALCULUS

Jacobian
https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant



NOTIONS FROM CALCULUS

Hessian
http://math.etsu.edu/multicalc/prealpha/Chap2/Chap2-5/10-3a-t3.gif



OPTIMIZATION TO 
ROOT-FINDING

Critical point

(unconstrained)

Saddle point

Local min

Local max



CONVEX FUNCTIONS

https://en.wikipedia.org/wiki/Convex_function

𝑓## 𝑥 > 0



CONVEX FUNCTIONS

https://en.wikipedia.org/wiki/Convex_function

𝐻 𝑥 ≽0



Convex Optimization Tools

Try lightweight options

versus

Sometimes work for non-convex problems…

Aside:



SPECIAL CASE:  LEAST-
SQUARES

Normal equations
(better solvers for this case!)



USEFUL DOCUMENT

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf

The Matrix Cookbook
Petersen and Pedersen



UNCONSTRAINED 
OPTIMIZATION

Unstructured.



BASIC ALGORITHMS

Gradient descent

Line search

Multiple optima!



BASIC ALGORITHMS

Accelerated gradient descent

Quadratic convergence on convex problems!
(Nesterov 1983)

A very cool intro: https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/


BASIC ALGORITHMS

Newton’s Method

1

2

3

Line search 
for stability



BASIC ALGORITHMS

Quasi-Newton:  BFGS and 
friends

Hessian 
approximation

• (Often sparse) approximation from 
previous samples and gradients

• Inverse in closed form!



EXAMPLE:  SHAPE 
INTERPOLATION

Fröhlich and Botsch.  “Example-Driven Deformations Based on Discrete Shells.”  CGF 2011.



INTERPOLATION PIPELINE
Roughly:

1.  Linearly interpolate edge lengths and dihedral angles.

2. Nonlinear optimization for vertex positions.

Sum of squares: 
Gauss-Newton



SOFTWARE

• Matlab:  fminunc or minfunc
• C++:  libLBFGS, dlib, others

Typically provide functions for function 
and gradient (and optionally, Hessian).

Try several!



SOME TRICKS

Regularization



SOME TRICKS

Multiscale/graduated optimization



ROUGH PLAN

• (intro) Matrices and Eigenvalues

• Linear problems

• Unconstrained optimization

• Equality-constrained optimization

• Variational problems



LAGRANGE MULTIPLIERS: IDEA



LAGRANGE MULTIPLIERS: IDEA

- Decrease 𝒇: −𝛁𝒇
- Violate constraint: ±𝛁𝒈



LAGRANGE MULTIPLIERS: IDEA

Want:



USE OF LAGRANGE 
MULTIPLIERS

Turns constrained optimization into

unconstrained root-finding.



EXAMPLE
Find the maximum and minimum of 𝑓 𝑥, 𝑦 =
5𝑥 − 3𝑦 subject to the constraint 𝑥" + 𝑦" = 136.

Problem credit: https://tutorial.math.lamar.edu/classes/calciii/lagrangemultipliers.aspx



EXAMPLE
Find the maximum and minimum of 𝑓 𝑥, 𝑦 =
5𝑥 − 3𝑦 subject to the constraint 𝑥" + 𝑦" = 136.

∇𝑓 = 5,−3 = 𝜆∇𝑔 = 𝜆 2𝑥, 2𝑦
𝑥" + 𝑦" = 136

Problem credit: https://tutorial.math.lamar.edu/classes/calciii/lagrangemultipliers.aspx



EXAMPLE
Find the maximum and minimum of 𝑓 𝑥, 𝑦 =
5𝑥 − 3𝑦 subject to the constraint 𝑥" + 𝑦" = 136.

∇𝑓 = 5,−3 = 𝜆∇𝑔 = 𝜆 2𝑥, 2𝑦
𝑥" + 𝑦" = 136
(arithmetic)

𝜆 = 	±
1
4
, 𝑥 = ±10, 𝑦 = ∓6

Problem credit: https://tutorial.math.lamar.edu/classes/calciii/lagrangemultipliers.aspx



LAGRANGIAN

Equivalently, you can form a Lagrangian:
ℒ(𝑥, 𝜆) = 𝑓 + 𝜆𝑔

Then find its stationary points:
𝜕ℒ
𝜕𝑥

= ∇f + 𝜆∇𝑔 = 0
𝜕ℒ
𝜕𝜆

= 𝑔 = 0



EXAMPLE
Find the maximum and minimum of 𝑓 𝑥, 𝑦 = 5𝑥 − 3𝑦
subject to the constraint 𝑥! + 𝑦! = 136.

ℒ 𝑥, 𝜆 = 5𝑥 − 3𝑦 + 𝜆(𝑥5 + 𝑦5 − 136)
Then find its stationary points => solve a system of 
eqns:

𝜕ℒ
𝜕𝑥

= 5 + 2𝜆𝑥 = 0
𝜕ℒ
𝜕𝑦

= −3 + 2𝜆𝑦 = 0

𝜕ℒ
𝜕𝜆

= 𝑥5 + 𝑦5 − 136 = 0



min
!∈ℝ!

𝑓(𝑥)

s.t. 𝑔 𝑥 = 0

quadratic

linear



QUADRATIC WITH LINEAR 
EQUALITY

(assume A is symmetric and positive definite)



QUADRATIC WITH LINEAR 
EQUALITY

(assume A is symmetric and positive definite)



min
!∈ℝ!

𝑓(𝑥)

s.t. 𝑔 𝑥 = 0

nonlinear

nonlinear



MANY OPTIONS

• Reparameterization
Eliminate constraints to reduce to unconstrained case

• Newton’s method
Approximation: quadratic function with linear constraint

• Penalty method
Augment objective with barrier term, e.g. 𝒇 𝒙 + 𝝆|𝒈 𝒙 |



EXAMPLE:  SYMMETRIC 
EIGENVECTORS



EXAMPLE:  MESH 
EMBEDDING

G. Peyré, mesh processing course slides



LINEAR SOLVE FOR 
EMBEDDING

• 𝒘𝒊𝒋 ≡ 𝟏: Tutte embedding
• 𝒘𝒊𝒋 from mesh: Harmonic embedding

Assumption:  𝒘 symmetric.

𝑥6 ∈ ℝ5



What if 
𝑽𝟎 = {}?



NONTRIVIALITY CONSTRAINT

Prevents trivial solution 𝒙 ≡ 𝟎.

Extract the smallest eigenvalue.



Mullen et al.  “Spectral Conformal Parameterization.”  SGP 2008.

Easy fix



BASIC IDEA OF 
EIGENALGORITHMS



TRUST REGION METHODS

Example:  Levenberg-Marquardt

Fix (or adjust) 
damping 

parameter 𝝀 > 𝟎.



EXAMPLE:  POLYCUBE MAPS

Huang et al.  “L1-Based Construction of Polycube Maps from Complex Shapes.”  TOG 2014.

Align with coordinate axes

Preserve areaNote:  Final method includes more 
terms!



ITERATIVELY REWEIGHTED 
LEAST SQUARES

Repeatedly solve linear systems

“Geometric 
median”



ALTERNATING PROJECTION

d can be a
Bregman 

divergence



AUGMENTED LAGRANGIANS

Add constraint to objective

Does nothing when 
constraint is satisfied



ALTERNATING DIRECTION
METHOD OF MULTIPLIERS 

(ADMM)

https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf



FRANK-WOLFE

https://en.wikipedia.org/wiki/Frank%E2%80%93Wolfe_algorithm

Linearize objective, preserve constraints

</aside>



ROUGH PLAN

• (intro) Matrices and Eigenvalues

• Linear problems

• Unconstrained optimization

• Equality-constrained optimization

• Variational problems



VARIATIONAL CALCULUS:  
BIG IDEA

Sometimes your unknowns

are not numbers!
Can we use calculus to optimize anyway?



ON THE BOARD



GATEAUX DERIVATIVE

Analog of derivative at u in ψ direction

Vanishes for all ψ at a critical point!



“I got a great reputation for 
doing integrals, only because 
my box of tools was different 

from everybody else's, and 
they had tried all their tools 

on it before giving the 
problem to me.”

Richard P. Feynman


