
IFT 6113
MESH PARAMETERIZATION

tiny.cc/ift6113

Mikhail Bessmeltsev
Image from https://doc.cgal.org/latest/Surface_mesh_parameterization/index.html

Some slides from Justin Solomon and Alla Sheffer



What is Parameterization?

surface

world

parameter domain

atlas

ℝ3

ℝ2

parameterization

(u,v)(x,y,z)



Problem Definition
Given: surface 𝑆 ⊆ ℝ! 
    domain 𝐷 ⊂ ℝ"

Find a bijective 𝑓: 𝑆 → 𝐷



Tangent Space
Recall:



Typical domains:

⊆ 𝑅! 

boundary
Sphere (no boundary)



Cross-Parameterization
/Inter-surface Mapping 
• all (closed) models
• usually utilize common base

Typical domains:

Base Mesh



Why Do We Need It?



Why Do We Need It?



Texture Mapping
• Define color for each point on object surface

• Map 2D texture to model surface:
– Texture pattern defined over 2D domain (𝑢, 𝑣) 
– Assign (𝑢, 𝑣) coordinates to each point on surface

u

v



Normal/Bump mapping



Morphing/Properties Transfer
Require cross-parameterization

Morphing

Deformation Transfer



Remeshing & Surface Fitting



THEORY/BACKGROUND



Mesh Parameterization

𝑓: Ω → 𝑆, s. t.                  
– f is piecewise linear
• 𝑓|! is linear

– f is bijective
• at least locally

Surface 𝑆 ⊂ ℝ!
Parameter domain Ω ⊆ ℝ"

𝑓 (
#

𝑓

𝑓$%



Earth maps!
• Distortion is inevitable
• But we can preserve some properties exactly

orthographic
∼ 500 B.C.

stereographic
∼ 150 B.C.

Mercator
1569

Lambert
1772

conformal
(angle-preserving)

equiareal
(area-preserving)



Intrinsic Descriptor

http://www.sciencedirect.com/science/article/pii/S0010448510001983

Theorema Egregium
(“Totally Awesome 

Theorem”):
Gaussian curvature is 

intrinsic.

Recall:



What is Distortion?

• Distortion (at x): How different is f(D) from D
– How to measure?

f (D)

Small disk around x

𝑥 = 𝑢, 𝑣 ∈ Ω

Ω 𝑆
𝑓

𝐷

Image of that disk



 𝑓 𝑦 = 𝑓 𝑥 +
𝜕𝑓
𝜕𝑥!

𝑦 − 𝑥 + 𝑂 𝑦 − 𝑥 "

How to quantify distortion? 
Study differential/Jacobian.

.𝑓(𝑦)linearization

+𝑓(𝑦)
𝑟

Semiaxes: 𝑟𝜎%, 𝑟𝜎"
𝑢

𝑣

𝑇&



Linear Map Surgery
• Singular Value Decomposition (SVD) of Jacobian 

(differential)

 

 
 with rotations 𝑈 ∈ ℝ3×3, 𝑉 ∈ ℝ5×5

 and scale factors (singular values) 𝜎6, 𝜎5 ≥ 0

𝐽! = 𝑈Σ𝑉" = 𝑈
𝜎# 0
0 𝜎$
0 0

𝑉"

Ω
𝑉# Σ 𝑈

𝑇7



𝐼 = 𝑓# ⋅ 𝑓# 𝑓# ⋅ 𝑓$
𝑓# ⋅ 𝑓$ 𝑓$ ⋅ 𝑓$

How to quantify distortion? 
Study Metric Tensor = 1st fundamental form.



𝐼 = 𝑓# ⋅ 𝑓# 𝑓# ⋅ 𝑓$
𝑓# ⋅ 𝑓$ 𝑓$ ⋅ 𝑓$

= 𝐽%&𝐽%

How to quantify distortion? 
Study Metric Tensor = 1st fundamental form.

“Gram Matrix”



𝐼 = 𝑓# ⋅ 𝑓# 𝑓# ⋅ 𝑓$
𝑓# ⋅ 𝑓$ 𝑓$ ⋅ 𝑓$

= 𝐽%&𝐽%

= 𝑈Σ𝑉& & 𝑈Σ𝑉& = 𝑉
𝜎'" 0
0 𝜎""

𝑉&

Eigenvalues of 𝐼

How to quantify distortion? 
Study Metric Tensor = 1st fundamental form.



Pointwise distortion
Isometric
 𝝈𝟏 = 𝝈𝟐 = 𝟏 
Conformal or angle-preserving 

𝝈𝟏 = 𝝈𝟐
Equiareal or area-preserving

𝝈𝟏 ⋅ 𝝈𝟐 = 𝟏
 

Defined pointwise on Ω

Ω

Ω

Ω

;𝑓(𝑦)

;𝑓(𝑦)

;𝑓(𝑦) 𝑇7

𝑇7

𝑇7



Measuring Distortion
• Local distortion measure function of 𝜎6 and 𝜎5 

• Overall distortion

• On mesh  constant per triangle



CONFORMAL MAPS





Stereographic Projection

Image from Wikipedia



⇒    conformal

Stereographic Projection

𝜎6 = 𝜎5 = 2𝑑

(𝑢, 𝑣)

Ω
(𝑥, 𝑦, 𝑧)

𝑓

𝑆



Stereographic Projection

Image from Wikipedia



Stereographic Projection



Does conformal map exist?

Uniformization theorem

“Every simply connected Riemann surface 
is conformally equivalent to one of three 
Riemann surfaces: 

1. open unit disk 
2. complex plane
3. Riemann sphere”

TLDR: Yes!



Parameterization:
Practice



MESH PARAMETERIZATION METHODS

Fixed Boundary
Bijectivity: easy

Distortion: may be large

Free boundary
Bijectivity: hard

Distortion: minimum



MESH PARAMETERIZATION METHODS

Fixed Boundary
Bijectivity: easy

Distortion: may be large

Free boundary
Bijectivity: hard

Distortion: minimum



Spring Model

• Fix boundary vertices on a convex polygon
• Edges → springs

• Let go of the springs
– “Relaxation”



Hooke’s Law: 
Energy of spring between 𝑝( and 𝑝)

 𝐸() = 0.5 𝐷() 𝑢( − 𝑢) "
"

Total energy

𝐸 = @
(,) ∈,

1
2
𝐷() 𝑢( − 𝑢)

"

Spring Model



Hooke’s Law: 
Energy of spring between 𝑝( and 𝑝)

 𝐸() = 0.5 𝐷() 𝑢( − 𝑢) "
"

Total energy

𝐸 = @
(,) ∈,

1
2
𝐷() 𝑢( − 𝑢)

"

Spring Model

Will this provide a 
bijective 

parameterization?



𝐸 = .
@,A ∈B

1
2
𝐷@A 𝑢@ − 𝑢A

5 =
1
2
2
@C6

D

2
A∈E!

1
2
𝐷@A 𝑢@ − 𝑢A

5

Spring Model



𝐸 =
1
2
2
@C6

D

2
A∈E!

1
2
𝐷@A 𝑢@ − 𝑢A

5

Spring Model

Stable state ⇔ minimum of total energy



𝐸 =
1
2
2
@C6

D

2
A∈E!

1
2
𝐷@A 𝑢@ − 𝑢A

5

𝜕𝐸
𝜕𝑢%

= 7
&∈(!

𝐷%& 𝑢% − 𝑢& = 0

Spring Model

Stable state ⇔ minimum of total energy



𝐸 =
1
2
2
@C6

D

2
A∈E!

1
2
𝐷@A 𝑢@ − 𝑢A

5

7
&∈(!

𝐷%& 𝑢% − 𝑢& = 0

Rewrite:

Spring Model

𝑢% = 7
&∈(!

𝜆%&𝑢& 𝜆@A = 𝐷@A/ .
G∈E!

𝐷@G



𝐸 =
1
2
2
@C6

D

2
A∈E!

1
2
𝐷@A 𝑢@ − 𝑢A

5

7
&∈(!

𝐷%& 𝑢% − 𝑢& = 0

Rewrite:

Spring Model

𝑢% = 7
&∈(!

𝜆%&𝑢& 𝜆@A = 𝐷@A/ .
G∈E!

𝐷@G

A generalization of 
barycentric coordinates



Linear System
• Let’s rearrange the variables:

𝑢" − /
#∈%!,#'(

𝜆"#𝑢# = /
#∈%!,#)(

𝜆"#𝑢# = 2𝑢"
  

• Linear system
𝐴𝑈 = 5𝑈,

𝐴 = 6
1, 𝑖 = 𝑗

−𝜆"# , 𝑗 ∈ 𝑁"
0, 𝑒𝑙𝑠𝑒

– Solve separately for u and v

𝜆@A = 𝐷@A/ .
G∈E!

𝐷@G

unknown parameter points            fixed



Linear System
• Let’s rearrange the variables:

𝑢" − /
#∈%!,#'(

𝜆"#𝑢# = /
#∈%!,#)(

𝜆"#𝑢# = 2𝑢"
  

• Linear system
𝐴𝑈 = 5𝑈,

𝐴 = 6
1, 𝑖 = 𝑗

−𝜆"# , 𝑗 ∈ 𝑁"
0, 𝑒𝑙𝑠𝑒

– Solve separately for u and v

𝜆@A = 𝐷@A/ .
G∈E!

𝐷@G

unknown parameter points            fixed

What does the matrix 
remind you of?



Theorem [Tutte’63,Floater’01,Maxwel’1864]: 

If 𝐺	is a 3-connected planar graph 
(triangular mesh) then any convex 
combination embedding (𝜆() > 0) provides 
bijective parameterization 



Choice of Weights: Uniform (Tutte)

No shape preservation –equilateral triangles

Graph Laplacian! 

𝐷$% = 1 𝜆() =
1
#𝑁(



Choice of Weights: Uniform (Tutte)

No shape preservation –equilateral triangles

Graph Laplacian! 

𝐷$% = 1 𝜆() =
1
#𝑁(

𝐸 = ∑ (,) ∈,
'
"
𝐷() 𝑢( − 𝑢)

" is 
Dirichlet energy discretized on a graph!



Choice of Weights: Barycentric
Harmonic/Conformal/FEM Laplacian

𝜔() = cot𝛾() + cot𝛾)(
𝜆"# = 𝜔"#/-

$

𝜔"$

𝐸 = ∑ (,) ∈,
'
"
𝐷() 𝑢( − 𝑢)

" is 
Dirichlet energy discretized on a mesh!



Issue

Point is inside, but the coordinate can be <0



Issue

Point is inside, but the coordinate can be <0
⇒ ∃𝜆%& < 0



Issue

Point is inside, but the coordinate can be <0
⇒ ∃𝜆%& < 0

Local non-bijectivity



Harmonic Functions

Images made by E. Vouga

Recall:



Choice of Weights: Mean Value

𝜔() =
tan

𝛼()
2 + tan

𝛽)(
2

𝑟()

𝜆!" =
𝜔!"

∑#∈%4𝜔!#



Choice of Weights: Mean Value

𝜔() =
tan

𝛼()
2 + tan

𝛽)(
2

𝑟()

𝜆!" =
𝜔!"

∑#∈%4𝜔!#
Always non-

negative



Harmonic/Mean-Value Mappings

• Quasi-Conformal

• Linear precision
– Reproduce planar inputs (same boundary) 



• Can have fold-overs for negative coordinates
• Mean-value coordinates guaranteed to be positive

Bijectivity (fold-overs)

harmonic mean value





Boundary Mapping

Chordal parameterization around convex shape
• circle
• rectangle
• triangle
• Choice often application specific

– Reconstruction – rectangle
– Mapping to base mesh– triangle



Examples



Parameterization:
Free Boundary



Free Boundary Methods

• Direct energy minimization
– Example: Least Squares Conformal Map (LSCM)....

• Indirect
– Example: Angle Based Flattening (ABF)....

Free vs Fixed



We’re minimizing conformal energy

Geometric Interpretation:
– Use triangle similarity
– Given angles a1, a2, a3 of a triangle P1P2P3 in 

2D we have

LSCM – Geometric Interpretation

𝑃3 − 𝑃6 =
sin 𝛼5
sin 𝛼3

𝑅H"(𝑃5 − 𝑃6),

𝑅H =
cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼

a1 a2

a3

P1
P2

P3
𝐸. = 𝜎# − 𝜎$ $/2



LSCM
• In map from 3D to 2D might be impossible to keep 

angles exactly
– Use least-squares

min$
!

(𝑃"! − 𝑃!# −
sin 𝛼!$
sin 𝛼!"

𝑅%!"(𝑃
!
$ − 𝑃#!))$

• To solve need to fix two vertices
– Obtain linear system
– Choice of vertices affects solution

• Can have flips 



Examples



ABF: Angle Based Flattening

• Triangular 2D mesh is defined by its angles
• Formulate parameterization as problem in 

angle space
• Angle based formulation:
– Distortion as function of angles (conformality)
– Validity: set of angle constraints
– Convert solution to UV



ABF Formulation 

• Distortion:
– 2D/3D angle difference

I
#∈%,'()…+

𝑤'# 𝛼'# − 𝛽'#
, , 𝑤'# = 1/𝛽'#

,

Tetrahedron (3D) Flattened (2D)



ABF Formulation
Distortion:Constraints:

– Triangle validity:

– Planarity:

– Reconstruction

– Positivity
𝛼#% > 0

I
#∈%,'()…+

𝑤'# 𝛼'# − 𝛽'#
, , 𝑤'# = 1/𝛽'#

,



Angle to UV Conversion

• Use computed angles as input to LSCM 
(it is a reproducing method..)



Examples



Examples



Cone Singularities [Kharevych:06]

• What separates boundary from interior in 
angle space? 

• Answer: Sum of angles at vertex 
• Formulation specific
– ABF/ABF++

• Planarity & Reconstruction

• But… reconstruction can be enforced on boundaries



Cone Singularities

• Idea: Reduce boundary to small set of 
vertices

• Implementation:
– Enforce “interior” constraints at all other 

vertices
• To unfold choose any sequence of edges 

connecting “boundary” vertices



Circle Patterns + Cone 
Singularities 



ABF + Cone Singularities



Optimize parameterization + cuts



General Framework

• Choose an energy



Conformal Energies
• Conformal energy

   𝐸P = 𝜎6 − 𝜎5 5/2

• MIPS energy

  𝐸Q = 𝜅R 𝐽S = 𝐽S R
𝐽ST6 R

= U&
U'
+ U'

U&
 

[Pinkall & Polthier 1993]
[Lévy et al. 2002]

[Desbrun et al. 2002]

[Hormann & Greiner 2000]



Gradient of a Hat Function

Length of e23 cancels
“base” in A

Recall:



Parameterization Jacobian



Parameterization Jacobian



Detailed Example

Singular values: 0.5( 𝑎 + 𝑐 ± 𝑎 − 𝑐 , + 4𝑏,



General Framework

• Choose an energy
• Start with an initial bijective parameterization
– E.g. Tutte



General Framework

• Choose an energy
• Start with an initial bijective parameterization
– E.g. Tutte

• Use nonlinear optimization tools to 
minimize
– Gradient descent
– Quasi-Newton methods
– …



General Framework

• Choose an energy
• Start with an initial bijective parameterization
– E.g. Tutte

• Use nonlinear optimization tools to 
minimize
– Gradient descent
– Quasi-Newton methods
– …

• How to preserve bijectivity?



What is gradient of E w/r to 
positions?



What is gradient of E w/r to 
positions?

A vector field!



Scaling vector field

• Find a scale parameter, s.t. nothing flips 
if we add the vector field

• Limit line search step to this value



Issues

• Only local injectivity



Issues

• Only local injectivity
• Sometimes the step size 

is too small
– One almost inverted 

triangle is enough

Image from “Blended Cured Quasi-Newton for Distortion Optimization” 
by Yufeng Zhu, Robert Bridson, and Danny M. Kaufman. SIGGRAPH 2018


