IFT 6113 MESH PARAMETERIZATION

tiny.cc/ift6113

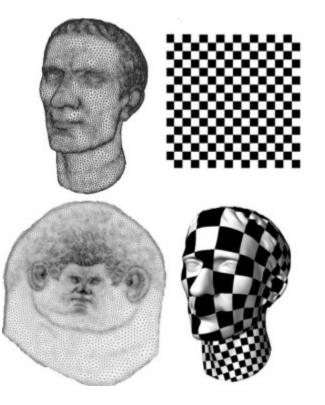
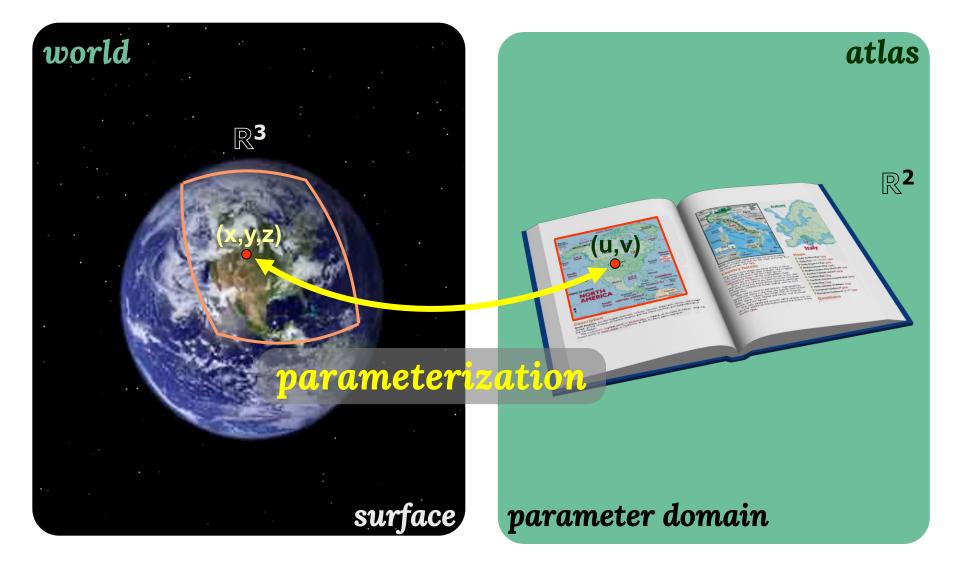


Image from https://doc.cgal.org/latest/Surface_mesh_parameterization/index.html

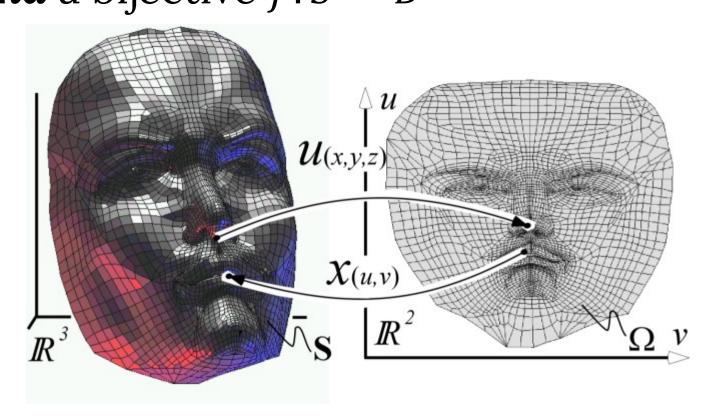
Mikhail Bessmeltsev

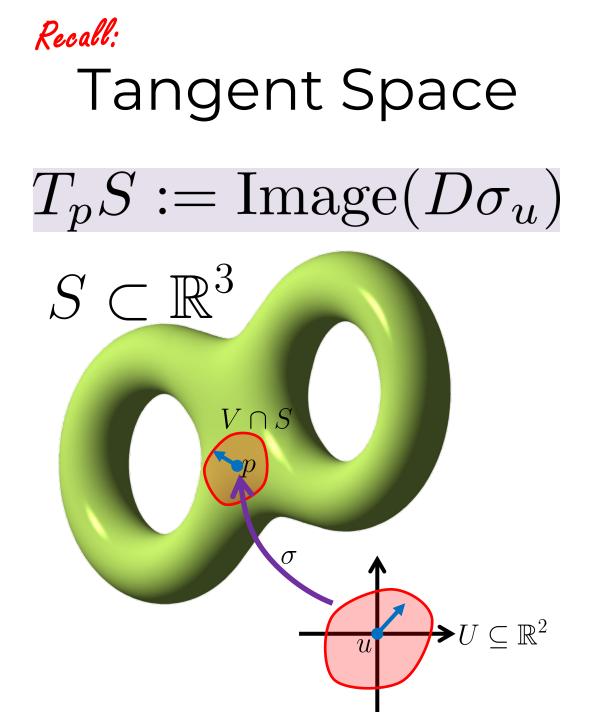
Some slides from Justin Solomon and Alla Sheffer

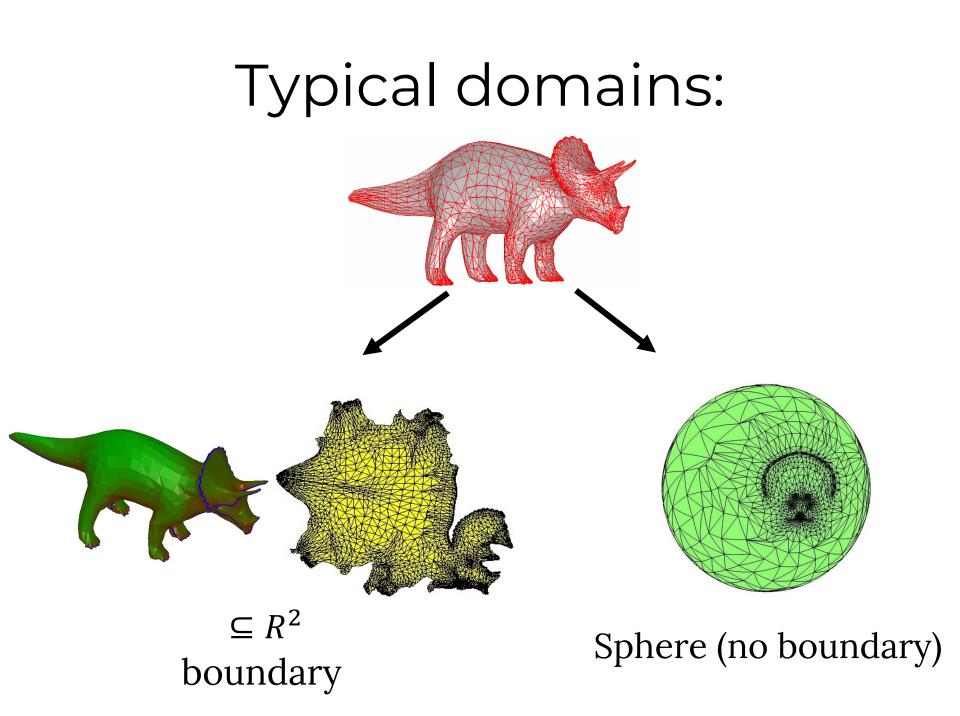
What is Parameterization?

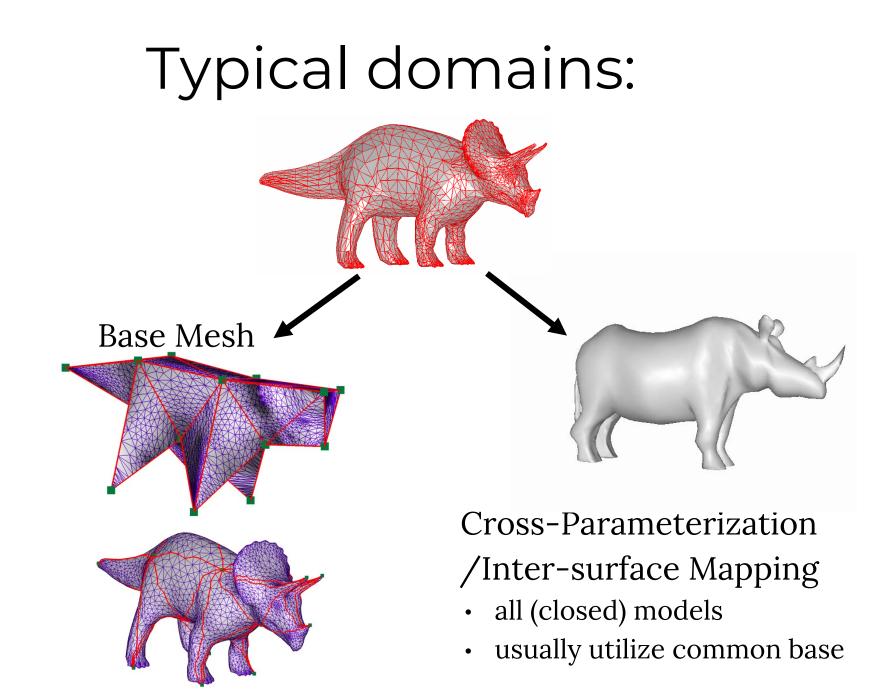


Problem Definition **Given**: surface $S \subseteq \mathbb{R}^3$ domain $D \subset \mathbb{R}^2$ **Find** a bijective $f: S \to D$





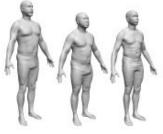




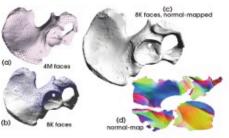
Why Do We Need It?

Texture Mapping

Morphing



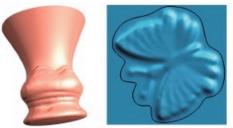
Databases



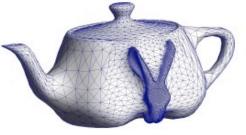
Normal Mapping

Mesh Completion

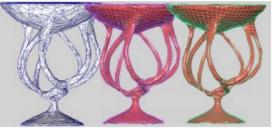
Remeshing



Detail Transfer



Editing



Surface Fitting

Why Do We Need It?

AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

Thibault Groueix^{1*}, Matthew Fisher², Vladimir G. Kim², Bryan C. Russell², Mathieu Aubry¹ ¹LIGM (UMR 8049), École des Ponts, UPE, ²Adobe Research

http://imagine.enpc.fr/~groueixt/atlasnet/

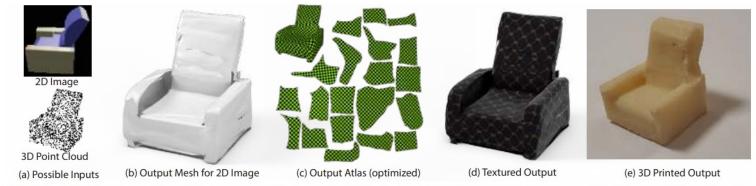
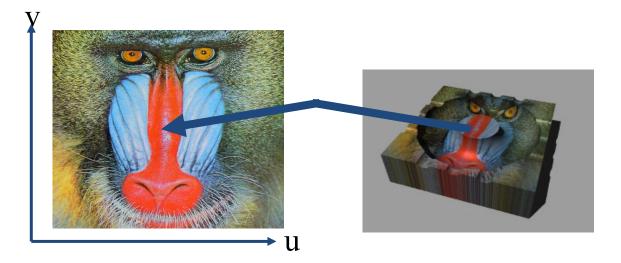


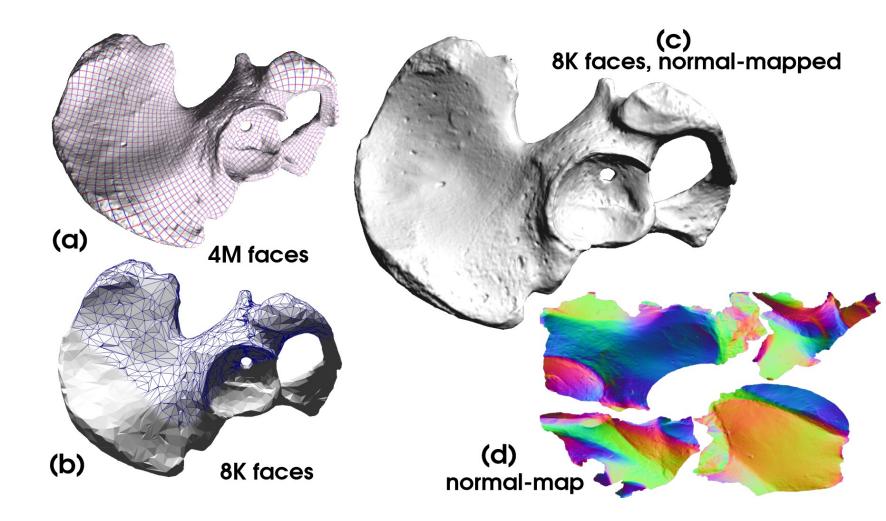
Figure 1. Given input as either a 2D image or a 3D point cloud (a), we automatically generate a corresponding 3D mesh (b) and its atlas parameterization (c). We can use the recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print the results (e).

Texture Mapping

- Define color for each point on object surface
- Map 2D texture to model surface:
 - Texture pattern defined over 2D domain (u, v)
 - Assign (u, v) coordinates to each point on surface

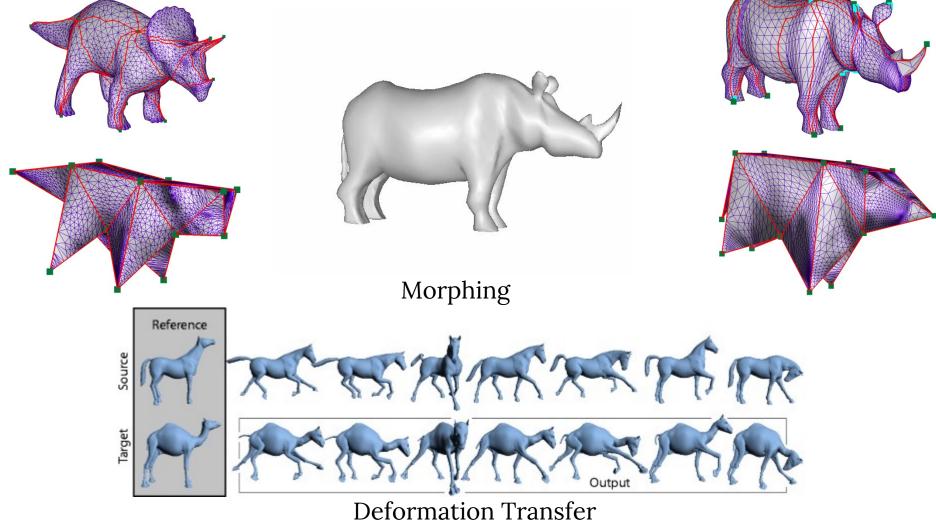


Normal/Bump mapping

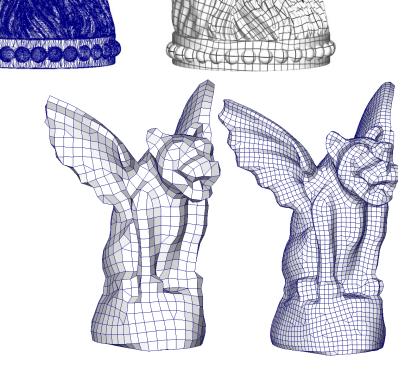


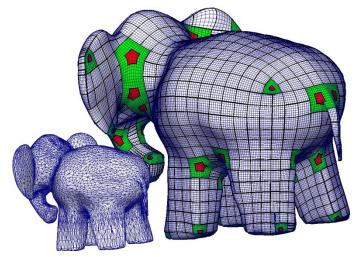
Morphing/Properties Transfer

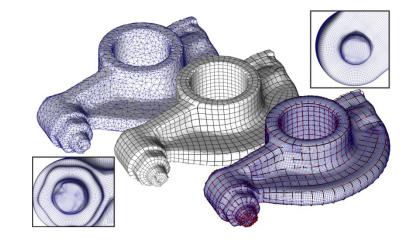
Require cross-parameterization



Remeshing & Surface Fitting

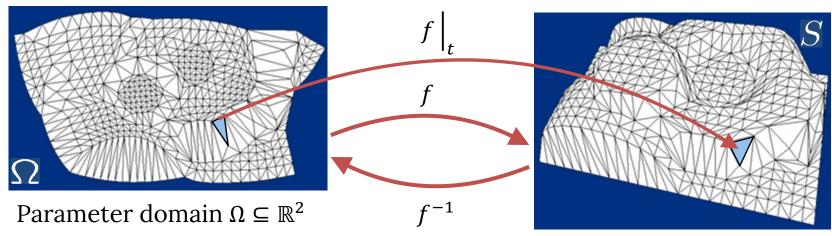






THEORY/BACKGROUND

Mesh Parameterization

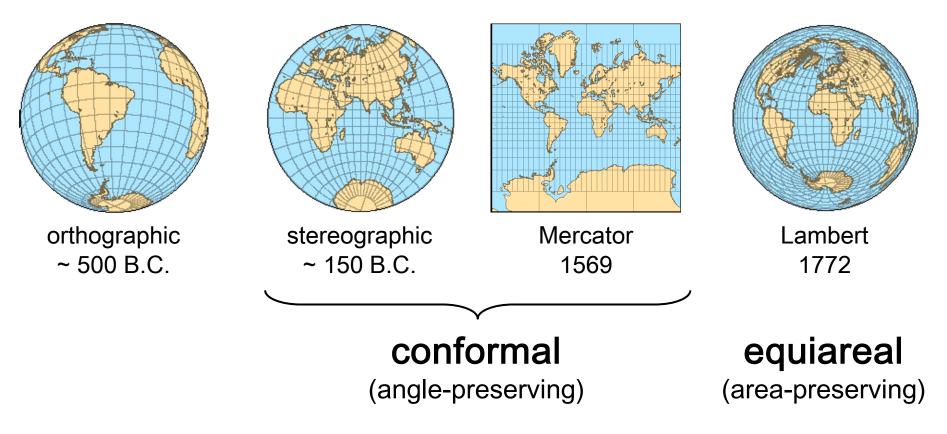


Surface $S \subset \mathbb{R}^3$

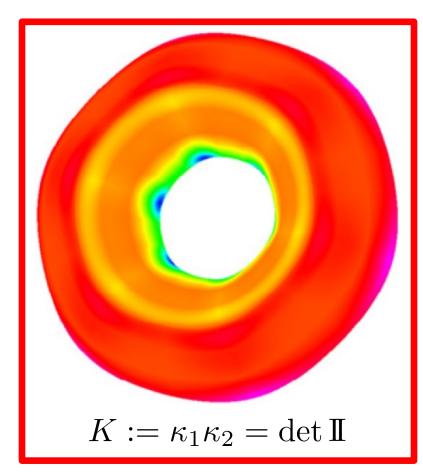
- $f: \Omega \rightarrow S$, s. t. -f is piecewise linear $\cdot f|_t$ is linear -f is bijective
 - at least locally

Earth maps!

- Distortion is inevitable
- But we can preserve some properties exactly



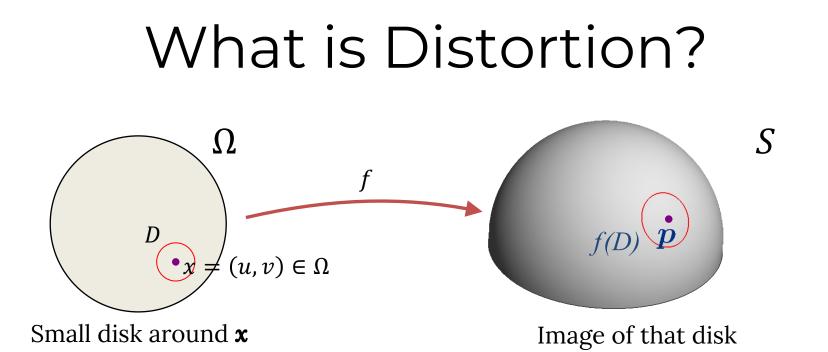
Intrinsic Descriptor



Recall:

Theorema Egregium ("Totally Awesome Theorem"): Gaussian curvature is intrinsic.

http://www.sciencedirect.com/science/article/pii/S0010448510001983



- Distortion (at *x*): How different is *f*(*D*) from *D*
 - How to measure?

How to quantify distortion? Study **differential/Jacobian**.

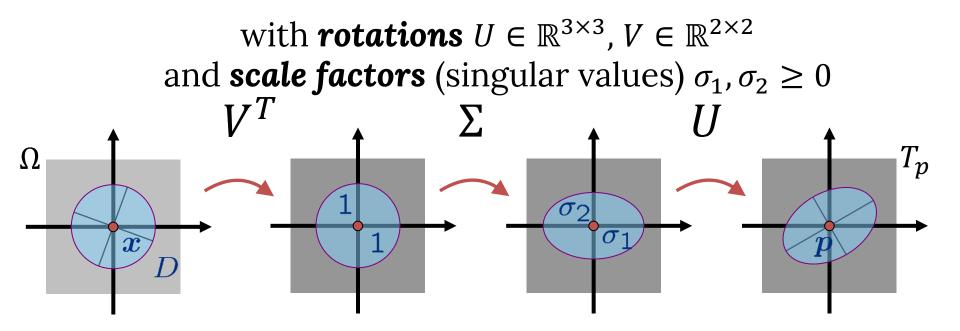
$$f(y) = f(x) + \left(\frac{\partial f}{\partial x_i}\right)(y - x) + O(||y - x||^2)$$

linearization $\tilde{f}(y)$
Semiaxes: $r\sigma_1, r\sigma_2$
 $f(y)$
 $f(y)$

Linear Map Surgery

• **Singular Value Decomposition** (SVD) of Jacobian (differential) $(\sigma_1 \quad 0)$

$$J_f = U\Sigma V^T = U \begin{pmatrix} \sigma_1 & \sigma_2 \\ 0 & \sigma_2 \\ 0 & 0 \end{pmatrix} V^T$$



How to quantify distortion? Study **Metric Tensor = 1**st **fundamental form**.

$$I = \begin{pmatrix} f_u \cdot f_u & f_u \cdot f_v \\ f_u \cdot f_v & f_v \cdot f_v \end{pmatrix}$$

How to quantify distortion? Study **Metric Tensor = 1**st **fundamental form**.

$$I = \begin{pmatrix} f_u \cdot f_u & f_u \cdot f_v \\ f_u \cdot f_v & f_v \cdot f_v \end{pmatrix} \stackrel{\text{"Gram Matrix"}}{=} J_f^T J_f$$

How to quantify distortion? Study **Metric Tensor = 1**st **fundamental form**.

$$I = \begin{pmatrix} f_u \cdot f_u & f_u \cdot f_v \\ f_u \cdot f_v & f_v \cdot f_v \end{pmatrix} = J_f^T J_f$$

$$= (U\Sigma V^{T})^{T} (U\Sigma V^{T}) = V \begin{pmatrix} \sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2} \end{pmatrix} V^{T}$$

Eigenvalues of *I*

Pointwise distortion

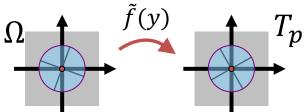
Isometric

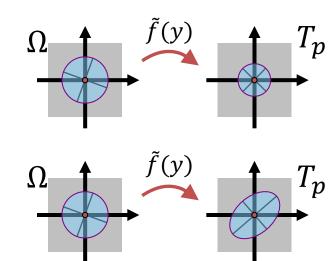
$$\sigma_1 = \sigma_2 = 1$$

Conformal or angle-preserving

$$\sigma_1 = \sigma_2$$

Equiareal or **area**-preserving $\sigma_1 \cdot \sigma_2 = 1$





Defined pointwise on $\boldsymbol{\Omega}$

Measuring Distortion

• **Local** distortion measure function of σ_1 and σ_2

 $E: (\mathbb{R}_+ \times \mathbb{R}_+) \to \mathbb{R}, \quad (\sigma_1, \sigma_2) \mapsto E(\sigma_1, \sigma_2)$

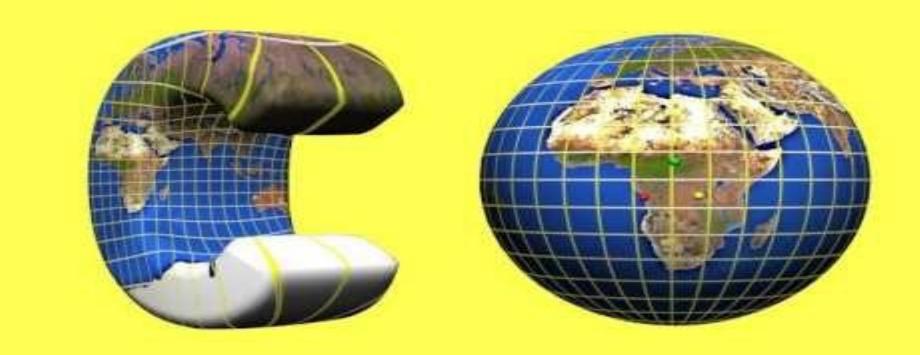
• **Overall** distortion

$$E(f) = \int_{\Omega} E(\sigma_1(u, v), \sigma_2(u, v)) \, du \, dv \Big/ \mathsf{Area}(\Omega)$$

• On mesh constant per triangle

$$E(f) = \sum_{t \in \Omega} E(t)A(t) / \sum_{t \in \Omega} A(t)$$

CONFORMAL MAPS



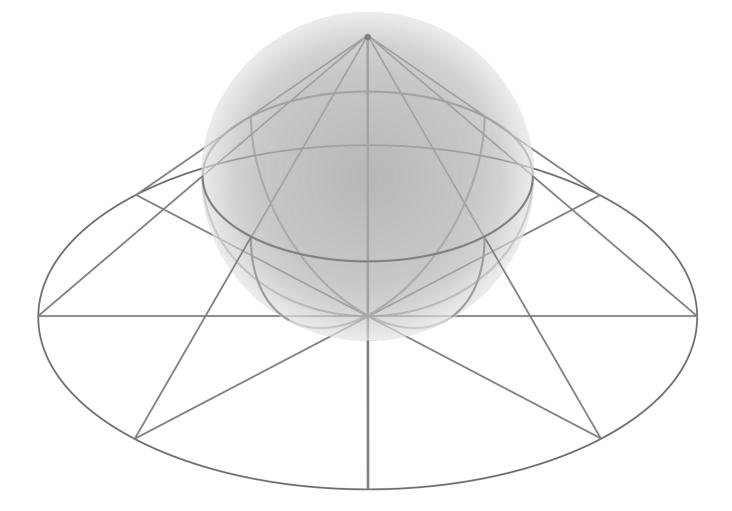
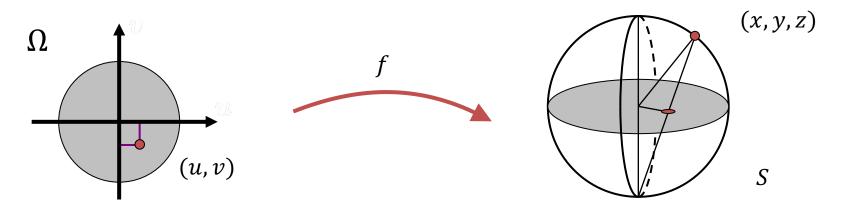


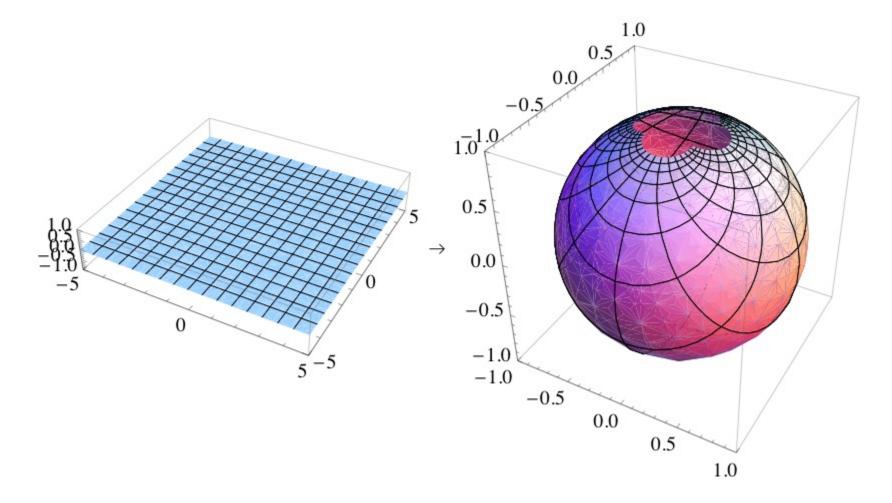
Image from Wikipedia

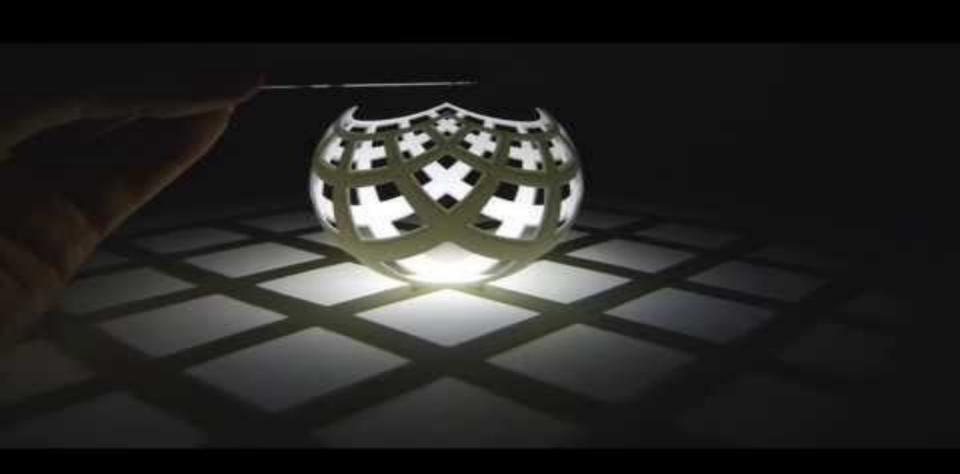


parameterization: $f(u, v) = (2ud, 2vd, (1 - u^2 - v^2)d)$ with $d = \frac{1}{1 + u^2 + v^2}$ Jacobian: $J_f = \begin{pmatrix} 2d - 4u^2d^2 & -4uvd^2 \\ -4uvd^2 & 2d - 4v^2d^2 \\ -4ud^2 & -4vd^2 \end{pmatrix}$

first fundamental form: $\mathbf{I}_f = \begin{pmatrix} 4d^2 & 0 \\ 0 & 4d^2 \end{pmatrix}$

eigenvalues:
$$\lambda_1 = 4d^2$$
, $\lambda_2 = 4d^2$
 $\sigma_1 = \sigma_2 = 2d \implies conformal$





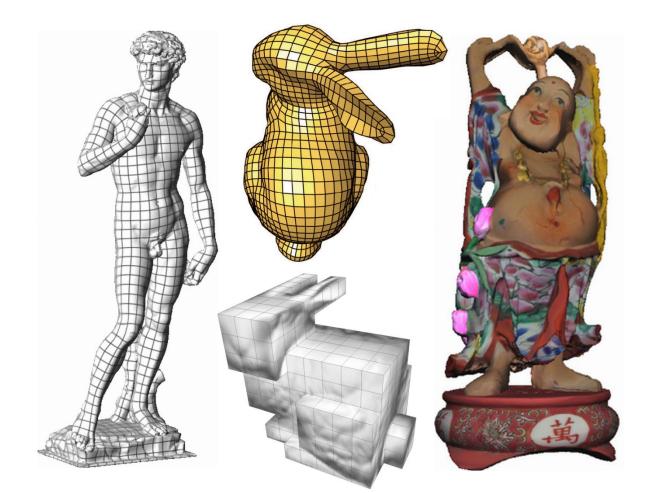
Does conformal map exist? TLDR: Yes!

Uniformization theorem

"Every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces:

- 1. open unit disk
- 2. complex plane
- 3. Riemann sphere"

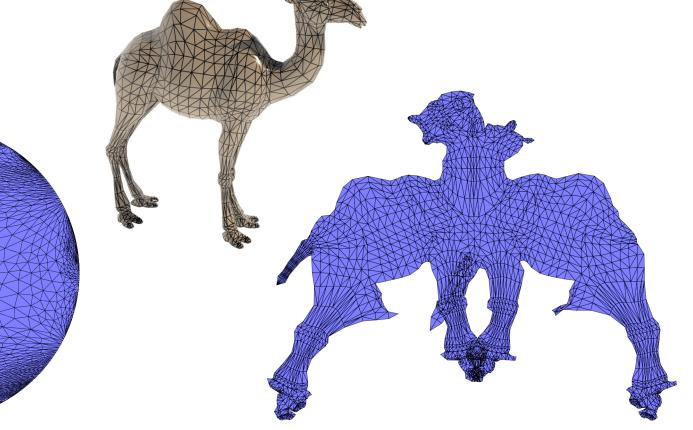
Parameterization: Practice

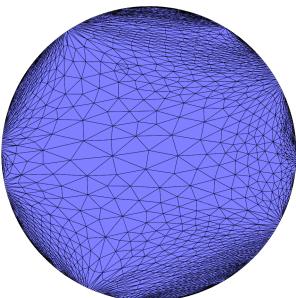


MESH PARAMETERIZATION METHODS

Fixed Boundary Bijectivity: easy Distortion: may be large Free boundary

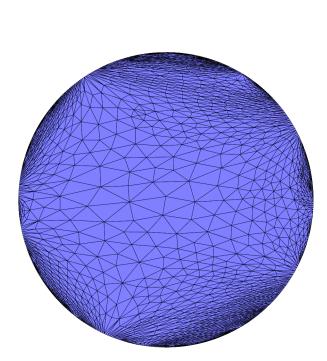
Bijectivity: hard Distortion: minimum



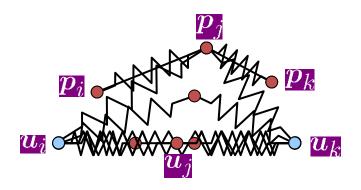


MESH PARAMETERIZATION METHODS

Fixed Boundary Bijectivity: easy Distortion: may be large **Free** boundary Bijectivity: hard Distortion: minimum



Spring Model



- Fix boundary vertices on *a convex* polygon
 - Edges \rightarrow springs
 - Let go of the springs
 - "Relaxation"

Spring Model

Hooke's Law:

Energy of spring between p_i and p_j $E_{ij} = 0.5 D_{ij} \|u_i - u_j\|_2^2$

> **Total energy** $E = \sum_{(i,j)\in E} \frac{1}{2} D_{ij} \|u_i - u_j\|^2$

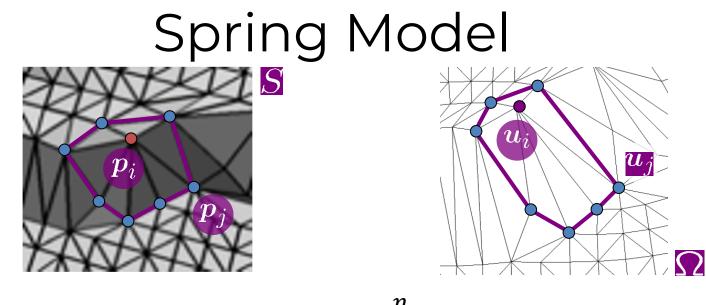
Spring Model

Hooke's Law:

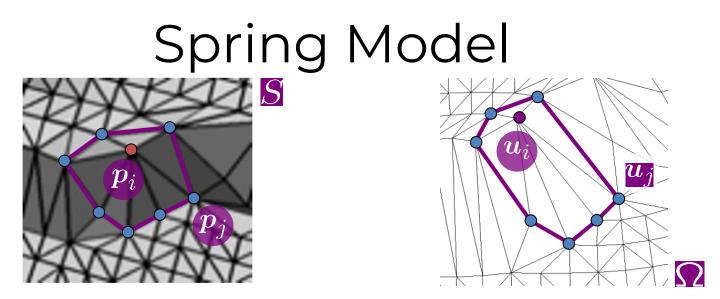
Energy of spring between p_i and p_j

Will this provide a **bijective** parameterization?

Total energy $E = \sum_{(i,j)\in E} \frac{1}{2} D_{ij} \|u_i - u_j\|^2$

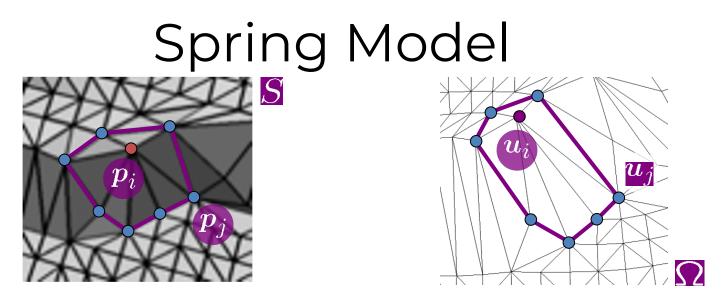


$$E = \sum_{(i,j)\in E} \frac{1}{2} D_{ij} \|u_i - u_j\|^2 = \frac{1}{2} \sum_{i=1}^n \sum_{j\in N_i} \frac{1}{2} D_{ij} \|u_i - u_j\|^2$$



$$E = \frac{1}{2} \sum_{i=1}^{n} \sum_{j \in N_i} \frac{1}{2} D_{ij} \|u_i - u_j\|^2$$

Stable state \Leftrightarrow minimum of total energy



$$E = \frac{1}{2} \sum_{i=1}^{n} \sum_{j \in N_i} \frac{1}{2} D_{ij} \|u_i - u_j\|^2$$

Stable state \Leftrightarrow minimum of total energy

$$\frac{\partial E}{\partial u_i} = \sum_{j \in N_i} D_{ij} (u_i - u_j) = 0$$

Spring Model
$$E = \frac{1}{2} \sum_{i=1}^{n} \sum_{j \in N_i} \frac{1}{2} D_{ij} \|u_i - u_j\|^2$$

$$\sum_{j\in N_i} D_{ij} (u_i - u_j) = 0$$

Rewrite:

$$u_i = \sum_{j \in N_i} \lambda_{ij} u_j \qquad \qquad \lambda_{ij} = D_{ij} / \sum_{k \in N_i} D_{ik}$$

Spring Model
$$E = \frac{1}{2} \sum_{i=1}^{n} \sum_{j \in N_i} \frac{1}{2} D_{ij} \|u_i - u_j\|^2$$

$$\sum_{j\in N_i} D_{ij} (u_i - u_j) = 0$$

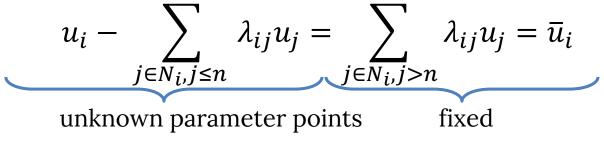
Rewrite:

$$u_{i} = \sum_{j \in N_{i}} \lambda_{ij} u_{j} \qquad \lambda_{ij} = D_{ij} / \sum_{k \in N_{i}} D_{ik}$$

A generalization of
barycentric coordinates

Linear System

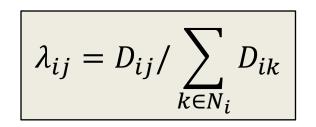
• Let's rearrange the variables:



• Linear system

$$AU = \overline{U},$$

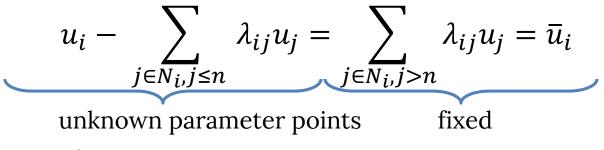
$$A = \begin{cases} 1, i = j \\ -\lambda_{ij}, j \in N_i \\ 0, else \end{cases}$$



– Solve separately for *u* and *v*

Linear System

• Let's rearrange the variables:



• Linear system

What does the matrix remind you of?

$$AU = U,$$

$$A = \begin{cases} 1, i = j \\ -\lambda_{ij}, j \in N_i \\ 0, else \end{cases}$$

$$\lambda_{ij} = D_{ij}/$$

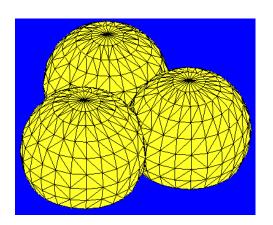
– Solve separately for *u* and *v*

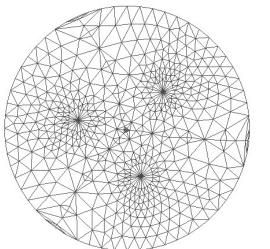
Theorem [Tutte'63,Floater'01,Maxwel'1864]: If *G* is a 3-connected planar graph (*triangular mesh*) then any convex combination embedding ($\lambda_{ij} > 0$) provides bijective parameterization

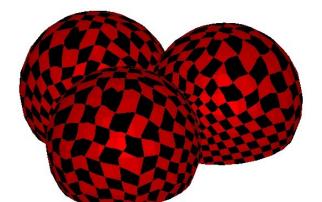
Choice of Weights: Uniform (Tutte) $D_{ij} = 1$ $\lambda_{ij} = \frac{1}{\#N_i}$

No shape preservation –equilateral triangles

Graph Laplacian!

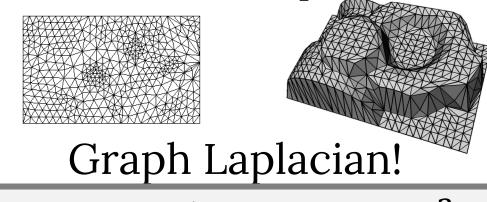




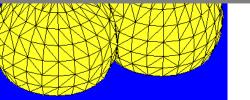


Choice of Weights: Uniform (Tutte) $D_{ij} = 1$ $\lambda_{ij} = \frac{1}{\#N_i}$

No shape preservation -equilateral triangles

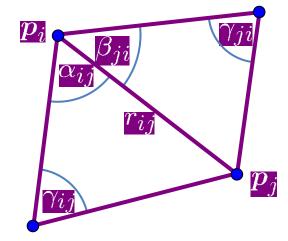


$E = \sum_{(i,j)\in E} \frac{1}{2} D_{ij} \|u_i - u_j\|^2$ is Dirichlet energy discretized on a graph!



Choice of Weights: Barycentric Harmonic/Conformal/FEM Laplacian $\omega_{ij} = \cot \gamma_{ij} + \cot \gamma_{ji}$ $\lambda_{ij} = \omega_{ij} / \sum_{k} \omega_{ik}$

$$E = \sum_{(i,j)\in E} \frac{1}{2} D_{ij} \|u_i - u_j\|^2$$
 is
Dirichlet energy discretized on a mesh!



Issue

Point is inside, but the coordinate can be <0

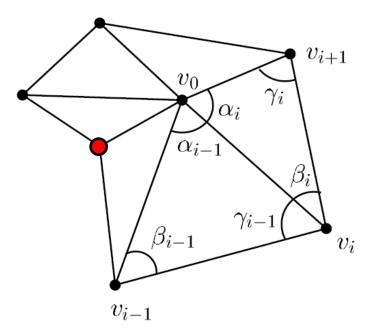


Figure 1. Star-shaped polygon.

Issue

Point is inside, but the coordinate can be <0 $\Rightarrow \exists \lambda_{ij} < 0$

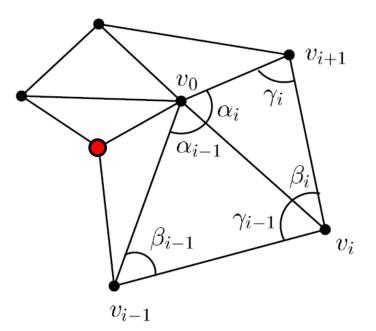
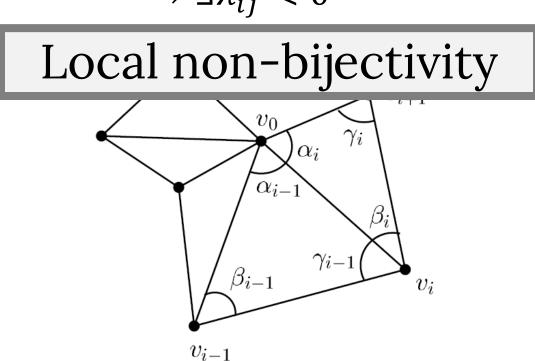
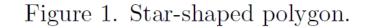


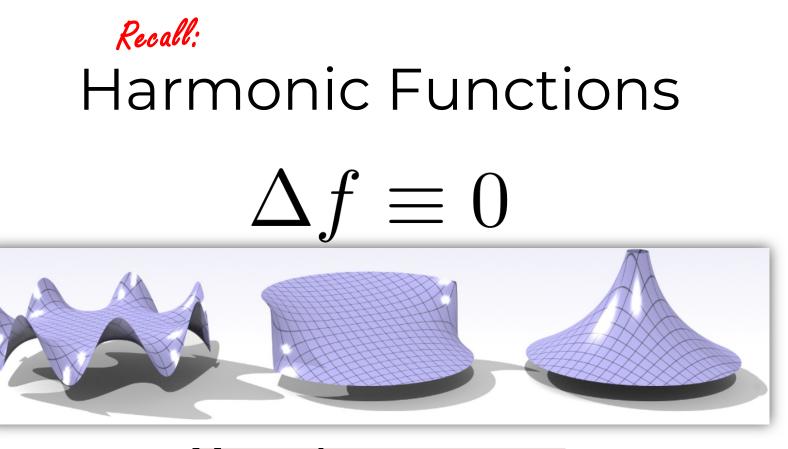
Figure 1. Star-shaped polygon.

Issue

Point is inside, but the coordinate can be <0 $\Rightarrow \exists \lambda_{ij} < 0$







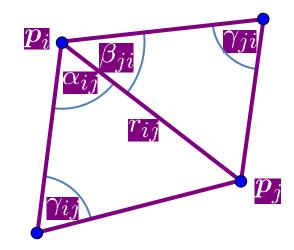
Mean value property: $f(x) = \frac{1}{\pi r^2} \int_{B_r(x)} f(y) \, dA$

Images made by E. Vouga

Choice of Weights: Mean Value

$$\omega_{ij} = \frac{\tan \frac{\alpha_{ij}}{2} + \tan \frac{\beta_{ji}}{2}}{r_{ij}}$$

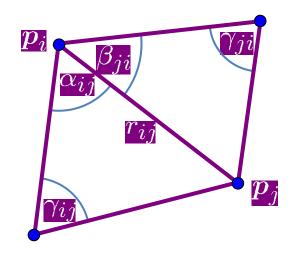
$$\lambda_{ij} = \frac{\omega_{ij}}{\sum_{k \in N_i} \omega_{ik}}$$



Choice of Weights: Mean Value

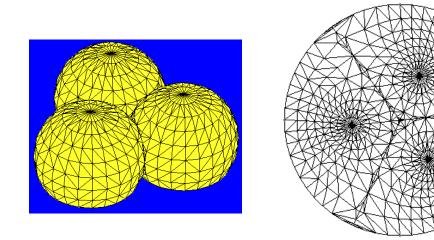
$$\omega_{ij} = \frac{\tan \frac{\alpha_{ij}}{2} + \tan \frac{\beta_{ji}}{2}}{r_{ij}}$$

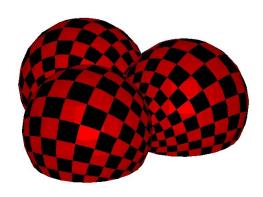
Always nonnegative



Harmonic/Mean-Value Mappings

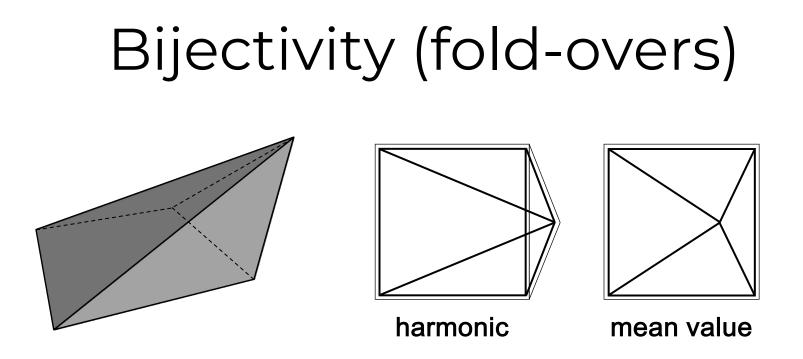
• Quasi-Conformal





Linear precision

 Reproduce planar inputs (same boundary)



- Can have fold-overs for negative coordinates
- Mean-value coordinates guaranteed to be positive

Mean Value Coordinates

Michael S. Floater

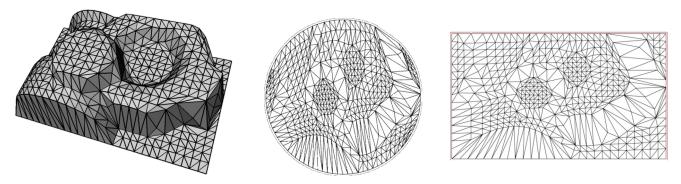
Abstract: We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its neighbouring vertices. The coordinates are motivated by the Mean Value Theorem for harmonic functions and can be used to simplify and improve methods for parameterization and morphing.

Keywords: barycentric coordinates, harmonic function, mean value theorem, parameterization, morphing.

1. Introduction

Let v_0, v_1, \ldots, v_k be points in the plane with v_1, \ldots, v_k arranged in an anticlockwise ordering around v_0 , as in Figure 1. The points v_1, \ldots, v_k form a star-shaped polygon with v_0 in its kernel. Our aim is to study sets of weights $\lambda_1, \ldots, \lambda_k \ge 0$ such that

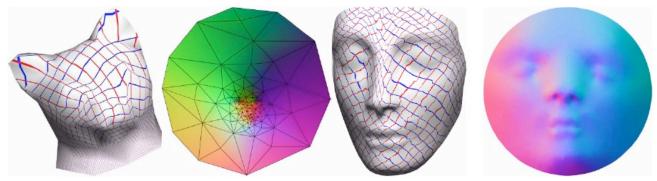
Boundary Mapping



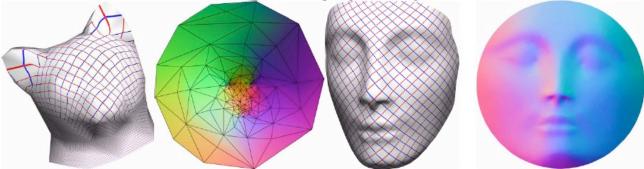
Chordal parameterization around convex shape

- circle
- rectangle
- triangle
- Choice often application specific
 - Reconstruction rectangle
 - Mapping to base mesh- triangle

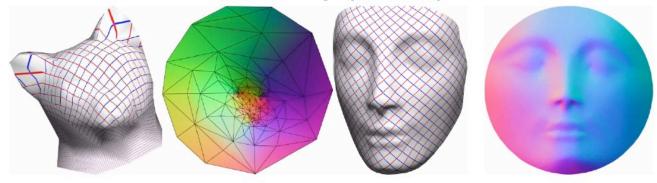
Examples



Parameterization with uniform weights [Tutte 1963] on a circular domain.

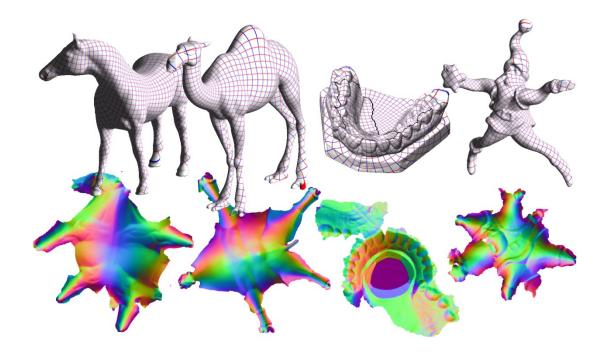


Parameterization with harmonic weights [Eck et al. 1995] on a circular domain.



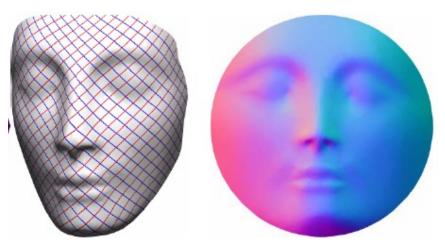
Parameterization with mean value weights [Floater 2003] on a circular domain.

Parameterization: Free Boundary

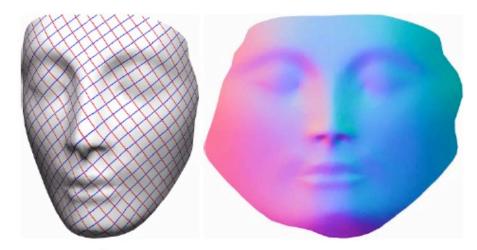


Free Boundary Methods

- Direct energy minimization
 - Example: Least Squares Conformal Map (LSCM)....
- Indirect
 - Example: Angle Based Flattening (ABF)....



ights [Floater 2003] on a circular domain.



LSCM [Lévy et al. 2002].

Free vs Fixed

LSCM – Geometric Interpretation We're minimizing conformal energy $E_c = (\sigma_1 - \sigma_2)^2/2$ P_3 α_3

 α_1

Р

 α_{γ}

Geometric Interpretation:

- Use triangle similarity
- Given angles α_1 , α_2 , α_3 of a triangle $P_1P_2P_3$ in 2D we have

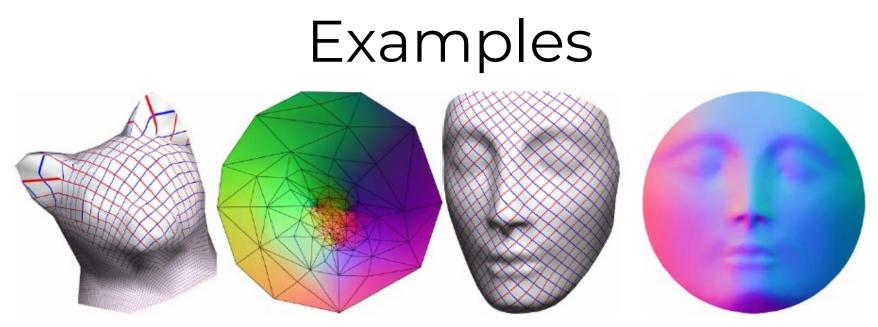
$$P_3 - P_1 = \frac{\sin \alpha_2}{\sin \alpha_3} R_{\alpha_1} (P_2 - P_1),$$
$$R_{\alpha} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$

LSCM

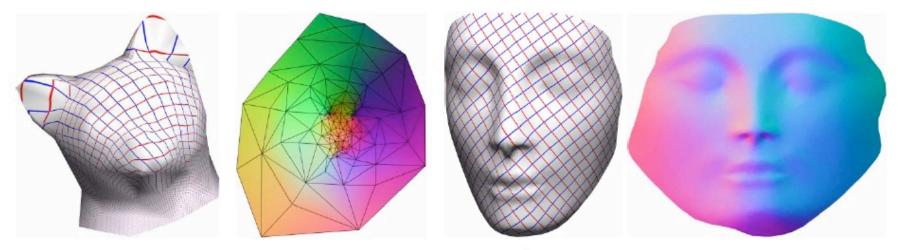
- In map from 3D to 2D might be impossible to keep angles exactly
 - Use least-squares

$$\min \sum_{i} (P_3^{i} - P_1^{i} - \frac{\sin \alpha_2^{i}}{\sin \alpha_3^{i}} R_{\alpha_1^{i}} (P_2^{i} - P_1^{i}))^2$$

- To solve need to fix two vertices
 - Obtain linear system
 - Choice of vertices affects solution
- Can have flips



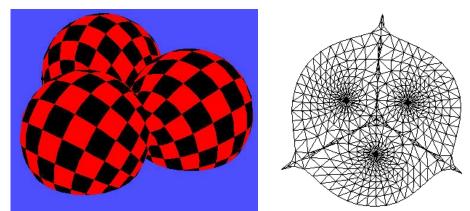
Parameterization with mean value weights [Floater 2003] on a circular domain.

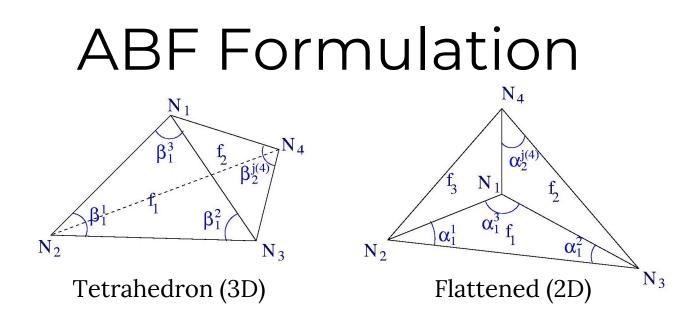


Parameterization with LSCM [Lévy et al. 2002].

ABF: Angle Based Flattening

- Triangular 2D mesh is defined by its angles
- Formulate parameterization as problem in angle space
- Angle based formulation:
 - Distortion as function of angles (conformality)
 - Validity: set of angle constraints
 - Convert solution to UV





• Distortion:

$$-2D/3D$$
 angle difference

$$\sum_{t \in T, j=1...3} w_j^t (\alpha_j^t - \beta_j^t)^2, w_j^t = 1/\beta_j^{t^2}$$

ABF Formulation

Constraints:

- Triangle validity: $\forall t \in T, \quad \alpha_1^t + \alpha_2^t + \alpha_3^t - \pi = 0;$ - Planarity:

$$\sum_{t \in T, j=1\dots 3} w_j^t (\alpha_j^t - \beta_j^t)^2 , w_j^t =$$

 $1/\beta_i^{t^2}$

Distortion:

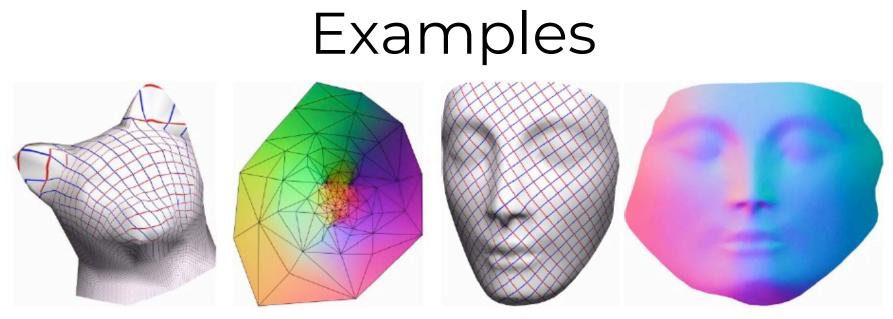
$$\forall v \in V_{int}, \quad \sum_{(t,k)\in v^*} \alpha_k^t - 2\pi = 0$$

Reconstruction

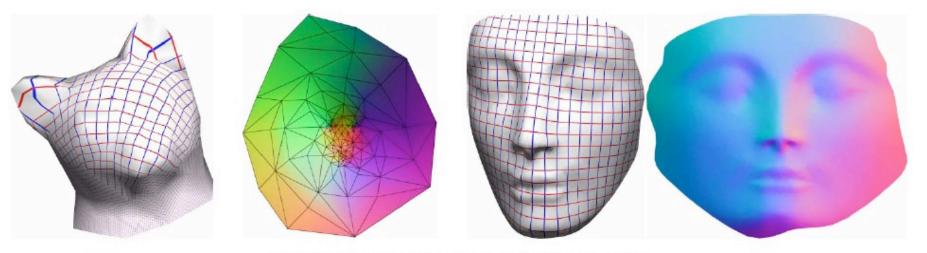
 $\begin{aligned} \forall v \in V_{int}, \quad \prod_{(t,k) \in v^*} \sin \alpha_{k\oplus 1}^t - \prod_{(t,k) \in v^*} \sin \alpha_{k\oplus 1}^t &= 0 \\ - \text{Positivity} \\ \alpha_i^t &> 0 \end{aligned}$

Angle to UV Conversion

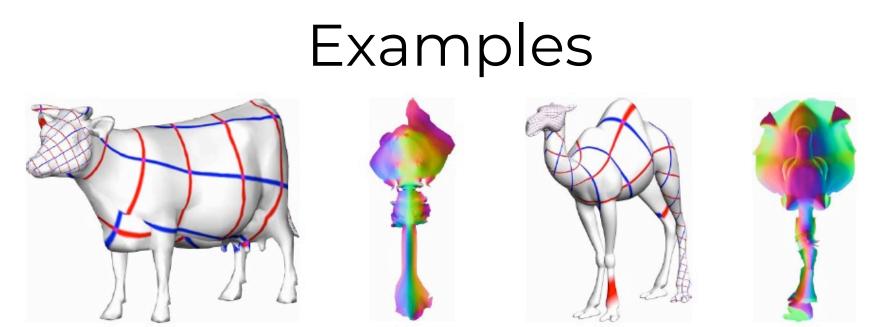
• Use computed angles as input to LSCM (it is a reproducing method..)



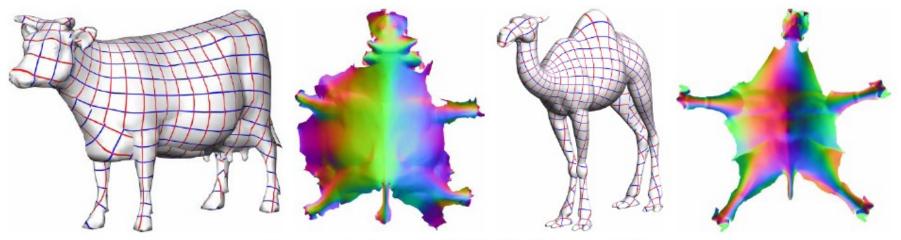
Parameterization with LSCM [Lévy et al. 2002].



Parameterization with ABF++ [Sheffer et al. 2005].



Parameterization with LSCM [Lévy et al. 2002].



Parameterization with ABF++ [Sheffer et al. 2005].

Cone Singularities [Kharevych:06]

- What separates boundary from interior in angle space?
- Answer: Sum of angles at vertex
- Formulation specific
 - ABF/ABF++
 - Planarity & Reconstruction

$$\forall v \in V_{int}, \quad \sum_{(t,k) \in v^*} \alpha_k^t - 2\pi = 0$$

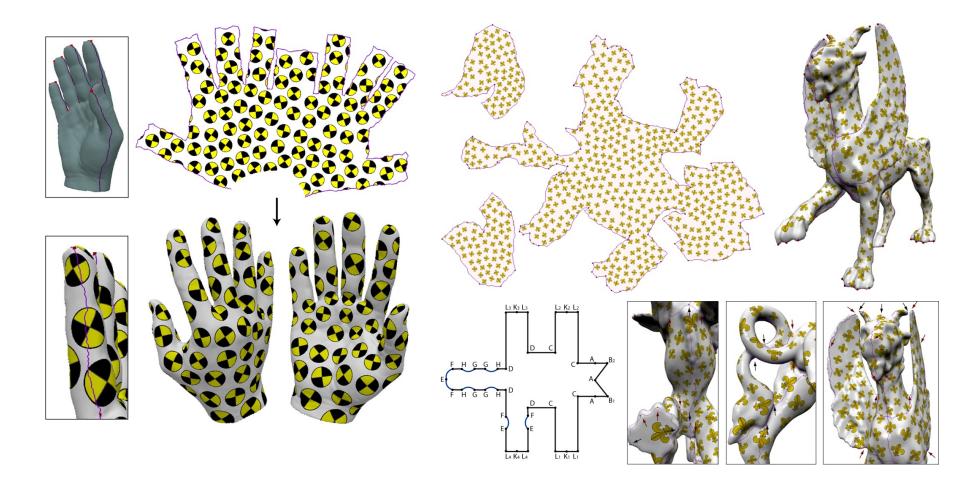
• But... reconstruction can be enforced on boundaries

$$\forall v \in V_{int}, \quad \prod_{(t,k) \in v^*} \sin \alpha_{k\oplus 1}^t - \prod_{(t,k) \in v^*} \sin \alpha_{k\oplus 1}^t = 0$$

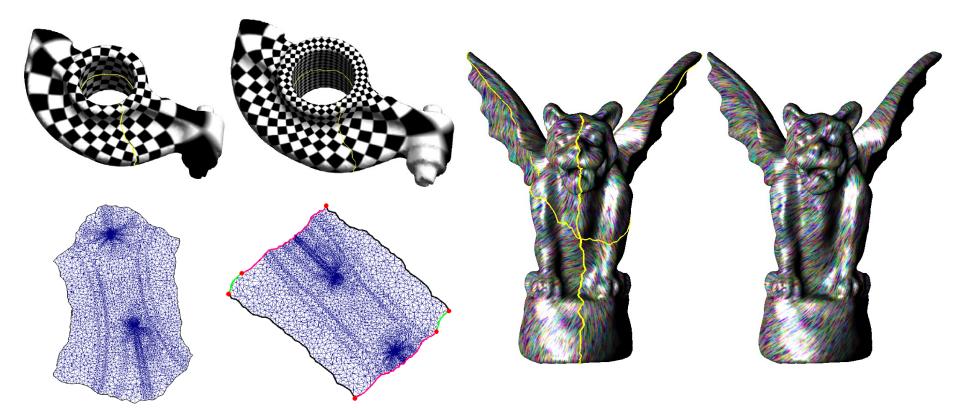
Cone Singularities

- Idea: Reduce boundary to small set of vertices
- Implementation:
 - Enforce "interior" constraints at all other vertices
- To unfold choose any sequence of edges connecting "boundary" vertices

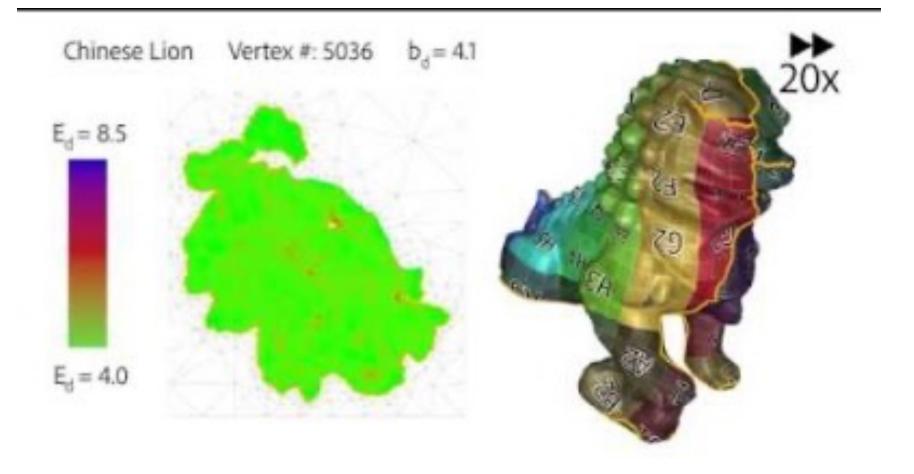
Circle Patterns + Cone Singularities



ABF + Cone Singularities



Optimize parameterization + cuts



• Choose an energy

Name	$\mathfrak{D}(\mathbf{J})$	$\mathcal{D}(\sigma)$
Symmetric Dirichlet	$\ \mathbf{J}\ _F^2 + \ \mathbf{J}^{-1}\ _F^2$	$\sum_{i=1}^{n} (\sigma_i^2 + \sigma_i^{-2})$
Exponential		
Symmetric		
Dirichlet	$\exp(s(\ \mathbf{J}\ _F^2 + \ \mathbf{J}^{-1}\ _F^2))$	$\exp(s\sum_{i=1}^{n}(\sigma_i^2+\sigma_i^{-2}))$
Hencky strain	$\left\ \log \mathbf{J}^{\!\!\top} \!\mathbf{J} \right\ _F^2$	$\sum_{i=1}^{n} (log^2 \sigma_i)$
AMIPS	$\exp(s \cdot \frac{1}{2}(\frac{\operatorname{tr}(\mathbf{J}^{T}\mathbf{J})}{\operatorname{det}(\mathbf{J})}$	$\exp(s(\frac{1}{2}(\frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1})$
	$+\frac{1}{2}(\det(\mathbf{J}) + \det(\mathbf{J}^{-1})))$	$+\frac{1}{4}(\sigma_1\sigma_2+\frac{1}{\sigma_1\sigma_2}))$
Conformal AMIPS 2	$Drac{\mathrm{tr}(\mathbf{J}^{\!\!\!\top}\mathbf{J})}{\mathrm{det}(\mathbf{J})}$	$\frac{\sigma_1^2 + \sigma_2^2}{\sigma_1 \sigma_2}$
Conformal AMIPS $3D \frac{\operatorname{tr}(\mathbf{J}^{T}\mathbf{J})}{2}$		$\frac{\sigma_1^2 + \sigma_2^2 + \sigma_3^2}{(\sigma_1 \sigma_2 \sigma_3)^{\frac{2}{3}}}$
	$\det(\mathbf{J})^{\frac{2}{3}}$	$(\sigma_1 \sigma_2 \sigma_3)^{\frac{2}{3}}$

Conformal Energies

• **Conformal** energy

 $E_C = (\sigma_1 - \sigma_2)^2/2$

[Pinkall & Polthier 1993] [Lévy et al. 2002] [Desbrun et al. 2002]

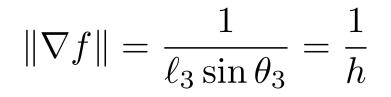
• **MIPS** energy

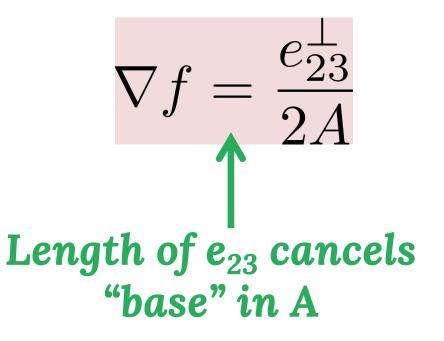
$$E_{M} = \kappa_{F}(J_{f}) = \|J_{f}\|_{F} \|J_{f}^{-1}\|_{F} = \frac{\sigma_{1}}{\sigma_{2}} + \frac{\sigma_{2}}{\sigma_{1}}$$

[Hormann & Greiner 2000]

Recall: Gradient of a Hat Function

 e_{23}





Parameterization Jacobian

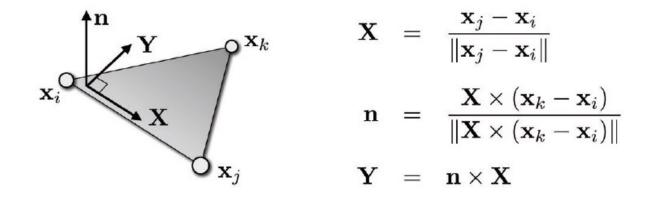


Figure 5.9. Local X, Y basis in a triangle.

$$\nabla u = \begin{bmatrix} \frac{\partial u}{\partial X} \\ \frac{\partial u}{\partial Y} \end{bmatrix} = \underbrace{\frac{1}{2A_T} \begin{bmatrix} Y_j - Y_k & Y_k - Y_i & Y_i - Y_j \\ X_k - X_j & X_i - X_k & X_j - X_i \end{bmatrix}}_{=\mathbf{M}_T} \begin{pmatrix} u_i \\ u_j \\ u_k \end{pmatrix}$$

Parameterization Jacobian

$$\nabla u = \begin{bmatrix} \frac{\partial u}{\partial X} \\ \frac{\partial u}{\partial Y} \end{bmatrix} = \underbrace{\frac{1}{2A_T} \begin{bmatrix} Y_j - Y_k & Y_k - Y_i & Y_i - Y_j \\ X_k - X_j & X_i - X_k & X_j - X_i \end{bmatrix}}_{=\mathbf{M}_T} \begin{pmatrix} u_i \\ u_j \\ u_k \end{pmatrix}$$

$$\mathbf{J}_T = \begin{bmatrix} \frac{\partial u}{\partial X} & \frac{\partial v}{\partial X} \\ \frac{\partial u}{\partial Y} & \frac{\partial v}{\partial Y} \end{bmatrix}$$

Detailed Example

Given a triangle *T* with 2D texture coordinates p_1, p_2, p_3 , $p_i = (s_i, t_i)$, and corresponding 3D coordinates q_1, q_2, q_3 , the unique affine mapping S(p) = S(s,t) = q is

 $S(p) = \left(\left\langle p, p_2, p_3 \right\rangle q_1 + \left\langle p, p_3, p_1 \right\rangle q_2 + \left\langle p, p_1, p_2 \right\rangle q_3 \right) / \left\langle p_1, p_2, p_3 \right\rangle$

$$\begin{split} S_s &= \partial S / \partial s = \left(q_1 (t_2 - t_3) + q_2 (t_3 - t_1) + q_3 (t_1 - t_2) \right) / (2A) \\ S_t &= \partial S / \partial t = \left(q_1 (s_3 - s_2) + q_2 (s_1 - s_3) + q_3 (s_2 - s_1) \right) / (2A) \\ A &= \left\langle p_1, p_2, p_3 \right\rangle = \left((s_2 - s_1) (t_3 - t_1) - (s_3 - s_1) (t_2 - t_1) \right) / 2 \end{split}$$

Singular values: $\sqrt{0.5((a+c) \pm \sqrt{(a-c)^2 + 4b^2})}$

$$a = S_s \cdot S_s$$
, $b = S_s \cdot S_t$, and $c = S_t \cdot S_t$

- Choose an energy
- Start with an initial bijective parameterization
 E.g. Tutte

- Choose an energy
- Start with an initial bijective parameterization
 E.g. Tutte
- Use nonlinear optimization tools to minimize
 - Gradient descent
 - Quasi-Newton methods

- ...

- Choose an energy
- Start with an initial bijective parameterization
 E.g. Tutte
- Use nonlinear optimization tools to minimize
 - Gradient descent

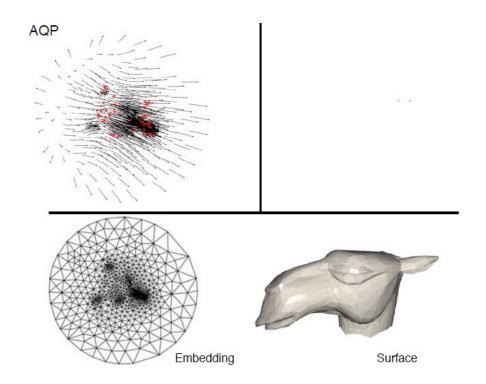
- ...

- Quasi-Newton methods
- How to preserve bijectivity?

What is gradient of E w/r to positions?

What is gradient of E w/r to positions?

A vector field!

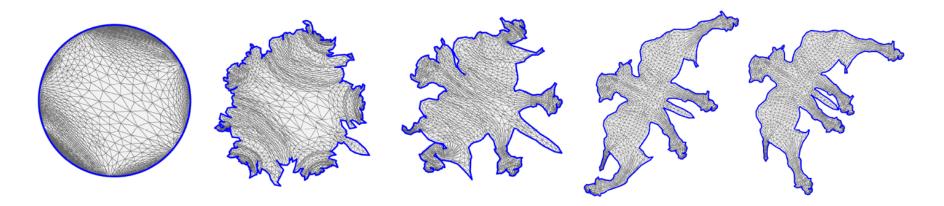


Scaling vector field

- Find a scale parameter, s.t. nothing flips if we add the vector field
- Limit line search step to this value

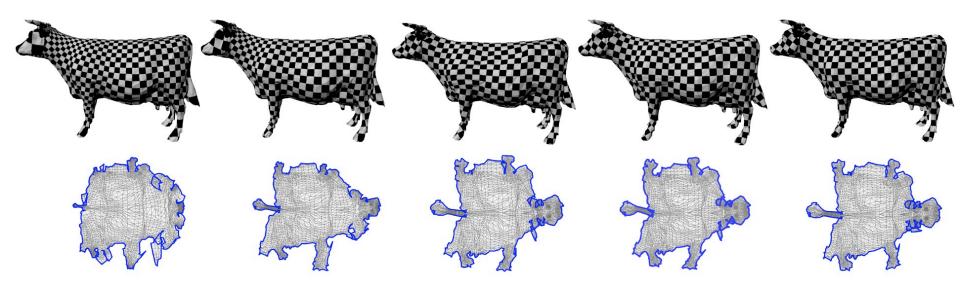
Bijective Parameterization with Free Boundaries

Jason Smith* Texas A&M University Scott Schaefer[†] Texas A&M University



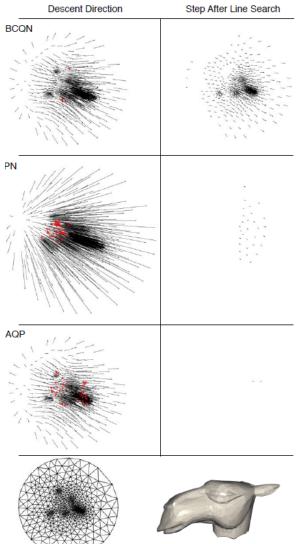
Issues

• Only local injectivity



Issues

- Only local injectivity
- Sometimes the step size is too small
 - One almost inverted triangle is enough



Embedding

Surface