IFT 6113 SURFACE RECONSTRUCTION

tiny.cc/ift6113

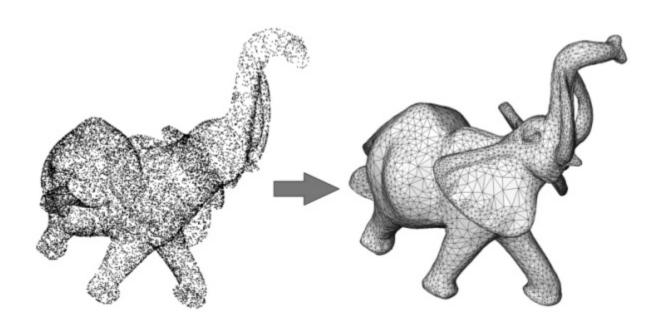
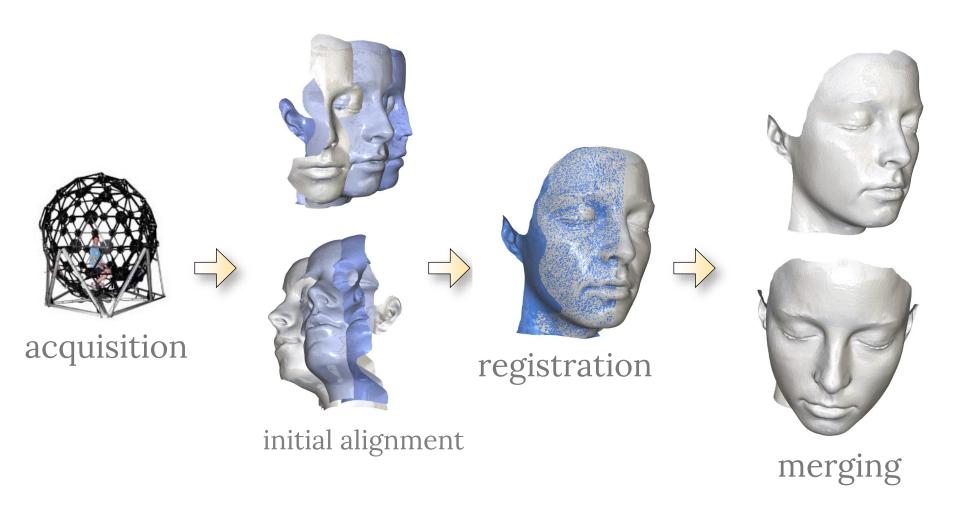


Image from https://doc.cgal.org/latest/Poisson_surface_reconstruction_3/index.html

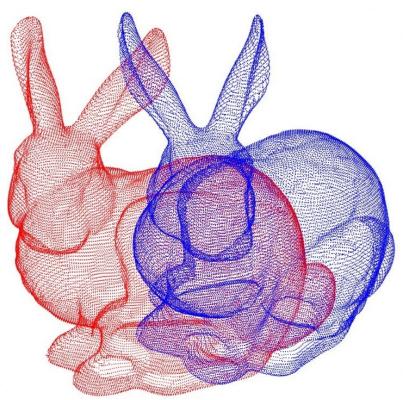
Mikhail Bessmeltsev

Some slides from Justin Solomon, Alla Sheffer, and Hao Li

3D Reconstruction Pipeline

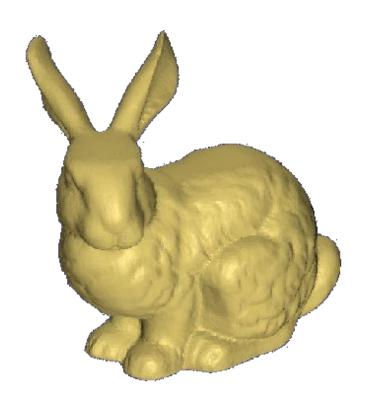


Two components



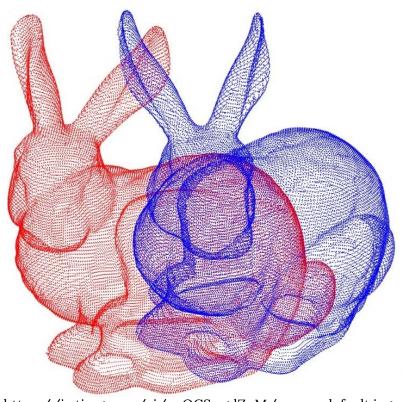
https://i.ytimg.com/vi/uzOCS_gdZuM/maxresdefault.jpg

Registration



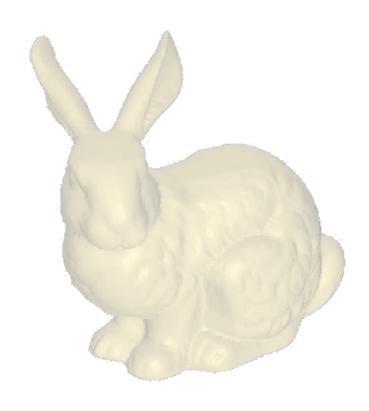
Meshing

Two components



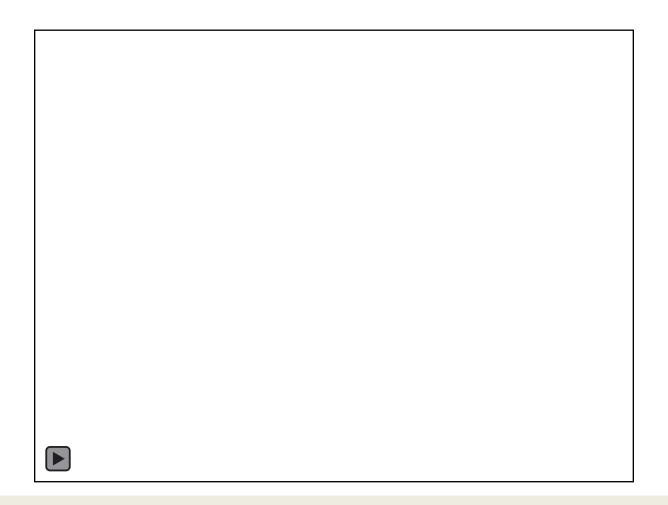
https://i.ytimg.com/vi/uzOCS_gdZuM/maxresdefault.jpg

Registration



Meshing

Registration Problem



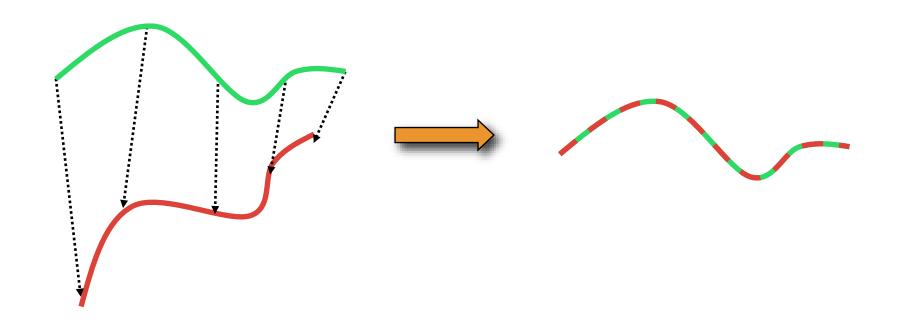
Align two overlapping objects

Rough Plan

• ICP algorithm A classic!

ICP variants

Starting Point



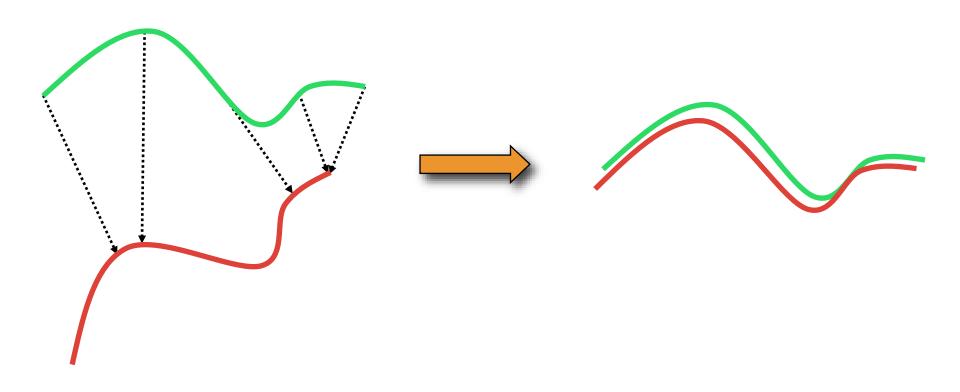
$$q_i = Rp_i + t$$

Can align given enough matches

How many correspondences determine R and t?

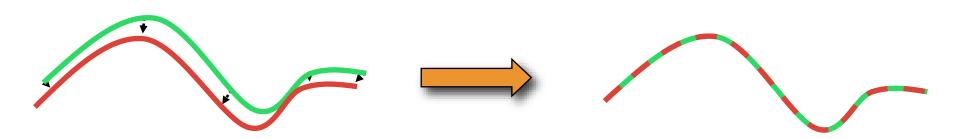
How do you get correspondences?

Rough Approximation



Closest points correspond

Try a Second Time...



Iterative Closest Point (ICP)

- Choose e.g. 1000 random points
- Match each to closest point on other scan
- Reject pairs with distance > k times media $E[R,t] := \sum \|Rp_i + t q_i\|^2$
- Minin

• Iterate "A method for registration of 3-D shapes."
Besl and McKay, PAMI 1992.

On the Board

$$\min_{t \in \mathbb{R}^3, \ R^\top R = I} \sum_{i} ||Rp_i + t - q_i||^2$$

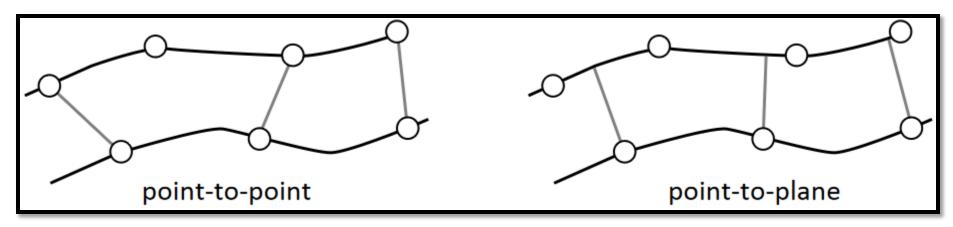
Closed-form formulas!

Many (!) Variants of ICP

- Source points from one or both meshes
 - Matching to points in the other mesh
 - Weighting correspondences
 - Rejecting outlier point pairs
 - Alternative error metrics

Point-to-Plane Error Metric

Flat parts can slide along each other



$$E[R, t] := \sum_{i} ((Rp_i + t - q_i)^{\top} n_i)^2$$

$$\approx \sum_{i} [(p_i - q_i)^{\top} n_i + r^{\top} (p_i \times n_i) + t^{\top} n_i)^2 \text{ after linearizing}$$

where $r := (r_x, r_y, r_z)$

Least-squares!

"Object modelling by registration of multiple range images"

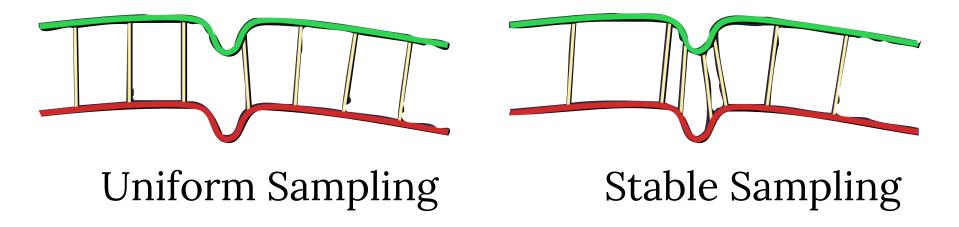
Chen and Medioni, Image and Vision Computing 10.3 (1992); image courtesy N. Mitra

Closest Compatible Point

Can improve matching effectiveness by restricting match to compatible points

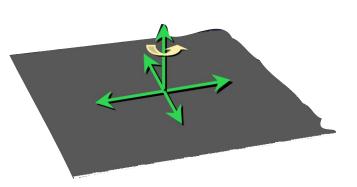
- Compatibility of colors [Godin et al. 94]
- Compatibility of normals [Pulli 99]
- Other possibilities: curvatures, higher-order derivatives, and other local features

Choose Points to Improve Stability



Sample discriminative points

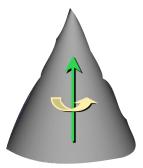
Local Covariance



3 small eigenvalues

2 translation

1 rotation

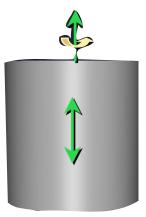


1 small eigenvalue

1 rotation

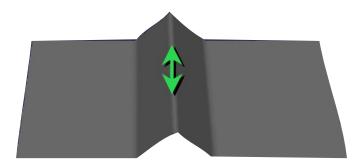
3 small eigenvalues

3 rotation



2 small eigenvalues

1 translation 1 rotation

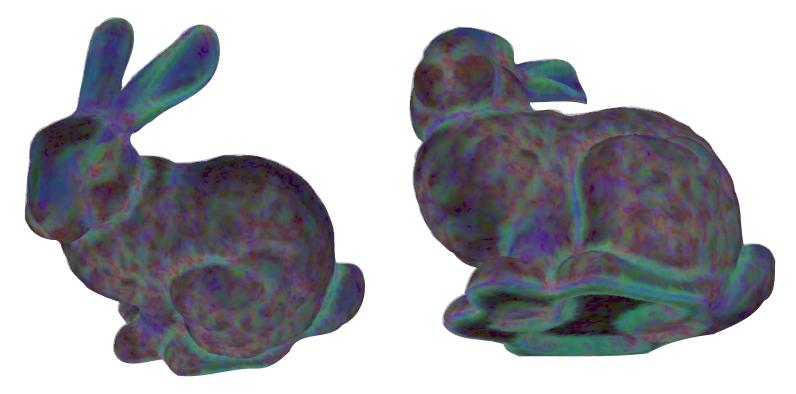


1 small eigenvalue

1 translation

[Gelfand et al. 2004]

Stability Analysis



Key:

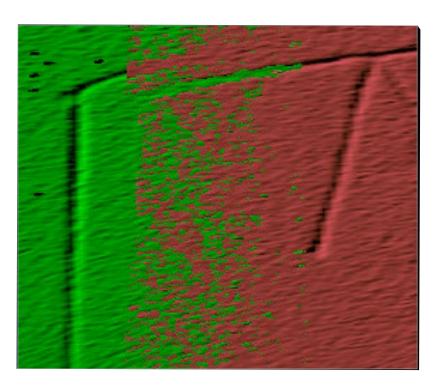
3 DOFs stable

5 DOFs stable

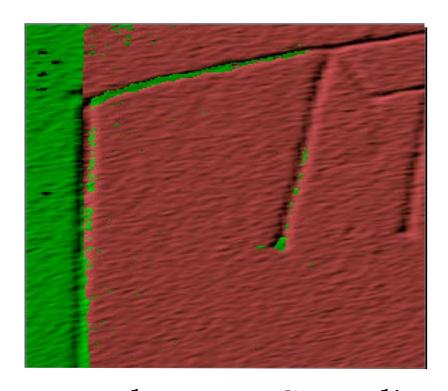
4 DOFs stable

6 DOFs stable

Alternative: Uniform Normals

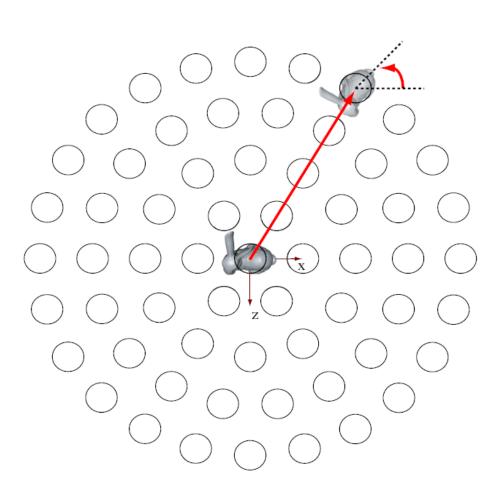


Random Sampling

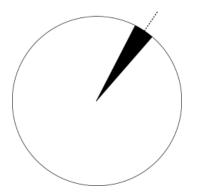


Normal-space Sampling

Convergence Funnel Visualization

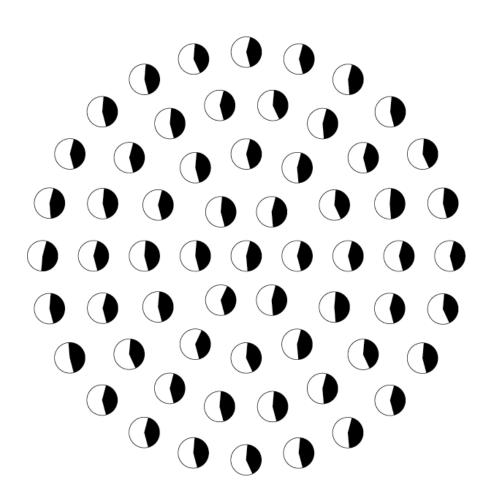


Translation in xz plane **Rotation** about y

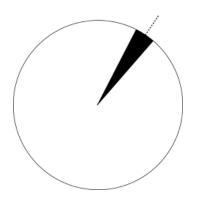


- Converges
- Does not converge

Distance Field Method

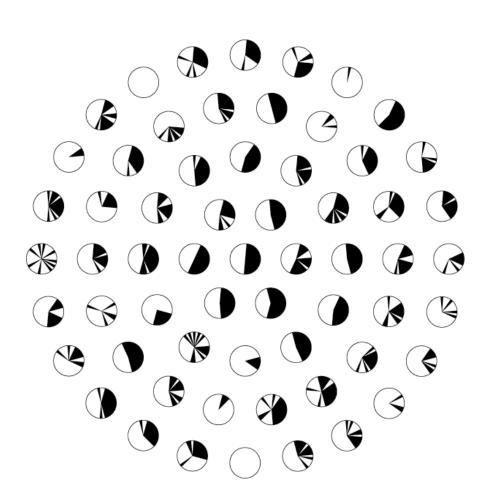


Translation in xz plane **Rotation** about y

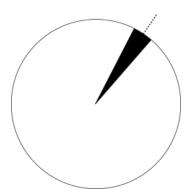


- Converges
- Does not converge

Point-to-Plane

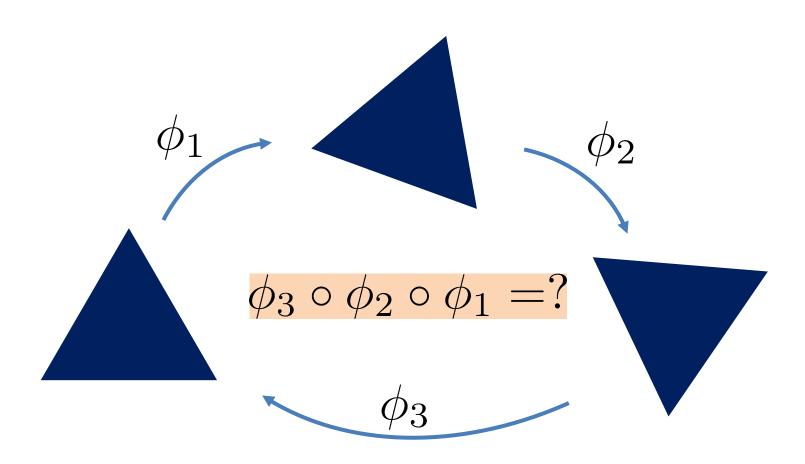


Translation in xz plane **Rotation** about y



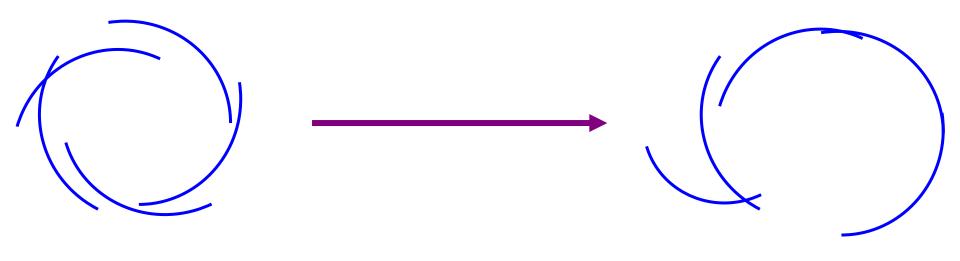
- Converges
- Does not converge

Issue: ICP Three Times



Usually have ≥ 2 scans

Improve Sequential Alignment?



Prevent "drift"

Simple Methods

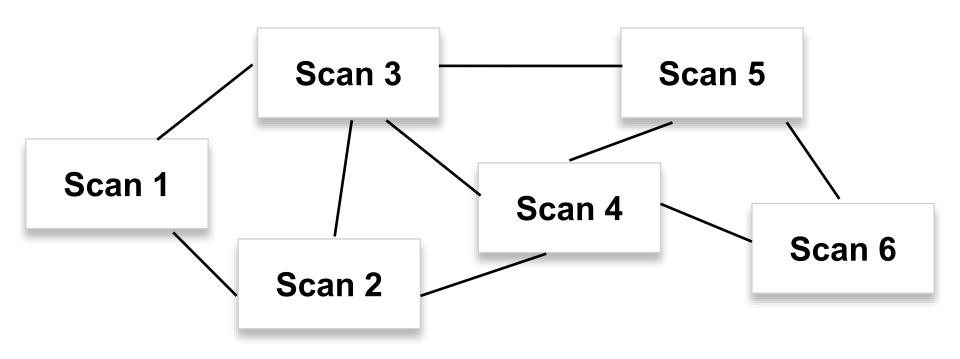
• Align everything to anchor scan Which to choose? Dependence on anchor?

• Align to union of previous scans Order dependence? Speed?

Simultaneously align everything using ICP

Local optima? Computational expense?

Graph Approach



Align similar scans, then assemble

Lu and Milios

• Pairwise phase
Compute pairwise ICP on graph

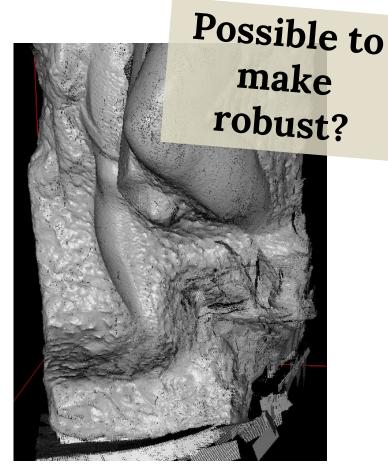
Global alignment

Least-squares rotation/translation

Linearize for global alignment

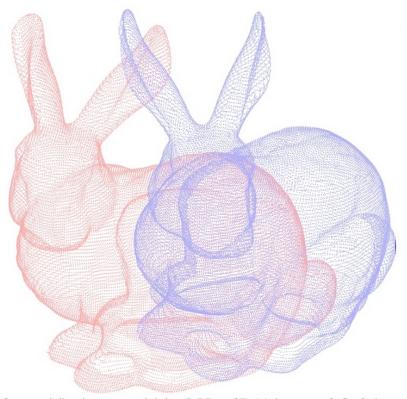
Failed ICP in Global Registration

Correct global registration



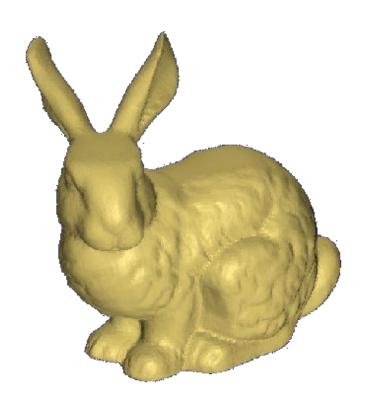
Global registration including bad ICP

Two components



https://i.ytimg.com/vi/uzOCS_gdZuM/maxresdefault.jpg

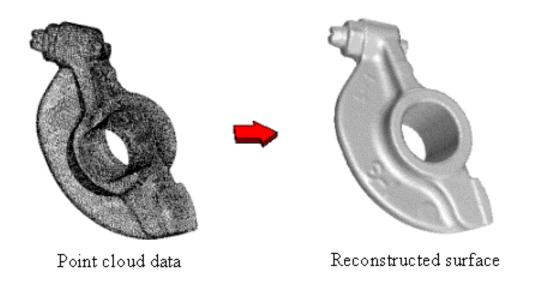
Registration



Meshing

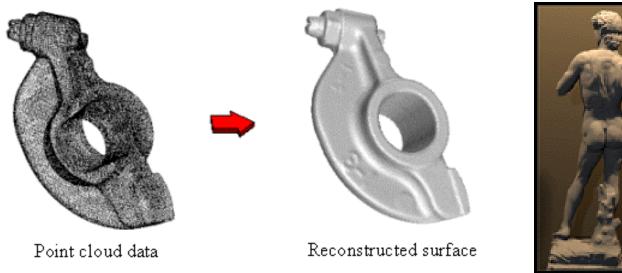
Triangulating Point Clouds

Connect neighboring points into triangles



Triangulating Point Clouds

Connect neighboring points into triangles



Who are the neighbors?

⇔ What's the connectivity/topology

Methods

- Explicit, or reconstruction circa 1998
 - Zippering
 - Delaunay/Voronoi-based
- Implicit
 - Signed distance function
 - Poisson
- Data-driven

Methods

- Explicit, or reconstruction circa 1998
 - Zippering
 - Delaunay/Voronoi-based
- Implicit
 - Signed distance function
 - Poisson
- Data-driven

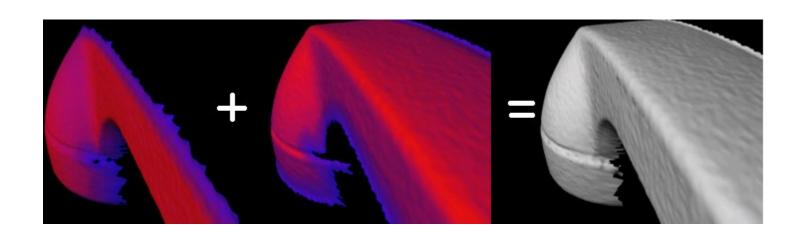
Basic Reconstruction: Zippering

Single scan → mesh

 regular lattice of points in X and Y with changing depth (Z) = height map

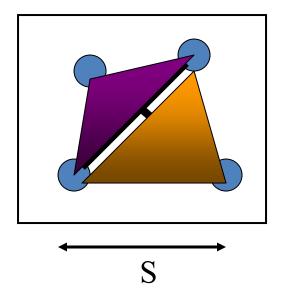
Register

Merge meshes



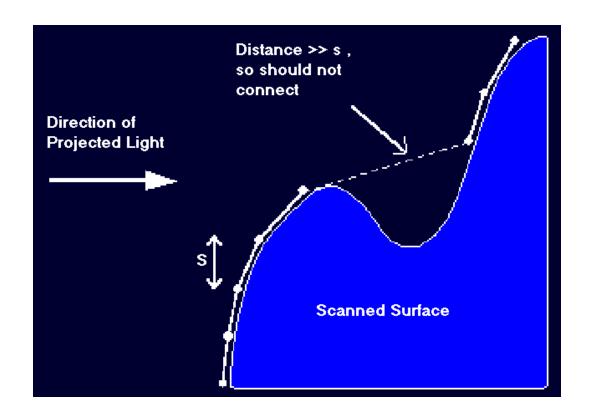
One scan → mesh

- Find quadruples of lattice points
- Form triangles
 - Find shortest diagonal
 - Form two triangles (test depth)



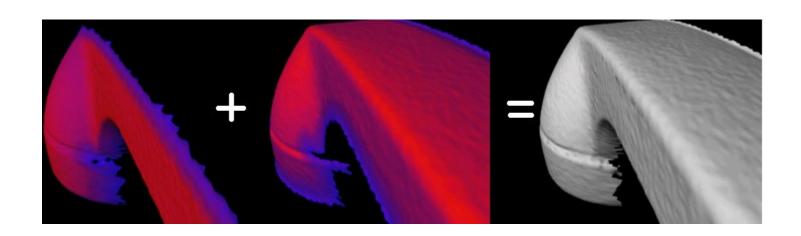
One scan → mesh

Avoid connecting depth discontinuities



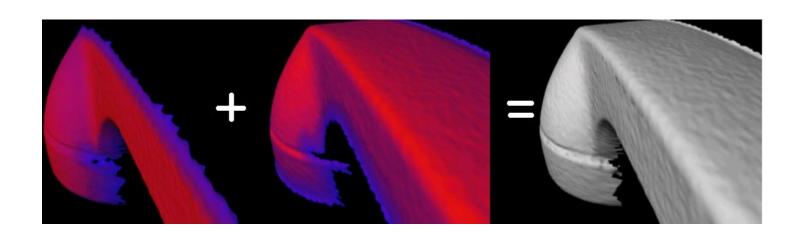
Basic Reconstruction: Zippering

✓ Single scan → meshRegisterMerge meshes



Basic Reconstruction: Zippering

- ✓ Single scan → mesh
- RegisterMerge meshes

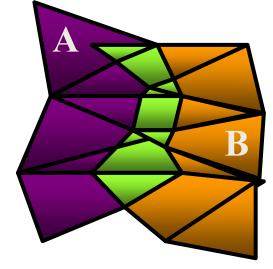


Zippering

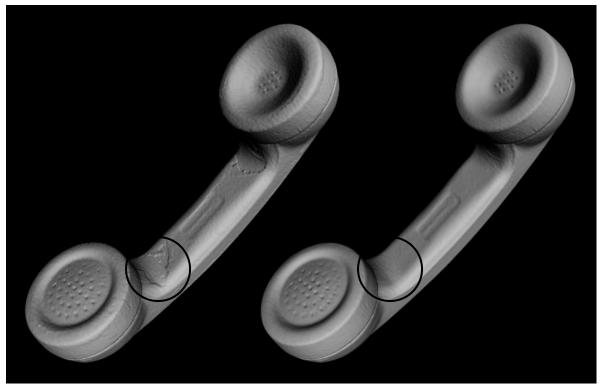
- Remove overlapping portion of the mesh
 - Use for consensus geometry
- Clip one mesh against another

Remove triangles introduced during

clipping



Post-processing



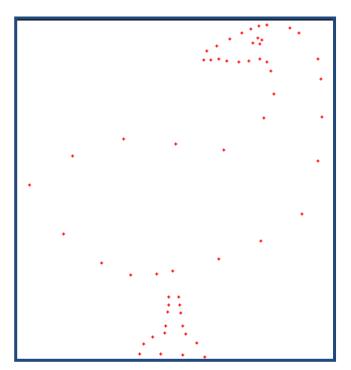
Zippering results

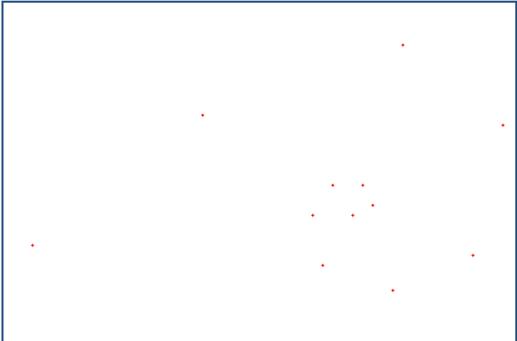
'Consensus geometry'

Move vertices to their average positions over all scans

Methods

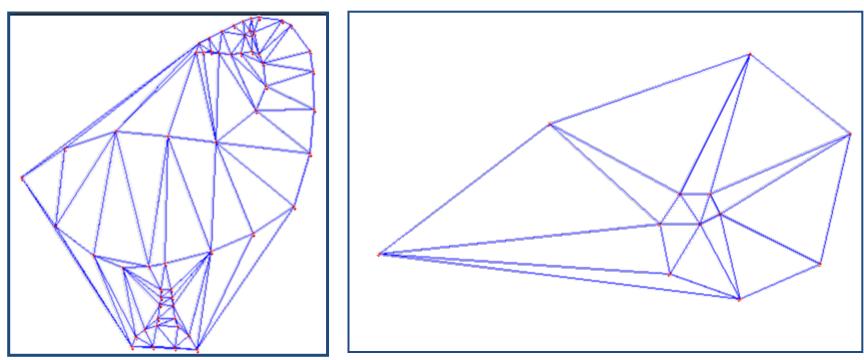
- Explicit, or reconstruction circa 1998
 - Zippering
 - Delaunay/Voronoi-based
- Implicit
 - Signed distance function
 - Poisson
- Data-driven





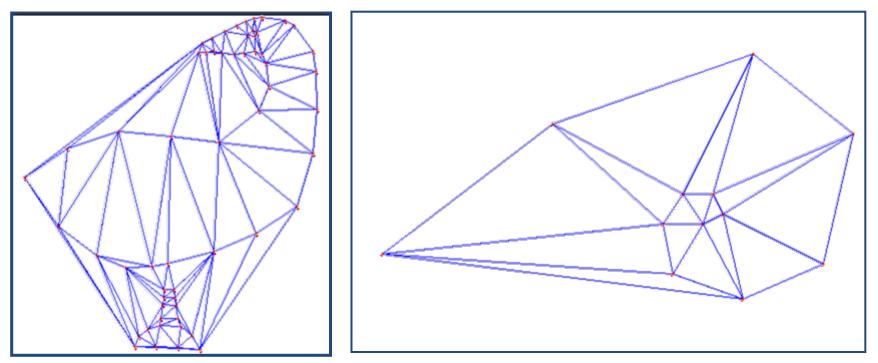
Connectivity?

Edges should be far from other points



Delaunay Triangulation

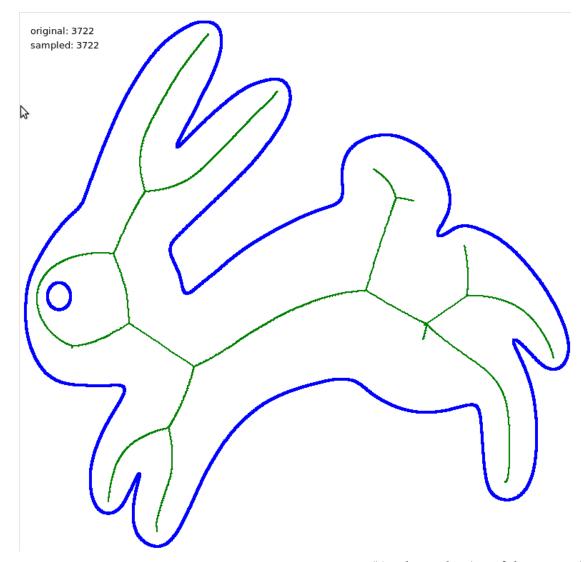
Edge e is Delaunay \Leftrightarrow some circumcircle of e contains no other sample points

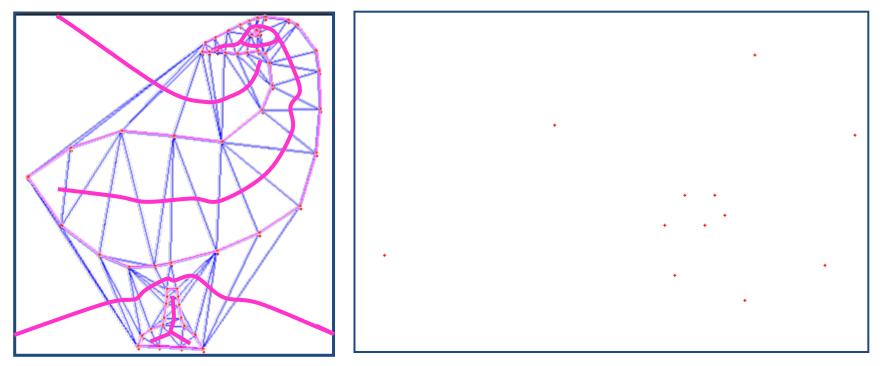


Which edges to pick?

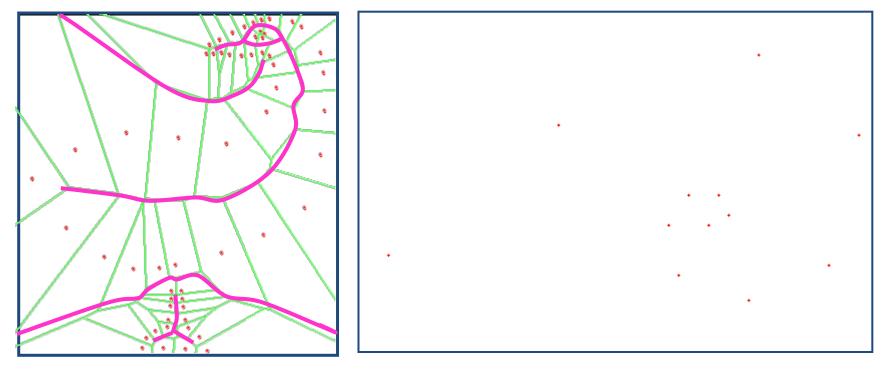
Medial axis vs Voronoi diagram

Medial axis vs Voronoi diagram

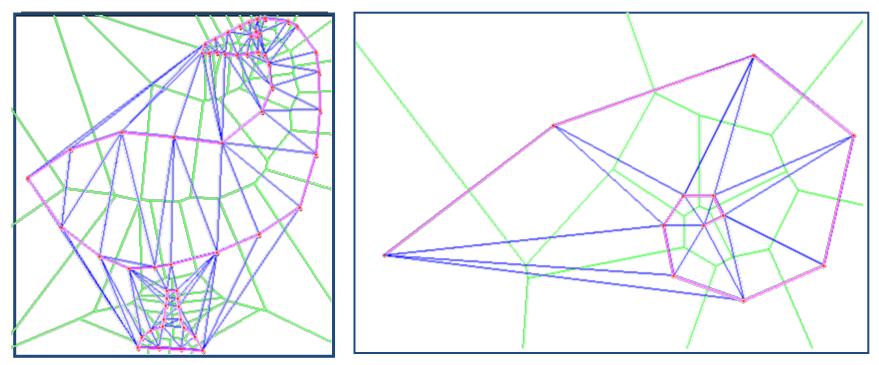




Edges should be "far" from Medial Axis

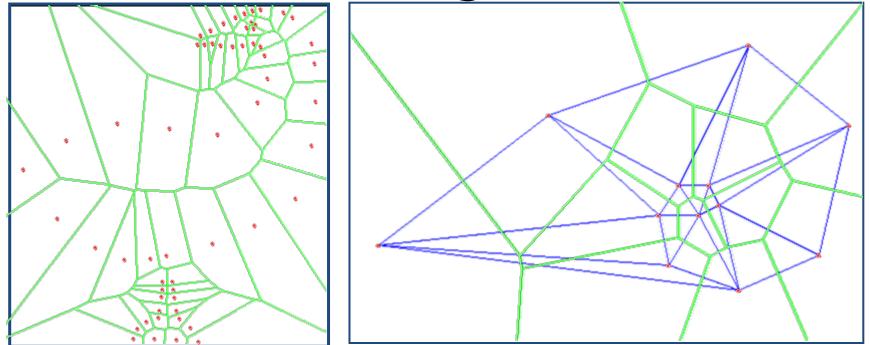


Voronoi diagram approximates Medial Axis if points are sampled densely enough

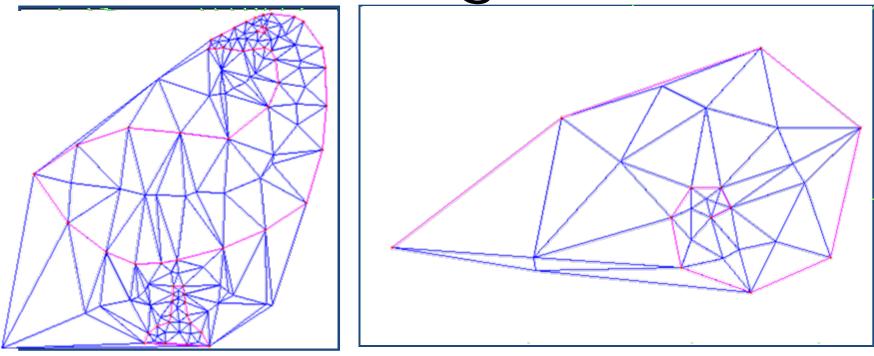


Edge e in **crust** \Leftrightarrow

a circumcircle of *e* contains no other sample points or Voronoi vertices of *S*

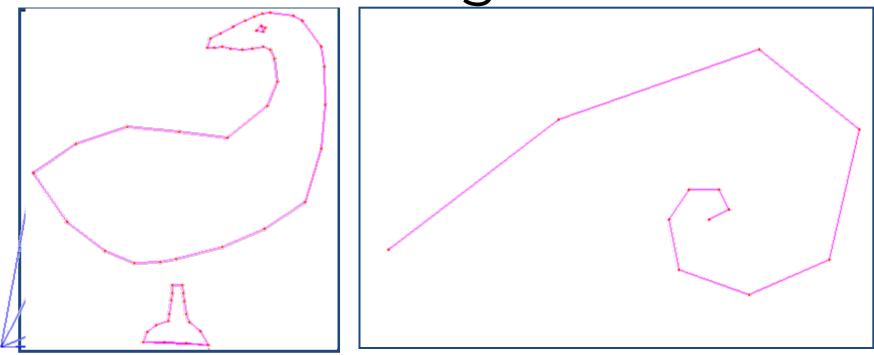


Compute Voronoi diagram of S $V = \{Voronoi \ vertices\}$



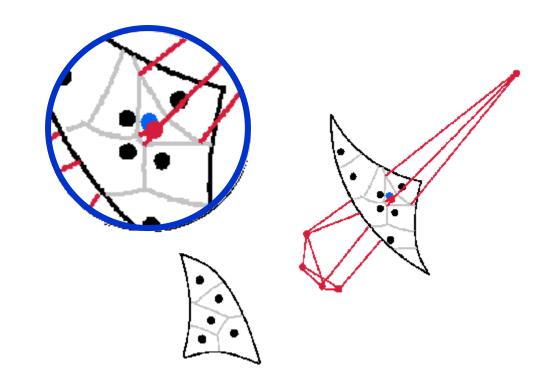
Compute Voronoi diagram of S $V = \{Voronoi \ vertices\}$

Compute Delaunay Triangulation of $S \cup V$



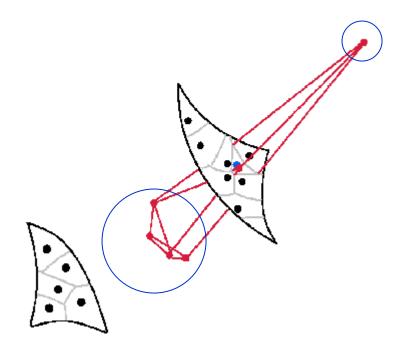
Compute Voronoi diagram of S $V = \{Voronoi \ vertices\}$ Compute Delaunay Triangulation of $S \cup V$ Crust = all edges between points of S

- Extend 2D approach
- Voronoi vertex is equidistant from 4 sample points
- BUT in 3D not all Voronoi vertices are near medial axis (regardless of sampling density)



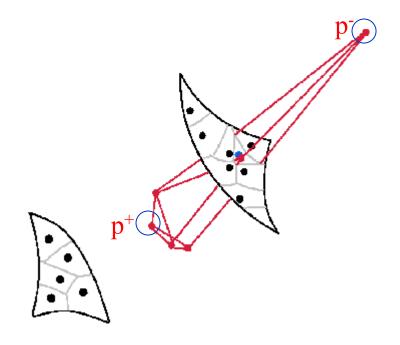
Some vertices of the Voronoi cell are near medial axis

Intuitively – cell is closed not just from the sides but also from "top" & "bottom"



Solution: use only two farthest vertices of V_s - one on each side of the surface

• Call vertices poles of s (p⁺, p⁻)

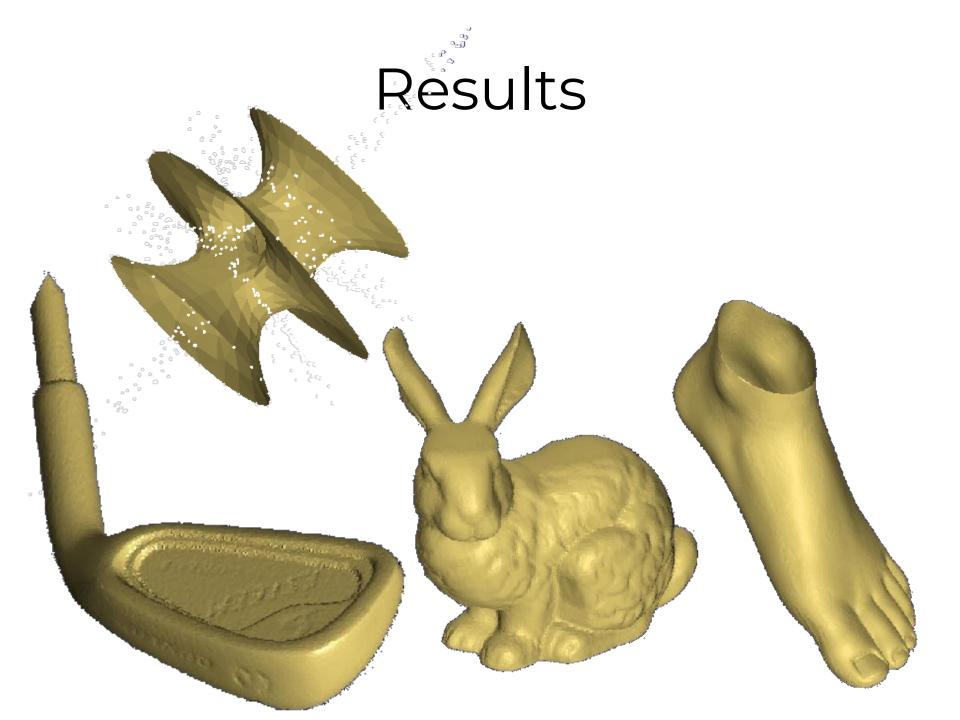


- Compute Voronoi diagram of S
- For each $s_i \in S$, compute

$$P = \{p_i^+, p_i^-\}$$

• Compute Delaunay triangulation T of $S \cup P$

Crust = all triangles in *T* with vertices in *S*



Problems & Modifications

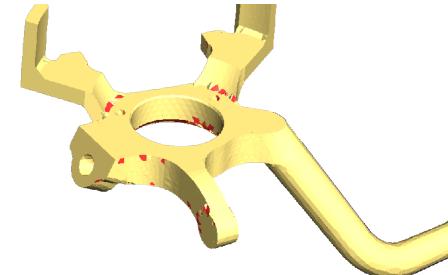
Correct in the absence of noise

Slow-ish

Need dense samples

Problems at sharp corners

Noise

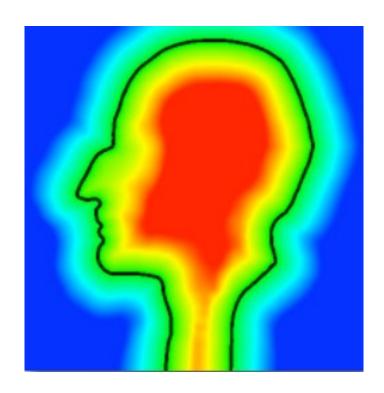


Methods

- Explicit, or reconstruction circa 1998
 - Zippering
 - Delaunay/Voronoi-based
- Implicit
 - Signed distance function
 - Poisson
- Data-driven

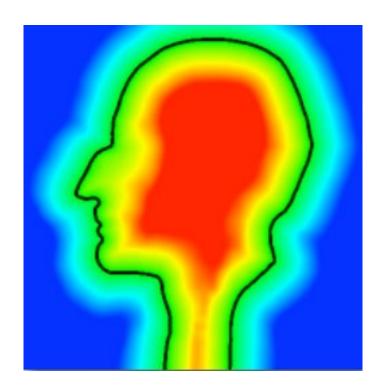
Implicit Reconstruction

- 1. Estimate signed distance function $d: \mathbb{R}^3 \to \mathbb{R}$
- 2. Extract an isosurface d = 0



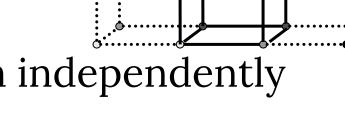
Implicit Reconstruction

- 1. Estimate signed distance function $d: \mathbb{R}^3 \to \mathbb{R}$
- 2. Extract an isosurface d = 0



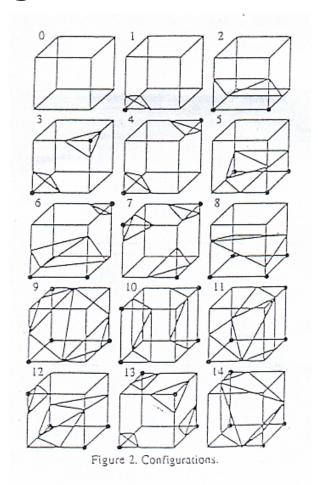
Marching Cubes

- Each voxel:
 - Has values at 8 corners
 - Has 256 possible configurations
 - 15 after counting symmetries and rotations
 - Either
 - Inside isosurface
 - Outside isosurface
 - Intersects isosurface



Marching Cubes

For each *intersecting* voxel contains triangles of the isosurface



Configurations

 For each configuration add 1-4 triangles to isosurface

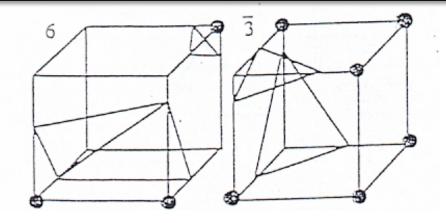
- Isosurface vertices computed by:
 - Interpolation along edges (according to grid values)

Example



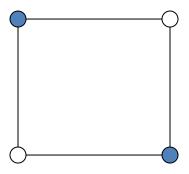
Problem

Can produce non-manifold results and wrong genus

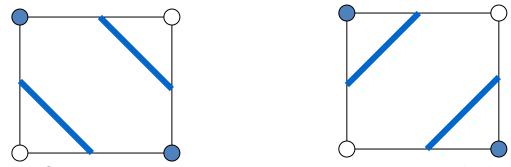


- What if those two are adjacent?
 - Each is ambiguous
- Consistency?

Ambiguous Faces



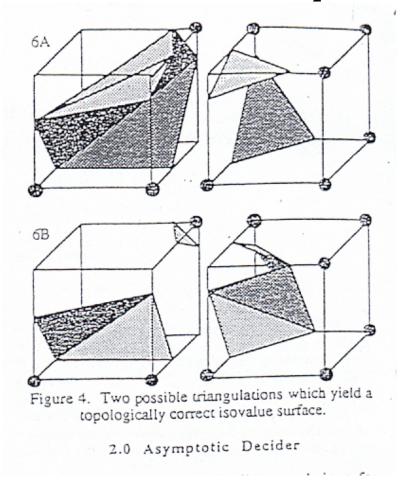
Two locally valid interpretations



Source of MC consistency problem

Solution

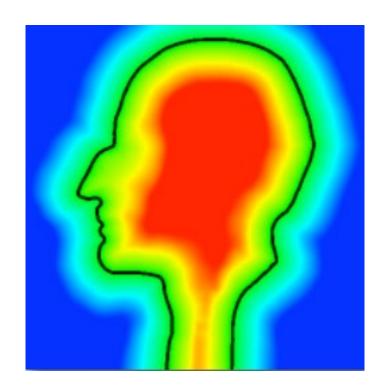
For those cases, store multiple triangulations



Choose one that agrees with neighbor voxels

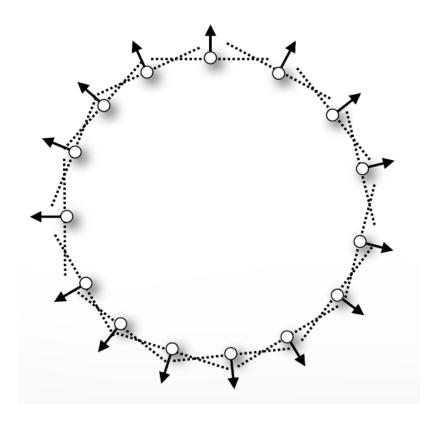
Implicit Reconstruction

- 1. Estimate signed distance function $d: \mathbb{R}^3 \to \mathbb{R}$
- 2. Extract an isosurface d = 0



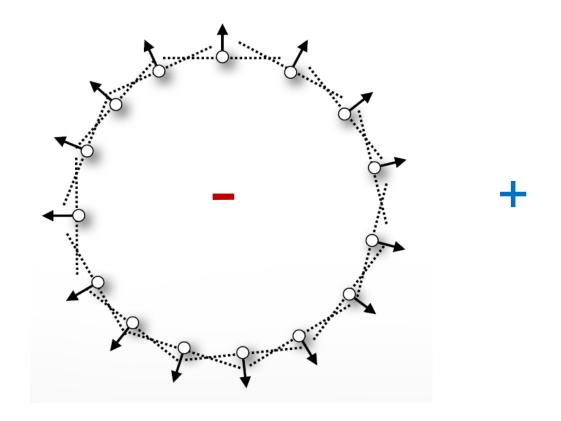
Signed distance function

Distance to points is not enough Need more structure



Signed distance function

How can we tell inside from outside? Estimate normals.



- Fit a plane into neighborhood of each point
 - Neighborhood = k nearest neighbors
- Determine consistent normal orientation

- Fit a plane into neighborhood of each point
 - Neighborhood = k nearest neighbors
 - Use spatial decompositions (BSP-trees)
- Determine consistent normal orientation

Fitting plane

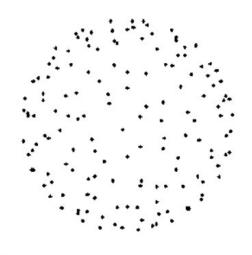
$$\min_{c \in \mathbb{R}^3, ||n||=1} \sum_{i} (n^T (p_i - c))^2$$

On the board, time permitting

- Fit a plane into neighborhood of each point
 - Neighborhood = k nearest neighbors
- Determine consistent normal orientation

- Fit a plane into neighborhood of each point
 - Neighborhood = k nearest neighbors
- Determine consistent normal orientation
 - Make sure $n_i \cdot n_i > 0$ for neighbors

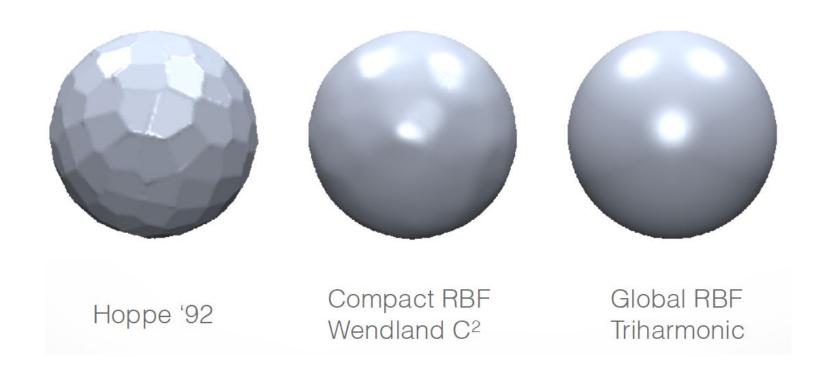
- Distance to tangent planes
 - [Hoppe et al. '92]



150 samples

reconstruction on 50³ grid

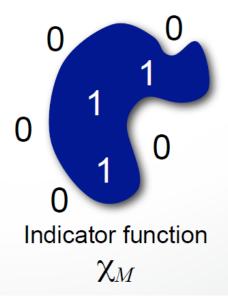
Smoother: RBF basis

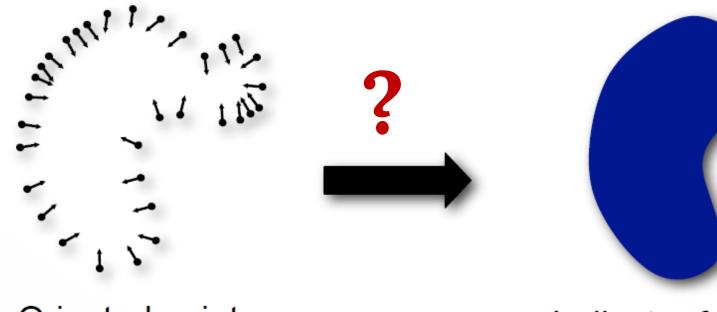


- Poisson surface reconstruction
 - [Kazhdan et al. '06]

- Poisson surface reconstruction
 - Solve for indicator function

$$\chi_M(p) = \begin{cases} 1 & \text{if } p \in M \\ 0 & \text{if } p \notin M \end{cases}$$



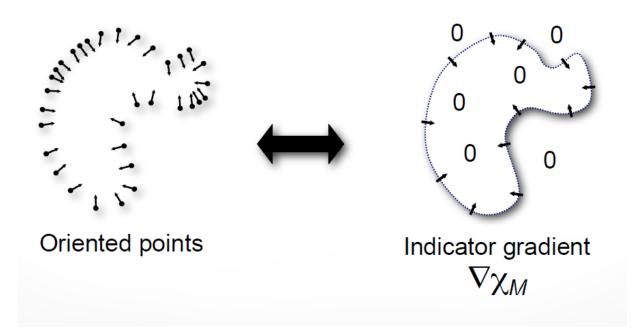


Oriented points

Indicator function χ_M

Idea

Oriented normals = gradient of an indicator function?



Idea

Oriented normals \Rightarrow vector field \vec{V} Find indicator function:

$$\min_{\chi} \left\| \vec{V} - \nabla \chi \right\|^2$$

Idea

Oriented normals \Rightarrow vector field \vec{V} Find indicator function:

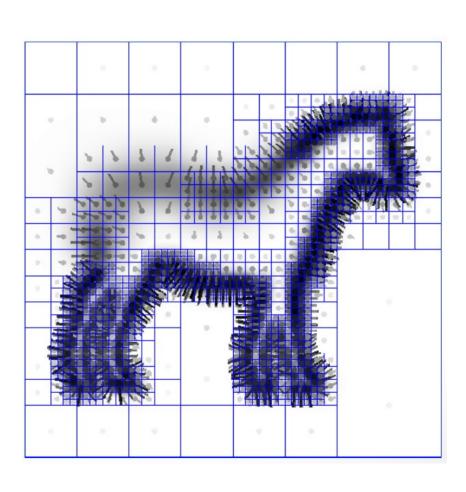
$$\min_{\chi} \left\| \overrightarrow{V} - \nabla \chi \right\|^2$$

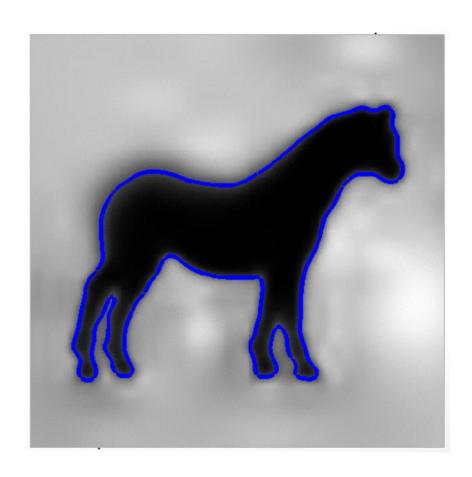
Differentiate,

Poisson equation

$$\Delta \chi = \nabla \cdot \vec{V}$$

Process





Results

