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Abstract

We explore cops-and-robbers games in several directions, giving partial re-
sults in each and refuting two reasonable conjectures. We close with some
open problems.
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1. Introduction and basics

The purpose of this short paper is to collect partial results from several
M.Sc. theses, to indicate some unexplored directions of research and to
refute several conjectures that seemed reasonable at the time they were made.
Further, we suggest a new - and we hope useful - generalization and prove a
few results about it. The common beginning is the original cop-and-robber
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game as defined by Nowakowski and Winkler [31] and, independently, by
Quillot [32, 33]. We shall not mention the many ideas, results and variants
that appeared since these first papers were written. The interested reader
might wish to consult the surveys [1], [20], [22], and the just published book
[6]. For undefined terminology and notation see, for example, [2]. A finite
graph G = (V,E) will have |V | = n.

Let us begin by defining the classical game. It is played by two players
on a reflexive (that is, with a loop at each vertex) graph G = (V,E). For
the rest of this section, let us fix a graph G. The players are the cop and the
robber (for future reference we can think of them as tokens to be placed on
vertices, say red for the cop and black for the robber). The game is played
in rounds, each consisting of two moves, one by the cop, followed by one by
the robber, in that order. The rounds are numbered by natural numbers.
At round 0, the cop chooses a vertex u (places a red token on it), then the
robber chooses one, v (placing his black token on it). When i rounds have
been played, the players (their tokens) are on vertices ci and ri, respectively.
In round i + 1, the cop moves to a vertex ci+1 ∈ N(ci) and then the robber
moves to a vertex ri+1 ∈ N(ri); as usual, N(u) is the neighbourhood of u
and we stress the fact that u ∈ N(u) in a reflexive graph 3. The cop wins
the game if she occupies the same vertex as the robber after a finite number
of rounds, otherwise the robber wins. Observe that there are two ways for
the cop to win: either the robber (but why?) moves to the cop’s vertex, or
the cop moves to the robber’s vertex. In the latter case the round would
be unfinished and we use the convention that in such a case the robber’s
move is to his current vertex. When the cop wins, the game stops. The
game is one of perfect information - each player knows the graph and the
positions of both, and the positions define the players’ strategies. A play
is a sequence {(ci, ri)}i∈I such that ci ∈ N(ci−1), ri ∈ N(ri−1), 0 6= i ∈ I
and either (1) I = [k] = {0, 1, . . . , k − 1}, ci 6= ri, ri−1 for 0 6= i < k − 1
and ck−1 = rk−2, rk−1 = rk−2 (with our convention), or (2) I = N and
ci ∈ N(ci−1), ri ∈ N(ri−1) and ci 6= ri, ri−1 for 0 6= i ∈ I. Thus the cop wins
if I = [k] for some k ∈ N, otherwise I = N and the robber wins.

A strategy for a player p (p = c or p = r with the obvious interpretation)
is a function σp : (V ∪{ε})×(V ∪{ε}) −→ V that tells the player where to go,

3some authors prefer to use simple graphs and allow the players to pass (stay where
they are), but this equivalent definition does not generalize the way we wish.
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based on the current positions, with ε indicating that the player is not on the
graph. More precisely, at the beginning, both players are off the graph and
the only moves are defined by σc(ε, ε) = c0 and σr(c0, ε) = r0. Subsequent
moves are given by σc(ci, ri) = ci+1 ∈ N(ci) and σr(ci+1, ri) = ri+1 ∈ N(ri).
Thus a pair of strategies (σc, σr) defines a play P(σc,σr). A strategy is winning
for p if its use leads to a win by p no matter what the opponent does.
That is, σc is winning if there is a k ∈ N such that cj = rj−1 for some
j ≤ k for any σr. A play is then a sequence {(ci, ri)}i∈I defined by σc and
σr: (ci+1, ri+1) = (σc(ci, ri), σr(σc(ci, ri), ri)). It is clear that while a pair of
strategies defines a play, the converse is not necessarily true. The length of
a play P = {ci, ri)}i∈I is simply |I|, that is, the number of rounds before
the game is over (including the initial round of placing the tokens on the
graph). We will denote it by ‖P‖. The efficiency of a cop’s strategy σc is
‖σc‖ = max{‖P(σc,σr)‖ : σr is robber’s strategy }. For the robber, define
‖σr‖ = min{‖P(σc,σr)‖ : σc is cop’s strategy } to be the freedom of σr. Clearly
‖σc‖ ≥ ‖σr‖ for any strategies of the cop and the robber.

We say that a graph is cop-win if the cop has a winning strategy. Ob-
viously, a cop-win graph is connected. If a graph is not cop-win, then the
robber must have a winning strategy (by von Neumann’s theorem, or by
direct observation). Let us say that a strategy σc is optimal for the cop if
no cop’s strategy has smaller efficiency. Similarly, a strategy σr is optimal
for the robber if no robber’s strategy has greater freedom. A play P(σc,σr) on
G is optimal if both σc and σr are. In human language, an optimal play is
one where the cop plays to win as fast as possible while the robber plays to
remain free as long as possible. A graph is then cop-win if and only if an
optimal play on it is finite, that is, the cop’s strategy has finite efficiency.
In Section 2 we will consider the length of an optimal play on a a cop-win
graph.

Since putting a cop on each vertex of a graph guarantees that the robber
is caught, it makes sense to define the cop number (or search number) of a
graph as the minimum number of cops that have a winning strategy against
one robber on that graph. We wish to make this more precise as there are
several interpretations possible. The simplest way is to extend the game even
further, to ` robbers as well. We will need one more piece of notation for
the following. For a set X and a natural number k > 0, if (x1, . . . , xk) ∈ Xk,
write sup(x1, . . . , xk) = {x1, . . . , xk}. Let G = (V,E) be the graph on which
the two players play. Instead of placing one token on some vertex of G,
the cop now places k red tokens on some vertices of G, the robber places
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` black ones. At each round, each player moves all his tokens along edges
incident with the vertices currently occupied by them. The cop wins if all
the robber’s tokens are on vertices where there are black tokens as well. The
strategies in this case are σc : V k × V ` −→ V k and σr : V k × V ` −→ V ` such
that σc((u1, . . . , uk), (v1, . . . , v`)) = ((u′1, . . . , u

′
k), (v1, . . . , v`)) only if for each

i = 1, . . . , k, u′i ∈ N(ui) and, similarly, for σr. A play can then be defined as
a sequence {(ci, ri)}i∈I with each ci and each ri being a vector in V k and V `,
respectively, with the rest as before, mutatis mutandis.

The main questions that have been addressed fall into several overlapping
classes. We only consider connected graphs since the questions asked can be
answered for disconnected ones by looking at the connected components (it
is very slightly more complicated for infinite graphs).

• How many cops are sufficient to catch one robber on a finite graph?
Can we at least bound the search number for special classes of graphs?

• (k−cop-win graphs) Can the graphs on which k ∈ N cops are necessary
and sufficient to catch one robber be characterized (i.e. graphs with
search number k?

• (complexity) How hard is it to determine the search number of a graph?

• What kind of rules do we need so that the search number of a graph is
equal to some graph width?

We shall not be concerned here with the last two classes and will only
touch upon the first two, adding instead some new questions. But let us
mention a few important results, if only because they form a basis of much
of what has been done later. They are mostly from [31] and [32, 33].

Recall that a homomorphism of a graph G = (V,E) into a graph H =
(U, F ) is an edge preserving mapping h : V −→ U and that a retraction is a
homomorphism from G into G which is the identity on the image.

Theorem 1. Any retraction of a cop-win graph is cop-win.

Corollary 2. The graph obtained from a finite cop-win graph by retracting a
vertex occupied by the robber after the penultimate round onto that occupied
by the cop at that round (and leaving all other vertices intact) is cop-win.
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Theorem 3. A graph on n ∈ N vertices is cop-win if and only if its vertices
can be enumerated v0, . . . , vn−1 so that for each n − 1 > i ∈ [n] there is a
i < j ∈ [n] such that Ni(vi) ⊆ Ni(vj) (here Ni(u) = N(u) ∩ {vi, . . . , vn−1}).

It is a long-standing open problem to characterize k−cop-win graphs for
k > 1, in spite of [24] and [13] since the latter papers use auxiliary graphs
(the former runs a recognition algorithm on an auxiliary graph, the latter
deduces whether or not the original graph is k−cop-win from properties of
an auxiliary graph). For infinite graphs, the best characterization of cop-
win graphs we have comes from [31] and we describe it now since we use an
extension of it in Section 5. The algorithm of [24] is based on the following
theorem (even though it was found independently).

Theorem 4. A reflexive graph G is cop-win if and only if the binary relation
R on V (G) defined below is trivial.

Define R by first defining a sequence of relations Rα for ordinals α ≤
|V (G)| (we take the view that a cardinal is the least of all equipotent ordi-
nals). This is done recursively.

1. R0 = {(u, u) : u ∈ V (G)};
2. for α > 0, (u, v) ∈ Rα if for each x ∈ N [u] there is a β < α and a
y ∈ N [v] with (x, y) ∈ Rβ.

Since Rα = R|V (G)| for all α > |V (G)|, there is a least γ such that Rα = Rγ

for α > γ. Observe that Rα ⊆ Rβ if α ≤ β. Set R = Rγ. Note that
(u, v) ∈ Rα if the cop at v can catch the robber (currently) at u in at most
α steps.

For the rest of the paper we will assume that our graphs are reflexive,
connected and finite, unless otherwise stated (in particular, in Section 6). In
pictures, loops are not drawn for reflexive graphs.

2. Length of the game

All graphs considered in this section are cop-win. The last result of the
preceding section brings us to the little studied question of the length of an
optimal play in particular, and of properties of an optimal play in general.
The problem was studied in [3] and we can use some of its terminology. The
capture time of a graph G, denoted by capt(G), is the length of an optimal
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play. The tight upper bound on capture time is n − 4 and was obtained in
[21], where graphs realizing the bound are also characterized. Capture time
is a natural parameter to study and we learnt recently - [28] - that it is of
much interest to roboticists. Indeed, the simple algorithm of [24] is used in
robotics and we note that it provides optimal strategies for both the cop and
the robber in addition to determining the capture time if it determines that
the graph is k−cop-win (any k ∈ N\{0}). In studying this parameter, Hahn
made two conjectures that could help in analyzing it.

Conjecture 1. In an optimal play, the cop visits each vertex at most once.

Conjecture 2. In an optimal play the distance between the cop and the
robber is a non-increasing function of time. That is, d(ci, ri) ≤ d(ci−1, ri−1)
for i ∈ I.

Unfortunately, both are wrong. Since the conjectures are rather tempt-
ing, we will give a counterexample to each. The counterexamples actually
disprove even slightly weaker conjectures.

2.1. A vertex must be revisited

We disprove the following conjecture.

Conjecture 3. There is an optimal play during which the cop visits no
vertex more than once.

Proposition 5. There is a cop-win graph such that in any optimal play the
cop must visit some vertex more than once.

Proof. We construct a graph with unique optimal strategies (up to symme-
try) and so a unique optimal play during which the cop has to pass over one
of the vertices twice. The graph is depicted in Figure 1. Due to its symmetry
in c and its shape we will refer to it as two fishes that are connected in vertex
c. This graph induces a single optimal strategy for the cop. First, the cop
has to choose his initial position. It will be shown below that the unique
optimal choice is c. Then, the robber chooses his initial position to be either
r or r′. Since the graph is symmetric in c we will only consider the play in
the upper part i.e., when the robber chooses r. The play requires nine moves

with the cop moving first: (r, c)
cop→ (r, 5)

robber→ (7, 5)
cop→ (7, 6)

robber→ (8, 6)
cop→

(8, c)
robber→ (10, c)

cop→ (10, 8)
robber→ (10, 8)

cop→ (10, 10).
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Figure 1: Example graph where the cop revisits vertex c when both players play optimally.

In the following, we will outline why this play is the unique optimal play
(except for the robber’s symmetric choice of r or r′). First, consider a different
initial position v 6= c for the cop. This vertex has to be in one of the two
fishes. By choosing the respective vertex r in the other fish and waiting there
until the cop reaches c, the robber can guarantee longer survival. Hence, the
cop starts in c.

The robber can choose his initial position in either of the two fishes.
Without loss of generality we consider the upper fish only. If he chooses
vertices 4, 5, 6, 7, 8 or 9 he will get caught by the cop within one move. If
he chooses to start in 1, 2 or 3 the cop will move to 4 in his first move and
the play will take at most seven moves. If he chooses 10 or 11 the cop will
move to 8 or 9, respectively, yielding a maximum survival of three moves. It
remains to show that choosing r guarantees survival for at least nine moves.
We leave this as an exercise to the reader. Note that the move back to c is
necessary to prevent the robber moving to 9 and delaying capture for two
more moves.

2.2. Distance must increase

The conjecture disproved is this.

Conjecture 4. For each cop-win graph, there is an optimal play such that
the distance between the cop and the robber does not increase at any step.

Proposition 6. There is a graph such that in any optimal play the distance
between the cop and the robber is not a non-decreasing function of time.

Proof. First, consider the following graph:
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Notice that if a cop is forced to start at any vertex cj, she can catch the
robber in 4 rounds. To do so, she first moves to s. A smart robber must go
to some ci, otherwise he will be caught immediately. The cop moves to ri,
and no matter what the robber does, he is caught in the next round due to
the claw-like edges from ri. On the other hand, if the cop does not move to
s, she can never catch a smart robber.

Now, consider a slightly modified graph with k large, say k > 30.

s r1

r2r3
r4

r5
r6 r7 r8

c1

c2

c3

c4

c5

c6

c7

c8

p1 p2 pk

d

On this graph, the cop would start somewhere near the middle of the
long path p1 . . . pk to minimize the length of the game. Assume the robber
then chooses to start on the side of the path connected to c1. The cop will
move toward c1. Once she reaches c1, the only way for her to catch a smart
robber is to go to s through r1, r2 or r8. When choosing the path, the cop can
prevent the robber from reaching any neighbour of c1 before the cop reaches
s – indeed, the cop can force the robber to move to a distance of at least
3 from c1 after his choice of r1, r2 or r8. Since the robber cannot reach c1
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in time to escape through the long path, he will be caught in two rounds
after the cop reaches s if he stays on any ci. A smart robber, however, will
move to d from c4 when he sees the cop moving to s in order to maximize
his freedom. Notice that the distance between r2 (where the cop moved to
prevent the robber escaping through c1) and c4 is smaller than the distance
between s and d, yet both players are playing optimally.

3. Tournaments

One of the challenges of cops-and-robbers games is the class of games
played on directed graphs. Indeed, next to nothing is known and, a fortiori,
a characterization of cop-win directed graphs is nowhere in sight. Here, as
with k cops, the retraction that is crucial to the proof of the characterization
of cop-win graphs is not to be had, at least not in any nice way that anyone
has seen. The best we can do at the moment is to investigate the obvious
special class of directed graphs, tournaments. Recall that a tournament is
simply an oriented complete graph (that is, each of edge is given a direction)
Ours have a directed loop at each vertex, contributing 1 both to the in-degree
and the out degree. Hill [27] looked at tournaments and some of the results
here are due to him. The following is easy to see.

Proposition 7. A tournament is cop-win if and only if it has a dominating
vertex.

Proof. Obviously, if there is a dominating vertex, then a cop stationed at it
wins in one round. Conversely, if there is no dominating vertex, then after
the cop’s choice of c0, the robber chooses r0 such that (r0, c0) is an arc and
then simply follows the cop so that the play becomes {(ci, ci−1)}i∈N\{0}.

Nowakowski [29] conjectured that tournaments obtained from Steiner
triple systems (see Section 7 for more) are 2−cop-win. This was disproved
by Thériault, who programmed the algorithm of [24] and used it to find a
(small) counterexample.

There is one advantage to directed graphs - it is possible to use degrees
to obtain results, unlike in the case of undirected graphs. Let ∆+(T ) be the
maximum out-degree of a vertex in a tournament T = (V,A) (A is the set of
arcs).

Lemma 8. If a tournament T has ∆+(T ) = n− 3, it is 2−cop-win.
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Proof. Recall that our graphs are reflexive so that the condition means that
there is a vertex v dominating n − 2 other vertices. We already know that
one cop is not sufficient to win on T and we prove that two are. This is clear:
one cop goes on v, the other on the unique vertex not dominated by v. The
robber is caught in one round.

This generalizes in a standard way.

Lemma 9. If a tournament T has n vertices then dlg ne cops can catch the
unique robber.

Proof. As always, lg n = log2 n. In T = T0, there is a vertex v0 of out-
degree at least n

2
. Let Ti be the tournament obtained from Ti−1 by deleting

N+
i−1(vi−1) with N+

i−1(v) denoting the out-neighbourhood of v in Ti−1 (this
also deletes vi−1). Then Ti contains a vertex vi dominating at least half of
the vertices in Ti. Clearly Ti is reduced to at most one vertex for i ≤ dlg ne.
The cops on the vertices vi dominate T and so win.

Of course the bound is on the size of a dominating set in a (directed)
graph and there is a priori no relation between that and the search number
(a k−ary rooted tree is a good example). If, however, the conjecture of [7]
is correct and almost all k−cop-win graphs have a k−vertex dominating set
then the graphs where the two parameters differ are rare.

Lemma 10. If a tournament T has ∆+(T ) = n − k for some 0 ≤ k ≤ n
2

then 1 + dlg ke cops win.

Proof. This is easy to see using the preceding proof on the k vertices not
dominated by a vertex of maximum out-degree.

Sometimes we can do better. To simplify exposition, let us extend the
play notation to k cops. In this case a play is a sequence {(ci, ri)}i∈I with
ci ∈ V k. We omit the inner parentheses and write, for example, (ci, ri) =
(u1, u3, u3, u7, u12) to indicate that the cops on the first four vertices and the
robber on the last one (this can be extended in the obvious way to more than
one robber).

Lemma 11. A tournament T with ∆+(T ) = n− 4 is 2−cop-win.

Proof. Let v be a vertex of maximum out-degree and let u0, u1 be the two
vertices not dominated by v. Without loss of generality assume that u0u1 ∈
A. Two cops at v and u0 dominate all vertices and win.
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Lemma 12. A tournament T with ∆+(T ) = n− 5 is 2−cop-win.

Proof. Let v be a vertex of maximum out-degree and let U = {u0, u1, u2}
be the set of the three vertices not dominated by v. If U does not induce
a directed cycle, let u0 (without loss of generality) dominate the other two.
The cops at v and u0 win. If u0u1u2 is a directed cycle, consider a vertex
z ∈ N+(v) such that |N+(z) ∩ U | is maximum. We have three cases to
consider. If U ⊆ N+(z), then {v, z} is a dominating set and the cops there
win. If |U∩N+(z)| = 2, assume, without loss of generality, that zu0, zu1 ∈ A.
The cop’s winning play then begins {(v, u0, u1), (z, v, x)} and the robber is
caught on the next move no matter what. In the last case, |U ∩N+(z)| = 1
and the cop wins by beginning {(u0, u1, x)} with x ∈ N+(v). Since one of
the two cops now controls the unique (if any) vertex of U accessible from x,
the other can move to v and the cops win on the next move at the latest.

A similar lemma can be shown for tournaments with maximum out-degree
n−6. We spare the reader the case-by-case proof (first observe that the four
vertices not dominated by a vertex v of maximum out-degree induce one of
two non-isomorphic tournaments and analyze the situation for each of them
when the maximum number of vertices dominated by a vertex in N+(v) is
one, two, three or four; it cannot be zero and the last case is almost trivial.)

Lemma 13. A tournament T with ∆+(T ) = n− 6 is 2−cop-win.

4. Non-reflexive graphs

The classic game is played on graphs with loops, or, alternately, on simple
graphs where the players can “pass”, that is, stay where they are. It seems
reasonable to re-interpret the rules: on a reflexive graph, each player MUST
move on his turn by going to some neighbour of the vertex currently occupied.
This is how the game is played and so it makes sense to play with the same
rules on graphs with some, but not necessarily all, loops. This is a different
game, as the following simple examples show.

Example 1. The house. It is not cop win if it is loopless or reflexive, but
becomes cop-win with a loop only on the roof. The house graph consists of a
four-cycle together with a fifth vertex joined to two adjacent vertices of the
cycle; this latter triangle is the roof.
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Example 2. The graph consisting of a four-cycle and a triangle that share
exactly one vertex is robber-win if it is reflexive and cop-win with no loops
or if a loop is added to just the vertex on the four-cycle that is at distance
two from the vertex shared by the triangle and the four-cycle.

On the other hand, the two games are obviously related, as the following
observations show. Let G be a graph some of whose vertices have loops. Let
G◦ be the graph obtained from G by adding a loop to each vertex that does
not have one. Let G̃ be the graph obtained from G by removing all the loops.

Lemma 14. Let G = (V,E) be a graph.

1. If G◦ is cop-win then two cops can win on G.

2. If G is cop-win then two cops can win on G̃.

3. If G◦ is cop-win then two cops can win on G̃.

Proof. Proofs of all three statements are essentially the same. The two cops
move together on the second graph in such a way that they are always on
adjacent vertices after their move, following the winning strategy on the
first graph and exchanging positions if the winning strategy has the cop
move along a loop. To be more precise, if the cop’s strategy on the first
graph is σ then the two cops’ strategy σ′ on the second graph is defined by
setting σ′(ε, ε, ε) = (σ(ε, ε), v0, ε) for a randomly chosen v0 ∈ N(σ(ε, ε)), and
σ′(u, v, z) = (u′, u, z) with u′ = σ(u, z) if σ(u, z) 6= u and v′ = v otherwise.
This is clearly a winning strategy for two cops.

Lemma 15. If G̃ is k−cop-win then so is G◦.

Proof. On G◦, the k cops use the winning strategy they have for G̃.

The above result depends on the precise definition of “strategy” we gave
here. If the usual intuitive “definition” is used, the claim might be false.
Indeed, we often think of a strategy as a partial function that tells us what
to do in all expected cases. With this notion, the cops would not know what
to do in G◦ if the robber decides to stay where he is. Of course, we can deal
with this.

Lemma 16. If G̃ is k−cop-win then k + 1 cops can win on G◦.
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Proof. On G◦, k cops use the winning strategy they have for G̃ as long as
the robber does not move along a loop, one stays at some random vertex. If
the robber moves along a loop, the k cops do as well while the (k + 1) − st
cop moves toward the robber and eventually forces him to move to a new
vertex. Then the original strategy is applied again.

It is obvious that a complete graph is always cop-win, no matter how
many vertices have loops. It is very easy to see that the same is true for any
tree. Consider now a tournament without loops (irreflexive tournament).
Proposition 7 applies here as well. Further, Lemmas 11, 12 and 13 extend to
non-reflexive tournaments.

Lemma 17. If T is an irreflexive tournament on n vertices with ∆+(T ) ≥
n− 4 then T is either cop-win or 2−cop-win.

Proof. If T = (V,A) has a dominating vertex, it is cop-win. If n − 1 >
∆+(T ) > n− 4, consider a vertex v with d+(v) = ∆+(T ) and R = V \N+[v]
(recall that N+[v] = N+(v) ∪ {v}). By the assumption, |R| ≤ 2. without
loss of generality, R = {u0}, or R = {u0, u1} with u0u1 ∈ A. The cops
begin the play by (v, x, ε) and wherever the robber goes, he is caught. If
∆+(T ) = n− 4, the proof of Lemma 12 can be used mutatis mutandis.

As in the case of reflexive tournaments, there is more, and as there, we
omit the case-by-case proof.

Lemma 18. A tournament T with ∆+(T ) = n− 5 is 2−cop-win.

5. Constrained game

One very natural extension of the game is to separate the rules for the
cop(s) and the robber(s). One way to do this is to give them different means
- different speeds, or helicopters for the cops, etc. This has been exploited to
great advantage in many papers, among other things to prove the connection
to various graph widths. See [8] and [20] for more and for references. Another
way is to allow the players different edges. This has been studied, for example,
in [30]. Clarke explored the idea of forcing two cops to move in a tandem,
that is, to be on distinct adjacent vertices after each move, in [9, 14, 15]. Her
thesis title led to the idea of generalizing further: we can require that the set
of k cops occupy a certain configuration in the graph and that the cops and
the robber move on distinct (but not necessarily disjoint) sets of vertices.
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This can be generalized to more than one robber (see also Section 7). Here
we show how a common generalization can be formalized. A graph in this
section is not necessarily reflexive or irreflexive, that is, the graphs are as in
Section 4.

Let Gc = (Vc, Ec) and Gr = (Vr, Er) be (not necessarily connected) graphs
and let ≤0⊆ Vr × Vc be a capture relation. The cop plays on Gc, the robber
on Gr, with a play {(ci, ri)}i∈I defined as in Section 1; of course a strategy for
the player p is now a function σp : Vc × Vr −→ Vp. The robber is captured if
ri ≤0 ci for some i ∈ N. As in [31], we can define a relation ≤k for 0 < k ∈ N
recursively. For vertices u ∈ Vr and v ∈ Vc, u ≤k v if, and only if, for each
x ∈ NGr(u) there is a y ∈ NGc(v) and a k > j ∈ N such that x ≤j y. We can
think of the u ≤k v as the cop at v can capture the robber at u in at most k
rounds. Clearly ≤k ⊆ ≤k+1 for k ∈ N and since the graphs are finite, there is
a least k ∈ N such that ≤k=≤k+1. Set � = ≤k. We will need the following
obvious lemma.

Lemma 19. If u 6� v for some u ∈ Vr, v ∈ Vc, then there is an x ∈ NGr(u)
such that x 6� y for any y ∈ NGc(v).

Observe also that by the rules of the game, a play started in a connected
component C of Gc and a connected component R of Gr never leaves the
respective components. Thus only connected graphs need be considered, as
before. A game is a triple (Gc, Gr,≤0). It is cop-win if the cop has a winning
strategy, otherwise it is robber-win. We can now prove a theorem analogous
to that of [31]. As there, the proof works for infinite graphs with very slight
modifications, see Section 6.

Theorem 20. A game (Gc, Gr,≤0) is cop-win if, and only if, the relation �
is trivial and non-empty.

Proof. Recall that “trivial” means that u � v for any u ∈ Vr and any v ∈ Vc
and that our graphs are connected. Assume first that the relation is trivial.
For (u, v) ∈ Vr × Vc, let ku,v ∈ N be the least such that u ≤ku,v v. The cop’s
strategy is to start at an arbitrary vertex c0 of her graph and when the robber
chooses r0 in his graph, to go to σc(ci, ri) = ci+1 such that kci+1,ri < kci,ri ;
such a ci+1 6= ci exists by the definition of �. Since the sequence {kci,ri}i∈N
is strictly decreasing, it eventually reaches zero and stops, and the robber
is captured. Conversely, let (u, v) ∈ Vr × Vc be such that u 6� v. Then by
Lemma 19, the robber clearly has a winning strategy if the cop starts at v.
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If the cop had a winning strategy σc with σc(ε, ε) = c0, she would also have
one from v. Indeed, define σ′c(ε, ε) = v = v0 (start at v), σ′c(vi, ri) = vi+1 for
i = 0, . . . , ` and v = v0 . . . v` = c0 (migrate to c0). Now by the definition of
� and the assumption that the cop wins starting at c0, for any x ∈ NGr(r`)
there is a y ∈ NGc(c0) such that x ≤k y for some k < kr`,c0 . This contradicts
Lemma 19 and the assumption that u 6� v.

Let (Gc, Gr,≤0) and (Hc, Gr,v0) be games. Let ρ : V (Gc) −→ V (Hc)
be a surjective graph homomorphism such that for u ∈ Vr and v ∈ V (Hc),
u v0 ρ(v) whenever u ≤0 v. Call such a homomorphism capture-preserving.

Lemma 21. Let (Gc, Gr,≤0) be a cop-win game and let (Hc, Gr,v0) be a
game. Let ρ : V (Gc) −→ V (Hc) be a capture-preserving graph homomor-
phism. If (Gc, Gr,≤0) is cop-win then so is (Hc, Gr,v0).

Proof. Half of the work is done in the remark preceding the lemma. Since ρ
is onto, when ≤ is trivial, so is v.

Corollary 22. Let (Gc, Gr,≤0) be a cop-win game and let Hc be a retract
of Gc such that some retraction is capture-preserving. Then (Hc, Gr,v0) is
also cop-win, with v0 being the relation induced on Vr×V (Hc) by restricting
≤0.

Sometimes we can lift a strategy from a homomorphic image of a graph
to its pre-image.

Definition 23. Let G be a graph and let ' be an equivalence relation on
V (G). We say that ' has the lifting property if for any u ' u′ and any
v ∈ N(u) there is a v′ ∈ N(u′) such that v ' v′.

Let us recall and slightly extend some standard ideas on homomorphism
(see [25] and/or [26] for more). Given a graph G and an equivalence relation
' on V (G), we can define a new graph on G/' whose vertices are the
equivalence classes of ', joined if some vertex of one class is adjacent to some
vertex of the second class. More precisely, V (G/') = V/'= {[u] : u ∈ V }
and E(G/') = E/'= {[u][v] : ∃x ∈ [u], y ∈ [v], xy ∈ E}. Let ρ' : V (G) −→
V/' be the canonical projection defined by ρ'(u) = [u]. Clearly ρ' is a
surjective homomorphism which is also surjective on the edges4. This can be

4More precisely, this means that the mapping ρ̃ : E −→ E/' defined by ρ̃(uv) = [u][v]
is onto.
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reversed: given graphs G and H and a graph homomorphism ρ : V (G) −→
V (H) that is onto both the vertices and the edges, we can define (induce)
an equivalence relation 'ρ on V (G) by setting u 'ρ v if ρ(u) = ρ(v). We
will say that a homomorphism ρ has the lifting property if either there is a
' such that ρ = ρ', or if 'ρ has the property (note that since ρ'ρ = ρ and
'ρ'=', the two possibilities are equivalent).

Lemma 24. Let (Gc, Gr,≤0) be a game and let ρ : Gc −→ Hc be a homomor-
phism surjective on edges and vertices that has the lifting property. Then for
any strategy σc : V (Hc)×Vr −→ V (Hc) there is a strategy σ′c : Vc×Vr −→ Vc
such that ρ(σc(u, v)) = ρ(σc(u), v).

Proof. To define σ′c, let 'ρ be the equivalence relation induced by ρ on Vc and
let σc(u, v) = u′. Since 'ρ has the lifting property, for any x ∈ N(u) there
is a y ∈ N(u′) such that x ' y. Thus ρ(x) = ρ(y). If σc(u, v) = x, we can
define σ′c(ρ(u), v) = y; this choice satisfies the conditions of the lemma.

Definition 25. Let (Gc, Gr,≤0) be a game and let ' be an equivalence
relation on Vc. The relation ' is compatible with ≤0 if r ≤0 u if, and only if,
r ≤0 u

′ for u ' u′.

The relation ≤0⊆ Vr × Vr induces a relation v0⊂ Vr × (Vc/') in the
obvious manner: r v0 [u] if, and only if, r ≤0 u.

The following lemma is easy to prove by induction.

Lemma 26. Let (Gc, Gr,≤0) be a game and let ' be a an equivalence relation
on Vc compatible with ≤0. If ' has the lifting property then for all k ∈ N, if
u ≤k v and v ' v′ then u ≤k v′.

Proof. The property holds for k = 0. Assume it holds for all j < k. If u ≤k v
then for all x ∈ N(u) there is y ∈ N(v) and j < k such that x ≤j y. By
the lifting property, there is y′ ' y such that y′ ∈ N(v′); by the induction
hypothesis x ≤j y′ and thus u ≤k v′.

Theorem 27. Let (Gc, Gr,≤0) be a game, (Hc, Gr,v0) a cop-win game and
ρ : Vc −→ V (Hc) a homomorphism with the lifting property such that such
that u ≤0 v whenever u v0 ρ(v). Then (Gc, Gr,≤0) is also cop-win.

Proof. Let σc be a winning strategy for the cop for (Hc, Gr,v0). By lemma
24, σc lifts to a strategy σ′c : Vc×Vr → Vc. For any play

{
(hi, ri)

}
i∈I according
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to σc there is a play
{

(ci, ri)
}
i∈I according to σ′c such that ρ(ci) = hi for

i ∈ I and the last condition guarantees that
{

(ci, ri)
}
i∈I is wining as soon as{

(hi, ri)
}
i∈I is.

We now briefly consider another restriction on the game. Let Gp =
(Vp, Ep) be a graph and let p be a player with k tokens. At each move,
the vertices on which the tokens are placed must induce a graph (isomorphic
to a graph) in a set specified at the beginning. Such a set Cp is called a
constraint for p. For example, the tandem game defined by Clarke is con-
strained for the cop by the constraint {K2}. A graph is (k, `, Cc, Cr)−cop-win
if k cops have a winning strategy against ` robbers. We could simply say
(Cc, Cr)−cop-win and let k be the maximum order of a graph in Cc, and sim-
ilarly for `, but this does not carry through to infinite graphs and, further,
our definition allows us to specify that at least some vertices receive more
than one token. With the machinery described above, we have a simple way
to characterize (k, `, Cc, Cr)−cop-win graphs. If the player plays on a graph
Gp, the constrained play will be on the directed graph whose vertices are the
induced subgraphs isomorphic to graphs in Cp, with an arc from s1 to s2 if
the tokens that induce s1 in Gp can each be moved to a neighbour so that
the vertices then occupy induce s2. Call the new graph Gp. If we use the
capture rule that has the cops win when each robber’s vertex is covered by
a cop’s vertex by the relation ≤0⊆ Vr × Vc, Theorem 20 now applies to the
game (Gc,Gr,v0) where v0 is defined coordinate-wise.

To make the above discussion more precise and more general, we can use
the definitions from the introduction. A constrained play on graphs Gc and
Gr with k cops and ` robbers is a sequence {(ci, ri)}i∈I with each ci and each
ri being a vector in V k and V ` and the additional condition that for each
i ∈ I, sup(ci) induces a graph in Cc and sup(ri) induces a graph in Cr. If the
capture relation is ≤0⊆ Vr × Vc is defined, it can be extended to subsets of
Vc and Vr by defining, for X ⊆ Vr and Y ⊆ Vc, X v0 Y if for each x ∈ X
there is a y ∈ Y such that x ≤0 y. The graphs Gc and Gr are defined as in
the preceding paragraph, but based on the respective graphs. With this, we
have a theorem whose proof is by now standard.

Theorem 28. Let Gc and Gr be graphs, 0 ≤ k, ` ∈ N, and let ≤0⊆ Vr × Vc
be a capture relation. Let also Cc and Cr be constraints for the cops and the
robbers, respectively. The game (Gc,Gr,v0) is cop-win if, and only if, the
relation v is nonempty and trivial.
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If the game is played on only one graph with k cops and one robber and a
constraint set C for the cops, one natural question to ask is which constraints
are stronger than others. More precisely, suppose that on a graph G the k
cops can play with a constraint C0 and a constraint C1. The constraint C0 is
stronger than C1 if for every winning strategy for the cops under C0 there is a
winning strategy for them under C1. For a trivial example, if C0 = {K2} and
C1 = {K1, K2}, then C0 is stronger than C1. This defines an order relations
� on the set of constraints: C � C ′ if for any graph C ′ is stronger than C.
The resulting partial order can be called the constraint poset. What can be
said about it (see Section 7)

6. Infinite graphs

For infinite graphs, not much is known beyond some work on the random
(Rado, homogeneous) graph (which is not cop-win) and some density results
on the search number and the capture time, see [5, 3]. Unlike in the finite
case, there are vertex-transitive cop-win graphs. In fact, for each cardinal
α, there are are 2α non-isomorphic ones, see [4]. Here we mention how to
extend the results of the preceding section to infinite connected graphs, the
only ones we consider in the present section. Again, the first theorem is
essentially the same as that of [31].

Theorem 29. A game (Gc, Gr,≤0) is cop-win if, and only if, the relation �
is trivial.

Proof. First, we need to modify the definition of �. This is easy if we replace
N by Ord, then class of ordinals. We define ≤0 as before and replace k, j ∈ N
by ordinals α, β. Next, we observe that ≤µ = ≤µ+1 with µ = |Vc × Vr| and
so there is a least κ such that ≤κ = ≤κ+1. We set � = ≤κ. The rest of the
proof is the same, recalling that there is no infinite descending sequence of
ordinals.

The rest of the section goes through essentially unchanged and we will
not go through the exercise of writing down the details.

7. Open problems

We close with some open problems. Some may be trivial, others not at
all.
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1. We have defined a strategy for k cops and one robber as a function
σ : V k × V −→. This allowed for a simple proof of Lemma 15. But a
strategy need not be a total function (indeed, it mostly isn’t when we
think about a game). Is Lemma 15 still valid?

2. Is the cop number of (reflexive) tournaments obtained from Steiner
Triple Systems by orienting each triple cyclically bounded? If so, what
is the best bound?

3. Characterize cop-win graphs in which each vertex may or may not have
a loop.

4. What does the constraint poset look like?
5. In spite of the Clarke-MacGillivray result, we still do not have a char-

acterization of k−cop-win graphs in terms of their structure. Is there
one (or is there one for each k)?

6. Can cop-win directed graphs be characterized? How about k−cop-win?
7. Is the length of the game directly related to some other known graph

parameter? Some obvious ones are independent of the length of the
game, see the last part of [23].

8. It is of interest to roboticists to know what happens if the robber is
invisible. Some work in this direction has been done, but much is still
open. See [10], [11], [12], [16], [17].

9. The basic game can be extended, as we have seen, to k > 1 cops.
and ` > 1 robbers and the rules amended so that the cops win if each
robber’s vertex is also occupied by a cop. But there are other ways we
could make the cops win.
(a) There could be a prison and as a robber is caught, he could be

taken to the prison vertex by one of the cops while the rest of them
hunt for other robbers. The cop could return to his colleagues after
delivering the robber to the prison.

(b) The transfer to prison could be instantaneous, i.e. the robber is
simply taken out of the game.

(c) A robber could simply remain in the custody of the cop while
other cops try to catch the rest of the robbers.

The variations certainly lead to different games and different capture
times and are somehow related. How? What about constrained games
in these settings? How can these be made precise?

10. What if in a k−cop game only one cop can move at a time?
11. Construct infinite graphs that are non-trivially cop-win, that is, that

have neither a universal vertex nor consist of trees of bounded diameter.
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[21] T. Gavenčiak, Cop-win graphs with maximum capture-time, Discrete
Mathematics 310 2010, 1557 – 1563.

[22] G. Hahn, Cops, robbers and graphs, Tatra Mountain Mathematical
Publica- tions 36 (2007), 163 –176.

[23] G. Hahn, F. Laviolette, N. Sauer, R. E. Woodrow, On cop-win graphs,
Discrete Math. 258 (2002), 27 – 41.

[24] G. Hahn, G. MacGillivray, A note on k−cop, l−robber games on graphs,
Discrete Mathematics 306 (2006), 2492 – 2497.

[25] G.Hahn, C.Tardif Graph homomorphisms: structure and symmetry, in
Graph symmetry, G.Hahn, G.Sabidussi, eds., NATO ASI Series C,
Vol. 497, Kluwer 1997, 107 – 166.
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