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Abstract
In this paper, we present a method to optimize clocked circuits by relocating and changing the
time of activation of registers to maximize throughput.  Our method is based on software
pipelining instead of retiming.  The two methods have the same overall complexity but unlike
previously published retiming methods, the time consuming step of searching an adequate clock
period is avoided, since the optimal clock period is always a solution. The resulting circuit is a
multi-phase-clocked circuit, where all the clocks have the same period.  Edge-triggered flip-flops
are used where the combinational delays exactly match that period, whereas level-sensitive
latches are used elsewhere improving the area occupied by the circuit.
Experiments on existing and newly developed benchmarks show a substantial performance
improvement compared to previously published work.
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1 Introduction
In a synchronous circuit, clocked storage elements are used to regulate the data flow and to
provide stable inputs while functions (combinational logic) are evaluated.  The speed of the
circuit is determined not only by the calculation time of these functions, but also by the time
wasted waiting for the synchronization point (clock) to arrive.  In this paper we focus on methods
for minimizing that wasted time. The proposed method also gives the circuit path that limits the
speed, which is where logic should be optimized if we need more speed.  For circuits
synchronized by a single periodic event (single clock), the wasted time between two storage
elements (registers) is the period time minus the combinational delay between these storage
elements.
Leiserson and Saxe in [LEI 91] reduced the wasted time by moving registers to minimize the
maximum combinational delay between two registers and changing the clock period to that value.
This register movement does a better repartition of combinational logic, resulting in a tighter fit
in the clock cycles.  The method they present, called retiming, is proved to give the register
placement that permits the smallest clock period under the constraints that registers are edge-
triggered and are all controlled by the same clock.  However, it was found that in many cases that
solution in not optimal, because registers cannot always be moved so that no time is wasted on
the critical path.  Indeed, a part of the circuit is always “retimed” by an integral number of
periods; with some kind of fractional retiming we could have better results.
Lockyear and Ebeling in [LOC 94] presented an extension to retiming using level-sensitive
registers (latches) with multi-phase clocks, the phases being fixed by the designer instead of being
computed automatically.  The use of multi-phase clocks permits to “retime” a part of the circuit
by one phase instead of a whole period, which gives a better resolution and thus a tighter fit to
waste less time.  In fact, that method will give an optimal solution, with no wasted time on the
critical path, but only if the phases specified permit it and if we suppose that we can have a
perfect clock.
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Deokar and Sapatnekar in [DEO 95] define the “equivalence between clock skew and retiming”,
which they use to minimize the clock period.  They first calculate a “skew” that should be applied
to the clock input of each flip-flop in order to have the desired period.  Then they apply there
equivalence to retime the circuit to bring down the “skews” to zero (or as close as possible).  To
find the optimal period it uses a binary search, verifying if there is a “skew” that permits to run
the circuit with that clock period.  If the “skews” are not zero, we can force them to zero
(increasing a little the clock period) or add circuitry to do that skew on the clock.  It is not clear
that the circuit with the skews on the clock will be correct because they ignore the short path
constraints.
Maheshwari and Sapatnekar in [MAH 97, MAH 98] use retiming to reduce the area (number of
register) for a given clock period. They use a longest path algorithm to find ASAP and ALAP
locations of the registers, which permit to reduce the computation time by reducing the size of the
LP problem to be solved.
Ishii, Leiserson and Papaefthymiou in [ISH 97] present methods to minimize the clock period on
a multi-phase level-clocked circuit.  They also show how to convert an edge-clocked circuit into a
faster level-clocked one.  The method is in two steps: retiming and clock tuning.  For a k-phase
simple circuit, minimizing the clock period using clock tuning is O( k V2 ) and retiming to
achieve a given clock period for fixed duty-ratios is O( k V3 ).  Approximation schemes for
solving the two steps at once, to achieve the minimum clock period, are given.  For simultaneous
retiming and clock tuning with no conditions on the duty cycles on a two-phase circuit, an
approximation, with a period at most (1+ε) times the optimal, can be found in
O( |V|3 (1/ε) log(1/ε) + ( |V| |E| + |V|2 log |V| ) log( |V|/ε ) ).  For k-phase, the running time for that
approximation contains a factor of ε-k, which is impractically large for small values of ε.
Legl, Vanbekbergen and Wang in [LEG 97] extend retiming to handle circuits where not all the
registers are enabled at the same time.  The idea is that we can move registers across a logic block
only if they are enabled by the same signal.  They do not change the enable time of registers.

Work has also been done to speedup loops on parallel processors.  The software pipelining
method discussed in [DON 92] gives an optimal schedule of the operations (with no wasted time
on the critical cycle) if there are no constraints on the resources (number of operative units).
Also, there are methods that use retiming as an heuristic to find schedules when there are resource
constraints [BEN 95].
We present a method that use software pipelining, instead of retiming, to find an optimal schedule
of the operations in a circuit, and then a way to reconstruct the circuit from that schedule.
Scheduling is much like calculating the clock skews in [DEO 95, MAH 97, MAH 98], but then
we do not apply retiming according to that schedule.  Like said previously, it is unclear if their
circuit works when we do not force the skews to be zero, and if we do so, the result is a single
phase circuit that can’t be faster than what the original retiming ([LEI 91]) would give.  Once the
schedule in done, we place registers with an O( |E| ) algorithm without looking at where they were
previously.  Our method has as output a circuit with a multi-phase clock, neither the phases nor
their count are fixed a priori like in [LOC 94] or [ISH 97].  Our method is not an approximation,
and the running time is low even for circuits with many phases, unlike [ISH 97].  We do not
handle the problem of finding a solution with constraints on the clock phases, which is done in
[ISH 97] by having a fixed number of phases and permitting to do retiming with fixed duty ratios.



3

The main contributions of this paper are the following:
� We do not limit ourselves to edge-triggered flip-flops or level sensitive latches only, but our

proposed solution can use a mixture of the two, which is automatically found by a linear
algorithm.

� The overall complexity of our method is O( |V| |E| log( |V| dmax)), or O( |V| |E| dmax) for small
integral delays, where |V| is  the number of computing elements in the circuit, |E| is the
number of connections between these elements and dmax is the maximum duration of the
computations done by the elements.  The complexity of the retiming method is O( |V| |E|
log |V| ). Even if in the general case the overall complexity of the two approaches is similar,
we avoid the computation of all pair-shortest paths, which is a practical burden regarding both
space and time.  Our method has an upper bound not higher than any clock minimization
method described in previous work cited in this paper.

� The optimal solution to the clock period minimization problem is always achieved.
� Some combinational functions may have a delay greater than the clock period. In this case,

the optimal throughput can be reached by increasing the number of functional units realizing
the function.

This paper is organized as follows. Section 2 recalls the notations and definitions used in this
work. Section 3 presents the main algorithm used as a replacement to the retiming approach. It
gives also the main theorems concerning the validity of our approach. Section 4 gives the
algorithms for register placement and the automatic selection of edge-triggered or level-sensitive
storage. Section 5 extends the method to non-integer clock periods and combinational logic with
delays greater than the clock period. Section 6 presents the implementation and experimental
results. Section 7 concludes the paper and points to some future work.

2 Preliminaries
2.1 Input Circuit Definition
As in [LEI 91], the input circuit is formed by combinational computing elements separated by
registers.  We model that circuit as a finite, vertex-weighted, edge-weighted, directed multigraph
G = 〈V, E, d, w〉.  The vertices V represent the functional elements of the circuit, and they are
interconnected by edges E.  Each vertex v ∈ V has a propagation delay d(v) ∈ 4  which is the
maximum delay before its outputs stabilize, and we do not suppose there is a minimum delay
before its outputs change.  Each edge e ∈ E is weighted with a register count w(e) ∈ 1
representing the number of registers separating two functional elements.  We extend the d and w

functions for paths in the graph.  For any path p = v0 →
e0
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Note that, unlike  [LEI 91],  d(p) does not take into account the weight of the last vertex.   We
also use the following notations: if vi and vj denote vertices then eij will designate the edge that
goes from vi to vj .  Given a specific path, ei denotes the edge that goes from a vertex (vi) to the
next vertex (vi+1) in the path.
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Figure 1: A simple correlator circuit.

Figure 1 shows the graph for the correlator example in [LEI 91].  This circuit does an iterative
process: at each clock cycle, the circuit calculates new values from the previously calculated ones.
The register counts can be thought of as the number of iterations between the time the value is
calculated and the time it is used (e.g. in Figure 1 the element v2 uses the result of the previous
iteration of element v1).  By thinking of the graph as an inter and intra-iteration dependency
graph, instead of number of registers, we can use an algorithm for optimal loop scheduling
[DON 92] to have the maximal throughput, which is limited only by data dependencies and
propagation delays.  This schedule is not limited by the clock period or the position of the
registers (proved in LEMMA 5, page 7).  Register placement is performed at a subsequent step that
takes the results of the scheduling step as input.

2.2 Retiming ([LEI 91])
Retiming can be viewed as a displacement assigned to each vertex, which affects the length
(weights) of the edges.  More formally, a retiming on an edge-weighted graph 〈V, E, w〉 is a
function r : V → = (or V → 4 when the weights w can be fractional, which gives a more general

graph transformation than in [LEI 91]) that transforms it in a new graph 〈V, E, wr〉 where the
weights wr on the edges are defined as:

wr(eij) = w(eij) + r(vj) - r(vi) [1]

A property of retiming:

for any path v vi
p

j → , wr(p) = w(p) + r(vj) - r(vi) [2]

This implies that for any directed cycle c (a path from a vertex to itself), wr(c) = w(c).

2.3 Schedule
We define sn(vi) to be the time at which the nth iteration of operation vi is starting.  A schedule s is
said periodic (all iterations having the same schedule), with a period of P, if:

∀n, ∀vi ∈ V,  sn+1(vi) = sn(vi) + P
A schedule is said k-periodic if there exist integers n0, k and a positive rational P such that:

∀n ≥ n0, ∀vi ∈ V,  sn+k(vi) = sn(vi) + P k
Both periodic and k-periodic schedules have the same throughput T = 1/P (this is called the
frequency in some papers but it causes a bit of confusion with the clock frequency), but the k-
periodic schedule has a period of P k.  A schedule is valid iff the operations terminate before their
results are needed, while respecting resource constraints if any.
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3 Scheduling operations
First we must find the critical cycle in the circuit; that is, the cycle that limits the throughput.  The
maximum throughput is [DON 92]:

 T
c

w c
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k

=








min
( )

( )

where ck is a directed cycle in the graph.  If there are no cycles in the graph, T is infinite; this
means that we can calculate all the values at the same time, if we have enough resources to do so.
Computing the maximal throughput is a minimal cost-to-time ratio cycle problem, which can be
solved in the general case in O( |V| |E| log ( |V| dmax ) ).  The method is based on iteratively
applying the Bellman-Ford’s algorithm for longest paths on a new graph Gl = 〈V, E, wl〉 derived
from G, with wl(eij) = d(vi) - P w(eij)  ∈ 4 , where P = 1/T is the period, to find the minimal value
of P for which there are no positive cycles in this graph [DON 92, BEN 95]. For small integral
delays, we can compute the maximal throughput in O( |V| |E| dmax )  [HAR 91].  For the circuit of
Figure 1, we find that the minimal period is P = 10, which is interesting compared to retiming
that gave a minimal period of 13. This result is the same as what was published in [LOC 94], but
the approach diverges from this point, since retiming is used on a modified graph in [LOC 94],
compared to loop scheduling that we use in this work. Note that, as we mentioned previously, the
method proposed in [LOC 94] cannot always find the optimal throughput if it is not given the
right set of phases. Figure 2 shows the graph for P = 10, where the vertices are labeled by the
length of their longest paths from/to v1.
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Figure 2: Gl with the longest paths from/to v1 in the vertices.

The weights denote the minimum distance between the schedule of two vertices.  For example the
-7 between v1 and v2 means that v1 must be scheduled at most 7 units of time after v2, the 3
between v1 and v7 means that v7 must be scheduled at least 3 units of time after v1, etc.  Finding
the longest paths in this graph gives a possible schedule with a period of P.  This can be done in
O( |V| |E| ) with Bellman-Ford’s algorithm.  The ASAP and ALAP schedules can be obtained by
finding the longest paths to and from a chosen vertex.  To find the longest paths to a vertex,
Bellman-Ford’s algorithm can be applied on the graph Gl

-1 = 〈V, E-1, wl
-1〉 derived from Gl, where

eij ∈ E-1 ⇔ eji ∈ E and wl
-1(eij) = wl(eji). Given a specific vertex v1, the ASAP (resp. ALAP)

schedule of any other vertex is the longest path (resp. minus the longest path) from v1 to that
vertex using the Gl (resp.  Gl

-1) graph. The longest path from a vertex to itself gives us its
mobility. The mobility can also be obtained as the difference between the ALAP and ASAP
schedule times or vice-versa.
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LEMMA 1: The longest path from vi to vj, two vertices in the graph Gl, is independent of the
placement of the registers in the graph G (that is, for all possible retiming r of the graph), and
wr l(p) = wl(p) - P (r(vj) - r(vi)).
PROOF: By [2] and because d(p) does not change with retiming, we have wr l(p) - wl(p) =
-P (wr(p) - w(p)) = -P (r(vj) - r(vi)).  This means that all paths from vi to vj have changed in length
by the same value after retiming, so the longest path stays the same but with a different length
wr l(p) = wl(p) - P (r(vj) - r(vi)). �

Lets define l(i,j) to be the length of the longest path from vi to vj in Gl.  Table 1 gives l for the
graph in Figure 2.

l(i,j) gives the relative schedule of vertices for the same iteration, that is we have
sn(vj) - sn(vi) ≥ l(i,j).  This permits to determine intervals in which an operation must be scheduled
relatively to another operation.  Also, because we want a periodic schedule with a period of P, we
have that:

l(i,j) + P m ≤ sn+m(vj) - sn(vi) ≤ - l(j,i) + P m [3]

For example looking at Table 1 we know that sn(v2) - sn(v1) ≥ -7 and sn(v1) - sn(v2) ≥ 7 which
means that sn(v2) - sn(v1) = -7.  Keeping only one line, and the corresponding column, for a vertex
that is on the critical cycle, we find the intervals where we can schedule the vertices.  This means
that we do not need to compute all-pairs longest paths but only the longest path from and to that
vertex.  Table 2 presents the schedule intervals relative to vertex v1.

We represent the periodic schedule of the operations (vertices), with a period of P, by a schedule
graph Gs = 〈V, E, d, ws, P〉.  Gs is derived from the graph G and a schedule s, and the weights are
ws(eij) = sw ei j( ) (vj) - s0(vi)  ∈ 4 . The weights ws represent the time distance between the start of an

operation and the start of the operation that needs the result from this one.  Gs is consistent iff it
has the following properties:

1. For all edge eij  ws(eij) ≥ d(vi)
2. All paths p from vi to vj have the same ws(p) mod P, which must be 0 if vi = vj.

Figure 3 shows a consistent Gs for our example, using s as the ALAP schedule from Table 2.

Table 1: Longest paths in graph Gl, only the values in
bold are calculated.

1 2 3 4 5 6 7 8
1 0 -7 -14 -21 -11 -4 3 10
2 7 0 -7 -14 -4 3 10 17
3 14 7 0 -7 3 10 17 24
4 14 7 0 -7 3 10 17 24
5 11 4 -3 -10 0 7 14 21
6 4 -3 -10 -17 -7 0 7 14
7 -3 -10 -17 -24 -14 -7 0 7
8 -10 -17 -24 -31 -21 -14 -7 0

Table 2: Schedules and mobility relative to v1.

vertex 1 2 3 4 5 6 7 8
ASAP 0 -7 -14 -21 -11 -4 3 10
ALAP 0 -7 -14 -14 -11 -4 3 10

Mobility 0 0 0 7 0 0 0 0
Interval 0 -7 -14 [-21,-14] -11 -4 3 10
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Figure 3: Schedule graph Gs.

LEMMA 2: the graph Gs is a retiming of the graph 〈V, E, d, P w 〉, the retiming vector being the
associated schedule.
PROOF: By definition of Gs we have that ws(eij) = sw ei j( ) (vj) - s0(vi). Gs being made from a periodic

schedule (sn = s0 + P n), this implies that ws(eij) = P w(eij) + s0(vj) - s0(vi). �

The graph with the edge-weights all multiplied by a constant c is called a c-slow circuit.  The
circuit has been slowed down by a factor of c, so that it does the same computation but it takes c
times as many clock cycles ([LEI 91]).  Therefore, the graph Gs could be interpreted as a circuit
that does the same computations as G.  A c-slow circuit can be retimed to have a shorter clock
period but the throughput is not higher if we are doing only one computation at a time; multiple
interleaved computations can be done with the circuit to have a better efficiency.  This is not our
interpretation of that graph and our final circuit is not c-slow, it produces results every clock cycle
like the original circuit.

LEMMA 3: s being a periodic schedule, the graph Gs made from s is consistent iff s is valid.
PROOF: A schedule s is valid iff the operations terminate before their results are needed, which
means that sn(vi) + d(vi) ≤ sn w ei j+ ( ) (vj).  s being periodic, this is equivalent to ws(eij) ≥ d(vi)  (first

property of consistency) by definition of ws.  By LEMMA 2 and by a property of retiming, we have
that for all paths from vi to vj, ws(p) mod P = (s0(vj) - s0(vi)) mod P  (second property of
consistency). �

LEMMA 4: Retiming a consistent graph Gs gives a consistent graph if the first property is kept
(where the retiming values do not have to be integers).
PROOF: Direct from LEMMA 2 and LEMMA 3. �

A consequence of LEMMA 4 is that we can explore different schedules (all with the same period)
by retiming the graph Gs to find one that is easier/smaller to implement.

LEMMA 5: The graph Gs is independent of the placement of the registers in the graph G (that is,
for all possible retiming r of the graph).
PROOF: Let wr, lr and wr s be respectively the values of w, l and ws after applying a retiming r to G.
By [3] we have that l(i,j) + P w(eij) ≤ ws(eij) ≤ - l(j,i) + P w(eij).  By LEMMA 1, we have that
lr(i,j) = l(i,j) - P (r(vj) - r(vi)).  This implies that:

lr(i,j) + P wr(eij) ≤ wr s(eij) ≤ - lr(j,i) + P wr(eij)
     ⇔ l(i,j) - P (r(vj) - r(vi)) + P wr(eij) ≤ wr s(eij) ≤ - l(j,i) - P (r(vj) - r(vi)) + P wr(eij)
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     ⇔ l(i,j) + P w(eij) ≤ wr s(eij) ≤ - l(j,i) + P w(eij),  by definition of wr(eij).
ws(eij) and wr s(eij) being contained in the same interval, the graph Gs does not change when
retiming G. �

4 Disposition of storage elements
4.1 Register placement
Register placement is derived from a schedule graph Gs .  We suppose that for every vertex vi,
d(vi) ≤ P.  The general case will be dealt with in section 5.  The easy way to place registers would
be to place them before each operation and activate them according to the schedule but this would
be a waste of space and it works only if ws(vi) ≤ P. Instead of registering every input of every
function we propose to  chain operations, and as a consequence we reduce the number of registers
and controlling signals needed.  In fact, we only need a register at each P time units.  This is if we
do not suppose that the output of combinational logic stays stable for some time after its inputs
change.   Therefore, we must break every path, in the graph, which is longer than P; we can put
more than one register on an edge.  We use a greedy algorithm, not necessarily optimal, for
placing the registers but we do not claim that the placement is optimal.  This algorithm is
O ( |E| ) :

%UHDN3DWK��vi��d��t��
�LI�YHUWH[�vi�DOUHDG\�SDVVHG�WKHQ�UHWXUQ

�PDUN�YHUWH[�vi�DV�SDVVHG

�vi�GLVWDQFH�� �d

�IRU�HDFK�HGJH�eij�RXW�IURP�WKLV�YHUWH[�GR

���LI�vj�DOUHDG\�SDVVHG�DQG�d���ws�eij��!�vj�GLVWDQFH

��������RU�d���ws�eij����PD[�ws�ejk���!�P�WKHQ
�����LI�ws�eij��!�P
�������SXW�FHLOLQJ�ws�eij��P����UHJLVWHUV�RQ�HGJH�eij�VFKHGXOHG�DW�WLPH�t
�����SXW�D�UHJLVWHU�RQ�HGJH�eij�VFKHGXOHG�DW�WLPH��t���ws�eij���PRG�P
�����%UHDN3DWK��vj������t���ws�eij���PRG�P�

���HOVH
�����%UHDN3DWK��vj��d���ws�eij����t���ws�eij���PRG�P�

Table 3 gives the register placement and schedule starting %UHDN3DWK with (v1, 0, 0).  Figure 4
shows the placement of registers in the final circuit, according to Table 3.  Figure 4b shows the

Table 3: Register placement and schedule.

Name edge schedule
A 2 → 3 6
B 3 → 4 6
C 5 → 6 6
D 6 → 7 3
E 8 → 1 0
F 2 → 6 6
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delay graph, where the vertices represent registers and the edges are labeled by the length of the
path between two registers adjacent in Gs.

a) register placement .
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Figure 4: Register placement and delay between them.

4.2 Latch determination
From the delay graph, we can determine which register can be a latch and when we may enable
and disable it.  The idea is the same as above, there must be no path longer than P; that is, there
must be no more than P units of time between the enable of a register and the disable of its
successors.  Also, a register must be enabled at the time it is scheduled: for example, register a
must be enabled at time 6.  This means that the maximum time a register can be enabled after
(before) its scheduled time is P minus the maximum of the lengths of the edges that go to (exit
from) that register.  In our example, register e must be enabled exactly at time 0 because there is
an edge of length 10 from and to e, so it will be edge-triggered, but register f can stay enabled 4
units of time after 6 and can be enabled 3 units of time before, so it can be level-sensitive with
enable at time 3 and disable at time 10 ≡ 0 mod P.  A possible way to enable registers is:

This can be done with a two-phase clock, e and d being clocked by the first phase and a, b, c and f
being clocked by the second one.  b, c and e are edge-triggered and a, d and f  are level-sensitive.
This solution has the same period as the one in [LOC 94], but assuming that the cost of an edge-
triggered register is R and a latch R/2, the storage element cost for their circuit is 5R while ours is

name enable time
a [6, 0[
b 6
c 6
d [0,6[
e 0
f [6, 0[
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4.5R, this represents a 10% improvement in the area occupied by the registers.  Also, we can use
a two-phase clock with an underlap between phases without changing the period.

The algorithm 3ODFH/DWFKHV checks each register in the delay graph to see if its flip-flops can
be replaced by latches and it gives the enable and disable time for each latch. Each vertex
contains its schedule time, which has been given by %UHDN3DWK. This algorithm is O( |E| ).  It is
an efficient but not necessarily optimal way to place latches and changing the order in which the
vertices are processed may give better results.

3ODFH/DWFKHV�
��IRU�HDFK�YHUWH[�vi�GR

����after� �P���PD[j^w(eji)`
����before� �P���PD[j^w(eij)`
����LI�after�≠���RU�before�≠���WKHQ
������VHW�vi�DV�D�ODWFK

������VHW�HQDEOH�WLPH�WR�EH��VFKHGXOHG�WLPH���before��PRG�P
������VHW�GLVDEOH�WLPH�WR�EH��VFKHGXOHG�WLPH���after��PRG�P
������VHW�w(eji)�WR�EH�w(eji)���after�IRU�HDFK�HGJH�eji

������VHW�w(eij)�WR�EH�w(eij)���before�IRU�HDFK�HGJH�eij

Proof that the circuit with latches will store valid values in its registers, and thus will have a
correct comportment:
From a delay graph with a period of P, let suppose that there are vertices from registers A1, A2, …,
An to the register B, and that these vertices have delays of d1, …,dn respectively.  Register Ai is
enabled on the interval [ai, bi[ and was originally scheduled at time ti.  Register B is enabled on
the interval [aB, bB[ and was originally scheduled at time tB.  An edge-triggered register is
modeled with ai = bi, which means that there is no time where the value passes through the
register but we still consider that the input value just before time ai is stored at time ai.

We want to prove that if for all i,  Ai is valid and stable on time intervals [ti, ai + P[, then B will
be valid and stable on time interval [tB, aB + P[.

By LEMMA 1 we have that ti + di ≤ tB , which implies that all inputs of B are valid at time tB if Ai

are valid and stable on time interval [ti, tB[.  By definition we have that ai ≤ ti ≤ bi and aB ≤ tB ≤
bB. Also, because there are no path longer than P,  bB ≤ ai + P.  On time interval [tB, bB[, B is
enabled and its inputs are valid and stable because Ai is valid and stable on time interval
[ti, ai + P[ and that tB ≤ bB ≤ ai + P.  On time interval [tB, aB + P[, B is disabled so that it stays
stable and was valid at the disable time, which means that it is still valid.  So, register B will be
valid and stable on time interval [tB, aB + P[. �
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5 Extensions

5.1 Functional elements of duration greater than the clock period

Suppose we want to do a scalar product.  We can do this using a simple multiply and accumulate
circuit as shown in Figure 5 (additions taking one time unit and multiplications taking two).  We
should notice that the multiplication (v1) is longer than the period (P).  If d(vi) > P, we have that
sn(vi) + d(vi) > sn+1(vi), which means that we must start the next calculation in vertex vi before the
current one finishes.  There are two ways to accomplish this: pipeline vi (Figure 5b) or put
multiple instances of vi (Figure 5c).  To be able to pipeline vi, we must ask the designer (or a
synthesis tool) to split the calculations in vi so that each part has a delay ≤ P.
To put multiple instances of vi, we can modify %UHDN3DWK so that when d(vi) > P  it places

 d v
P

i( )
 functional elements like vi, each one with registered inputs and multiplexing the outputs.

At each period, the input registers from the next unit are enabled and the multiplexor chooses the
right unit for output.  We must adjust d(vi) to include the delay of the multiplexor and find a new
valid schedule and then restart %UHDN3DWK.  In our example, the input registers and output are
scheduled as shown in Table 4.

5.2 Fractional clock duration and k-periodic scheduling

Suppose we want to find an optimal circuit for the circuit graph G in Figure 6.  Figure 6 shows a
possible schedule and the register placement done by %UHDN3DWK.  We should notice that P is
fractional.  Also, registers c1 and c2 are in fact only one register because they have the same input
and they have the same schedule.  This 1st solution may be acceptable but it must have a clock
resolution smaller than the time unit used.  If all the d(vi) are integers then there exist an optimal
valid schedule with sn(vi) being all integers.  In fact, if all the d(vi) are integers, a theorem
reported in [BEN 95, DON 92] says that if we have a valid periodic schedule s then the schedule

s* defined as s*
n(vi) =  s vn i( )  is a valid k-periodic schedule with the same throughput.

+

∗

G Gs with P=1

v1

v2

1

1

2
0

v1

v2

1
2

1 1 1

1

b) pipelining c) duplicating

2 12

aa

bb

c

c d e f

Figure 5: Scalar product example.

Table 4: Schedule of duplicated unit in the scalar product example.

Cycle enable reg. Output
Even c, d e*f
Odd e, f c*d
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Applying the theorem on the fractional schedule we used in the 1st solution gives the new
schedule in Table 5.  The period of this circuit is 5 but in each period two output values are
calculated so we have the same throughput as in the 1st solution.

6 Experimentation and implementation

For our experimentation, we are using a tool that we developed primarily for loop acceleration
called L.A. It accepts a description in standard C and produces an internal format where cyclic
behaviors are explicit. This intermediate format can be used as input to different algorithms and
CAD tools that we intend to develop in the future. To facilitate the development we started from
a retargetable C Compiler meant to be modified and retargeted easily [FRA 95].  The first
benchmark is the one presented in  [LEI91, LOC94]. In order to compare our results we also
implemented the retiming method presented in [LEI91]. The acceleration is zero for examples
where only one clock phase is needed to have an optimal schedule, but varies from 9% to 100%
when more pipelining is possible with multiple phases.

We developed the scalar product example and translated from VHDL to C some examples from
the HLSynth92 benchmark suite [HLB 96].  It is interesting to note that the filter specification in
the suite cannot be accelerated but by re-writing the specification, using tree balancing of the
expressions, we obtain an acceleration of 150% using retiming and an additional 9% using our
method.

name enable time
a [ 1

2 , 2[

b 1
2

c [2, 1
2 [

d [ 1
2 , 2[

e 1
2

1

2

2

1

1

0

0

2

1

2

1/2

0

0

3

2

1

2

2

G Gs with P=5/2

ab

c
2 2

1

d

2

1
e

2

c1

a

b

ed

c2

registers and delays

o0

o1

o3o2

Figure 6: k-periodic example, 1st solution

Table 5: filter example, 2nd solution; k-periodic schedule with k=2 and P=5/2

name schedule1 schedule2 enable times
a 2 4 { [3,2[ }
b 3 0 { 3, 0 }
c 0 2 { 0, 2 }
d 2 4 { [3,2[ }
e 3 0 { 3, 0 }
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 period registers* num. of phases acceleration
retiming L.A. retiming L.A.

correlator 13 10 5 4.5 2 30%
scalar product example 2 1 2 4 2 100%
k-periodic example 3 5/2 4 3.5 or 4 2 or 3 20%
diffeq 6 6 7 7 1 0%
ellipf 10 10 13 13 1 0%
modified ellipf 4 11/3 50 25.5 7 9%

* register count is the number of edge-triggered plus 1/2 the number of level-sensitive storage.

7 Conclusion and future work
In this work, we showed that software pipelining techniques are an excellent alternative to
retiming techniques in sequential circuit optimization. The resulting circuit has an optimal
throughput using multi-phase-clocked circuits with a combination of edge-triggered and level
sensitive storage. The computing complexity is similar to previously published methods but we
have a guarantee of always obtaining the optimal solution regarding the throughput, according to
the precision of the graph representation of the circuit. The phases are automatically computed
and the registers placed by a greedy algorithm. Future work includes the design of an optimal
algorithm to minimize the number of clock phases and the number of registers and maximize
chaining. Benchmarks have shown that rewriting of the initial specification using algebraic
transformations (like associativity and commutativity) can have a tremendous impact on the final
result, we intend to augment our tool using such capabilities. Our work has to be extended to take
into account clock skews and to minimize the impact of such phenomena on the overall
performances.  In addition, the circuit graph could have minimum delays on its edges, which is
the time before the output of combinational logic start to change when the inputs are changed.
This would permit to have paths longer than P between registers, which could reduce the number
of registers. Tradeoffs between the number of phases, space and throughput have to be explored.
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