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We examine and compare simulation-based algorithms for solving the agent scheduling problem in a
multiskill call center. This problem consists in minimizing the total costs of agents under constraints
on the expected service level per call type, per period, and aggregated. We propose a solution approach
that combines simulation with integer or linear programming, with cut generation. In our numerical
experiments with realistic problem instances, this approach performs better than all other methods pro-
posed previously for this problem. We also show that the two-step approach, which is the standard
method for solving this problem, sometimes yield solutions that are highly suboptimal and inferior to
those obtained by our proposed method.
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1. Introduction the call routing rules. These decisions are made under a high level
The telephone call center industry employs millions of people
around the world and is fast growing. In the United States, for
example, customer service representatives held 2.1 million jobs
in 2004, and employment in this job category is expected to in-
crease faster than average at least through 2014 (Bureau of Labor
Statistics, 2007). A few percent saving in workforce salaries easily
means several million dollars.

Call centers often handle several types of calls distinguished by
the required skills for delivering service. Training all agents to handle
all call types is not cost-effective. Each agent has a selected number
of skills and the agents are distinguished by the set of call types they
can handle (also called their skill set). When such skill constraints ex-
ist, we speak of a multiskill call center. Skill-based routing (SBR), or
simply routing, refers to the rules that control the call-to-agent and
agent-to-call assignments. Most modern call centers perform skill-
based routing (Koole and Mandelbaum, 2002; Gans et al., 2003).

In a typical call center, inbound calls arrive at random according
to some complicated stochastic processes, call durations are also
random, waiting calls may abandon after a random patience time,
some agents may fail to show up to work for any reason, and so on.
Based on forecasts of call volumes, call center managers must de-
cide (among other things) how many agents of each type (i.e., skill
set) to have in the center at each time of the day, must construct
working schedules for the available agents, and must decide on
Elsevier B.V.
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of uncertainty. The goal is typically to provide the required quality
of service at minimal cost.

The most common measure of quality of service is the service le-
vel (SL), defined as the long-term fraction of calls whose time in
queue is no larger than a given threshold. Frequently, multiple
measures of SL are of interest: for a given time period of the day,
for a given call type, for a given combination of call type and per-
iod, aggregated over the whole day and all call types, and so on. For
certain call centers that provide public services, SL constraints are
imposed by external authorities, and violations may result in stiff
penalties (CRTC (2000)).

In this paper, we assume that we have a detailed stochastic
model of the dynamics of the call center for one day of operation.
This model specifies the stochastic processes for the call arrivals
(these processes are usually non-stationary and doubly stochastic),
the distributions of service times and patience times for calls, the
call routing rules, the periods of unavailability of agents between
calls (e.g., to fill out forms, or to go to the restroom, etc.), and so
forth. We formulate a stochastic optimization problem where the
objective is to minimize the total cost of agents, under various SL
constraints. This could be used in long-term planning, to decide
how many agents to hire and for what skills to train them, or for
short-term planning, to decide which agents to call for work on a
given day and what would be their work schedule. The problem
is difficult because for any given fixed staffing of agents (the staff-
ing determines how many agents of each type are available in each
time period), no reliable formulas or quick numerical algorithms
are available to estimate the SL; it can be estimated accurately only
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by long (stochastic) simulations. Scheduling problems are in gen-
eral NP-hard, even in deterministic settings where each solution
can be evaluated quickly and exactly. When this evaluation re-
quires costly and noisy simulations, as is the case here, solving
the problem exactly is even more difficult and we must settle with
methods that are partly heuristic.

Staffing in the single-skill case (i.e., single call type and single
agent type) has received much attention in the call center literature.
Typically, the workload varies considerably during the day (Gans
et al., 2003; Avramidis et al., 2004; Brown et al., 2005), and the
planned staffing can change only at a few discrete points in time
(e.g., at the half hours). It is common to divide the day into several
periods during which the staffing is held constant and the arrival
rate does not vary much. If the system can be assumed to reach
steady-state quickly (relative to the length of the periods), then
steady-state queueing models are likely to provide a reasonably
good staffing recommendation for each period. For instance, in
the presence of abandonments, one can use an Erlang-A formula
to determine the minimal number of agents for the required SL in
each period (Gans et al., 2003). When that number is large, it is of-
ten approximated by the square root safety staffing formula, based on
the Halfin–Whitt heavy-traffic regime, and which says roughly that
the capacity of the system should be equal to the workload plus
some safety staffing which is proportional to the square root of
the workload (Halfin and Whitt, 1981; Gans et al., 2003). This com-
monly used heuristic, known as the stationary independent period
by period (SIPP) approach, often fails to meet target SL because it
neglects the non-stationarity (Green et al., 2003). Non-stationary
versions of these approximations have also been developed, still
for the single-skill case (Jennings et al., 1996; Green et al., 2003).

Scheduling problems are often solved in two separate steps
(Mehrotra, 1997): After an appropriate staffing has been deter-
mined for each period in the first step, a minimum-cost set of shifts
that covers this staffing requirement can be computed in the sec-
ond step by solving a linear integer program. However, the con-
straints on admissible working shifts often force the second step
solution to overstaff in some of the periods. This drawback of the
two-step approach has been pointed out by several authors, who
also proposed alternatives (Keith, 1979; Thompson, 1997; Hender-
son and Mason, 1998; Ingolfsson and Cabral, 2003; Atlason et al.,
2004). For example, the SL constraint is often only for the time-
aggregated (average) SL over the entire day; in that case, one
may often obtain a lower-cost scheduling solution by reducing
the minimal staffing in one period and increasing it in another per-
iod. Atlason et al. (2004) developed a simulation-based methodol-
ogy to optimize agents’ scheduling in the presence of uncertainty
and general SL constraints, based on simulation and cutting-plane
ideas. Linear inequalities (cuts) are added to an integer program
until its optimal solution satisfies the required SL constraints.
The SL and the cuts are estimated by simulation.

In the multiskill case, the staffing and scheduling problems are
more challenging, because the workload can be covered by several
possible combinations of skill sets, and the routing rules also have a
strong impact on the performance. Staffing a single period in stea-
dy-state is already difficult; the Erlang formulas and their approxi-
mations (for the SL) no longer apply. Simulation seems to be the
only reliable tool to estimate the SL (Cez�ik and L’Ecuyer, 2008)
adapt the simulation-based methodology of Atlason et al. (2004)
to the optimal staffing of a multiskill call center for a single period.
They point out difficulties that arise with this methodology and de-
velop heuristics to handle them. Avramidis et al. (2009) solve the
same problem by using neighborhood search methods combined
with an analytical approximation of SLs, with local improvement
via simulation at the end. Pot et al. (2008) impose a constraint only
on the aggregate SL (across all call types); they solve Lagrangean
relaxations using search methods and analytical approximations.
Some authors have studied the special case where there are
only two call types, and some have developed queueing approxi-
mations for the case of two call types, via Markov chains and under
simplifying assumptions; see Stolletz and Helber (2004) for exam-
ple. But here we are thinking of 20 to 50 call types or more, which
is common in modern call centers, and for which computation via
these types of Markov chain models is clearly impractical.

For the multiskill scheduling problem, Bhulai et al. (2008) propose a
two-step approach in which the first step determines a staffing of
each agent type for each period, and the second step computes a
schedule by solving an IP in which this staffing is the right-hand side
of key constraints. A key feature of the IP model is that the staff-cov-
erage constraints allow downgrading an agent into any alternative
agent type with smaller skill set, temporarily and separately for each
period. Bhulai et al. (2008) recognize that their two-step approach is
generally suboptimal and they illustrate this by examples.

In this paper, we propose a simulation-based algorithm for solv-
ing the multiskill scheduling problem, and compare it to the ap-
proach of Bhulai et al. (2008). This algorithm extends the method
of (Cez�ik and L’Ecuyer, 2008), which solves a single period staffing
problem. In contrast to the two-step approach, our method opti-
mizes the staffing and the scheduling simultaneously. Our numeri-
cal experiments show that our algorithm provides approximate
solutions to large-scale realistic problem instances in reasonable
time (a few hours). These solutions are typically better, sometimes
by a large margin (depending on the problem), than the best solu-
tions from the two-step approach. We are aware of no competitive
faster method.

The remainder of this paper is organized as follows: in Section
2, we formally define the problem at hand and provide a mathe-
matical programming formulation. The new algorithm is described
in 3. We report computational results on several test instances in
Section 4. The conclusion follows. A preliminary version of this pa-
per was presented at the 2007 Industrial Simulation Conference
(Avramidis et al., 2007a).
2. Model formulation

We now provide definitions of the multiskill staffing and sched-
uling problems. We assume that we have a stochastic model of the
call center, under which the mathematical expectations used be-
low are well defined, and that we can simulate the dynamics of
the center under this model. Our problem formulations here do
not depend on the details of this model.

There are K call types, labeled from 1 to K, and I agent types, la-
beled from 1 to I. Agent type i has the skill set Si # f1; . . . ;Kg. The
day is divided into P periods of given length, labeled from 1 to P.
The staffing vector is y ¼ ðy1;1; . . . ; y1;P ; . . . ; yI;1; . . . ; yI;PÞ

t where yi;p

is the number of agents of type i available in period p. Given y,
the service level (SL) in period p for type-k calls is defined as

gk;pðyÞ ¼ E½Cg;k;p�=E½Ck;p þ Ak;p�;

where E denotes the mathematical expectation, Ck;p is the number
of type-k calls that arrive in period p and eventually get served,
Cg;k;p is the number of those calls that get served after waiting at
most sk;p (a constant called the acceptable waiting time), and Ak;p is
the number of those calls that abandon after waiting at least sk;p.
Aggregate SLs, per call type, per period, and globally, are defined
analogously. Given acceptable waiting times sp, sk, and s, the aggre-
gate SLs are denoted by gpðyÞ, gkðyÞ and gðyÞ for period p, call type k,
and overall, respectively.

A shift is a time pattern that specifies the periods in which an
agent is available to handle calls. In practice, it is characterized
by its start period (the period in which the agent starts working),
break periods (the periods when the agent stops working), and
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end period (the period when the agent finishes his/her workday). In
general, agents have several breaks of different duration; for in-
stance, morning and afternoon coffee breaks, as well as a longer
lunch break.

Let f1; . . . ;Qg be the set of all admissible shifts. To simplify the
exposition, we assume that this set is the same for all agent types;
this assumption could easily be relaxed if needed, by introducing
specific shift sets for each agent type. The admissible shifts are
specified via a P � Q matrix A0 whose element ðp; qÞ is ap;q ¼ 1 if
an agent with shift q works in period p, and 0 otherwise. A vector
x ¼ ðx1;1; . . . ; x1;Q ; . . . ; xI;1; . . . ; xI;Q Þt, where xi;q is the number of
agents of type i working shift q, is a schedule. The cost vector is
c ¼ ðc1;1; . . . ; c1;Q ; . . . ; cI;1; . . . ; cI;Q Þt, where ci;q is the cost of an agent
of type i with shift q. To any given shift vector x, there corresponds
the staffing vector y ¼ Ax, where A is a block-diagonal matrix with
I identical blocks A0, if we assume that each agent of type i works
as a type-i agent for his/her entire shift.

However, following Bhulai et al. (2008), we also allow an agent
of type i to be temporarily downgraded to an agent with smaller
skill set, i.e., of type ip where Sip � Si, in any time period p of his/
her shift. Define Sþi ¼ fj : Sj � Si ^ 9=m : Sj � Sm � Sig (Sþi is thus
the set of agent types whose skill set is a minimum strict superset
of the skill set of agent type i) and S�i ¼ fj : Sj �
Si ^ 9=m : Sj � Sm � Sig (S�i is thus the set of agent types whose skill
set is a maximum strict subset of skill set of agent type i). To illus-
trate, consider a call centre with K ¼ 3 call types, I ¼ 4 agent types,
and skill sets S1 ¼ f1g, S2 ¼ f2g (specialist agents), S3 ¼ f2;3g, and
S4 ¼ f1;2;3g (generalist agents); then we have, among others,
S�1 ¼S�2 ¼ ;, Sþ

2 ¼ f3g, and S�4 ¼ f1;3g. For each i and j 2S�i
and each period p, we define the skill transfer variable zi;j;p, which
represents the number of type-i agents that are temporarily down-
graded to type j during period p. Note that by performing multiple
skill transfers during a given period, an agent of type i may end up
being downgraded to any type whose skill set is included in Si (in
the previous example, a type 4 agent could be downgraded to type
3 and then to type 2, even though there are no z4;2;p variables).

A schedule x ¼ ðx1;1; . . . ; x1;Q ; . . . ; xI;1; . . . ; xI;Q Þt is said to cover the
staffing y ¼ ðy1;1; . . . ; y1;P ; . . . ; yI;1; . . . ; yI;PÞ

t if for i ¼ 1; . . . ; I and
p ¼ 1; . . . ; P, there are non-negative integers zj;i;p for j 2Sþi and
zi;j;p for j 2S�i , such that

XQ

q¼1

ap;qxi;q þ
X

j2Sþ
i

zj;i;p �
X

j2S�
i

zi;j;p P yi;p: ð1Þ

These inequalities can be written in matrix form as Axþ Bz P y,
where z is a column vector whose elements are the zi;j;p variables
and B is a matrix whose entries are in the set f�1;0;1g. With this
notation, the scheduling problem can be formulated as
(P0): [Scheduling problem]
min ctx ¼

PI
i¼1

PQ
q¼1ci;qxi;q

s.t.
Axþ Bz P y
gk;pðyÞP lk;p for 1 6 k 6 K and 1 6 p 6 P
gpðyÞP lp for 1 6 p 6 P
gkðyÞP lk for 1 6 k 6 K
gðyÞP l
x P 0; z P 0; y P 0 and integer
where lk;p, lp, lk and l are given constants.
In practice, a given agent often works more efficiently (faster)

when handling a smaller number of call types (i.e., if his/her skill
set is artificially reduced). The possibility of downgrading agents to
a smaller skill set for some periods can sometimes be exploited to
take advantage of this increased efficiency. In case where the agent’s
speed for a given call type (in the model) does not depend on his/her
skill set, one might think intuitively that downgrading cannot help,
because it only limits the flexibility of the routing. This would be true
if we had an optimal dynamic routing of calls. But in practice, an opti-
mal dynamic routing is too complicated to compute and simpler
routing rules are used instead. These simple rules are often static.
Then, downgrading may sometimes help by effectively changing
the routing rules. Clearly, the presence of skill transfer variables in
(P0) cannot increase the optimal cost, it can only reduce it.

Suppose we consider a single period, say period p, and we re-
place gk;pðyÞ and gpðyÞ by approximations that depend on the staff-
ing of period p only, say ~gk;pðy1;p; . . . ; yI;pÞ and ~gpðy1;p; . . . ; yI;pÞ,
respectively. If all system parameters are assumed constant over
period p, then natural approximations are obtained by assuming
that the system is in steady-state over this period. The single per-
iod multiskill staffing problems can then be written as

(P1): [Staffing problem]P

min I

i¼1ciyi

s.t.
~gkðy1; . . . ; yIÞP lk for 1 6 k 6 K
~gðy1; . . . ; yIÞP l
yi P 0 and integer for all i
where ci is the cost of agent type i (for a single period), and the per-
iod index was dropped throughout. Simulation-based solution
methods for this problem are proposed in Cez�ik and L’Ecuyer
(2008) and Avramidis et al. (2009). Pot et al. (2008) address a re-
stricted version of it, with a single constraint on the aggregate SL
over the period (i.e., they assume lk ¼ 0 for all k).

In the approach of Bhulai et al. (2008), the first step is to deter-
mine an appropriate staffing, ŷ ¼ ðŷ1;1; . . . ; ŷ1;P ; . . . ; ŷI;1; . . . ; ŷI;PÞt. For
this, they look at each period p in isolation and solve a version of
(P1) with a single constraint on the aggregate SL; this gives
ŷ1;p; . . . ; ŷI;p for each p. In their second step, they find a schedule
that covers this staffing by solving:
(P2): [Two-stage approach]
min ctx
s.t.

Axþ Bz P ŷ
x P 0; z P 0 and integer
The presence of skill transfer variables generally reduces the
optimal cost in (P2) by adding flexibility, compared with the case
where no downgrading is allowed. However, there sometimes re-
mains a significant gap between the optimal solution of (P0) and
the best solution found for the same problem by the two-step ap-
proach. The following simplified example illustrates this.

Example 1. Let K ¼ I ¼ P ¼ 3, and Q ¼ 1. The single type of shift
covers the three periods. The skill sets are S1 ¼ f1;2g, S2 ¼ f1;3g,
and S3 ¼ f2;3g. All agents have the same shift and the same cost.
Suppose that the total arrival process is stationary Poisson with
mean 100 per minute. This incoming load is equally distributed
between call types f1;2g in period 1, f1;3g in period 2, f2;3g in
period 3. Any agent can be downgraded to a specialist that can
handle a single call type (that belongs to his skill set), in any
period. In the presence of such specialists, an incoming call goes
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first to its corresponding specialist if there is one available,
otherwise it goes to a generalist that can handle another call type
as well. When the agent becomes available, he serves the call that
has waited the longest among those in the queue (if any). The
service times are exponential with mean 1 per minute, there are no
abandonments, and the SL constraints specify that 80% of all calls
must be served within 20 seconds, in each time period, on average
over an infinite number of days.

If we assume that the system operates in steady-state in period
1, then the optimal staffing for that period is 104 agents of type 1.
Since all agents can serve all calls, we have in this case an M=M=s
queue with s ¼ 104, and the global SL is 83.4%, as can be computed
by the well-known Erlang-C formula (Gans et al., 2003). By
symmetry, the optimal staffing solutions for the other periods are
obviously the same: 104 agents of type 2 in period 2 and 104 agents
of type 3 in period 3. Then, the two-step approach gives a solution
to (P2) with 104 agents of each type, for a total of 312 agents.

Solving (P0) directly instead (e.g., using the simulation-based
algorithm described in the next section), assuming again (as an
approximation) that the system is in steady-state in each of the
three periods, we find a feasible solution with 35 agents of type 1,
35 agents of type 2, and 34 agents of type 3, for a total of 104
agents. With this solution, during period 1, the agents of types 2
and 3 are downgraded to specialists who handle only call types 1
and 2, respectively, and the agents of type 1 act as generalists. A
similar arrangement applies to the other periods, mutatis mutan-
dis. Note that this solution of (P0) remains valid even if we remove
the skill transfer variables from the formulation of (P0), because
the sets S�i and Sþi are all empty, if we assume that the routing
rules do not change; i.e., if calls are always routed first to agents
that can handle only this call type among the calls that can arrive
during the current period.

Suppose now that we add the additional skill sets
S4 ¼ f1g; S5 ¼ f2g; S6 ¼ f3g, and that these new specialists cost 6
each, whereas the agents with two skills cost 7. In this case it
becomes attractive to use specialists to handle a large fraction of
the load, because they are less expensive, and to keep a few
generalists in each period to obtain a ‘‘resource sharing” effect. It
turns out that an optimal staffing solution for period 1 is 2
generalists (type 1) and 52 specialists of each of the types 4 and 5.
An analogous solution holds for each period. With these numbers,
if downgrading is not possible, the two-step approach gives a
solution with 6 generalists (2 of each type) and 156 specialists (52
of each type), for a total cost of 978. If downgrading is allowed,
then the two-step approach finds the following much better
solution: 2 agents of type 1 and 52 of each of the types 2 and 3, for
a total cost of 742. The skill transfer works in this way. In period 1:
52 agents of type 2 are downgraded to specialists of type 4 and 52
of type 3 to specialists of type 5. In period 2: 2 agents of type 1 are
downgraded to agents of type 4, 50 of type 2 to type 4 and 52 of
type 3 to type 6. In period 3: 2 agents of type 1 are downgraded to
agents of type 5, 52 of type 2 to type 6 and 50 of type 3 to type 5.

If we solve (P0) directly with these additional skill sets, we get
the same solution as without them; i.e., 104 agents with two skills
each, for a total cost of 728. This is again better than with the two-
step approach, but the gap is much smaller than what we had with
only three skill sets.

Example 2. In the previous example, if all the load was from a sin-
gle call type, there would be a single agent type and the two-step
approach would provide exactly the same solution as the optimal
solution of (P0). The example illustrates a suboptimality gap due
to a variation in the type of load.

Another potential source of suboptimality (this one can occur
even in the case of a single call type) is the time variation of the
total load from period to period. If there is only a global SL
constraint over the entire day, then the optimal solution may allow
a lower SL during one (or more) peak period(s) and recover an
acceptable global SL by catching up in the other periods. To
account for this, Bhulai et al. (2008), Section 5.4, propose a
heuristic based on the solution obtained by their basic two-step
approach. Although this appears to work well in their examples,
the effectiveness of this heuristic for general problems is not clear.

Yet another type of limitation that can significantly increase the
total cost is the restriction on the set of available shifts. Suppose for
example that there is a single call type, that the day has 10 periods,
and that all shifts must cover 8 periods, with 7 periods of work and
a single period of lunch break after 3 or 4 periods of work. Thus a
shift can start in period 1, 2, or 3, and there are six shift types in
total. Suppose we need 100 agents available in each period. For this
we clearly need 200 agents, each one working for 7 periods, for a
total of 1400 agent-periods. If there were no constraints on the
duration and shape of shifts, on the other hand, then 1000 agent-
periods would suffice.
3. Optimization by simulation and cutting planes

We now describe the proposed simulation-based optimization
algorithm. The general idea is to replace the problem (P0) by a
sample version of it, (SP0n), and then replace the nonlinear SL
constraints by a small set of linear constraints, in a way that the
optimal solution of the resulting relaxed sample problem is close
to that of (P0). The relaxed sample problem is solved by linear or
integer programming.

We first describe how the relaxation works when applied
directly to (P0); it works the same way when applied to the sample
problem. Consider a version of (P0) in which the SL constraints
have been replaced by a small set of linear constraints that do
not cut out the optimal solution. Let �y be the optimal solution of
this (current) relaxed problem. If �y satisfies all SL constraints of
(P0), then it is an optimal solution of (P0) and we are done. Other-
wise, take a violated constraint of (P0), say gð�yÞ < l, suppose that g
is (jointly) concave in y for y P �y, and that �q is a subgradient of g at
�y. Then

gðyÞ 6 gð�yÞ þ �qtðy � �yÞ

for all y P �y. We want gðyÞP l, so we must have

l 6 gðyÞ 6 gð�yÞ þ �qtðy � �yÞ;

i.e.,

�qty P �qt�y þ l� gð�yÞ: ð2Þ

Adding this linear cut inequality to the constraints removes �y from
the current set of feasible solutions of the relaxed problem without
removing any feasible solution of (P0). On the other hand, in case �q
is not really a subgradient (which may happens in practice), then
we may cut out feasible solutions of (P0), including the optimal
one. We will return to this.

Since we cannot evaluate the functions g exactly, we replace
them by a sample average over n independent days, obtained by
simulation. Let x represent the sequence of independent uniform
random numbers that drives the simulation for those n days. When
simulating the call center for different values of y, we assume that
the same uniform random numbers are used for the same purpose
for all values of y, for each day. That is, we use the same x for all y.
Proper synchronization of these common random numbers is imple-
mented by using a random number package with multiple streams
and substreams (Law and Kelton, 2000; L’Ecuyer et al., 2002; L’Ecu-
yer, 2004).
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The empirical SL over these n simulated days is a function of the
staffing y and of x. We denote it by ĝn;k;pðy;xÞ for call type k in per-
iod p; ĝn;pðy;xÞ aggregated over period p; ĝn;kðy;xÞ aggregated for
call type k; and ĝnðy;xÞ aggregated overall. For a fixed x, these are
all deterministic functions of y. Instead of solving directly (P0), we
solve its sample-average approximation (SP0n) obtained by replac-
ing the functions g in (P0) by their sample counterparts ĝ (here,
ĝ stands for any of the empirical SL functions, and similarly for g).

We know that ĝn;k;pðyÞ converges to gk;pðyÞwith probability 1 for
each ðk; pÞ and each y when n!1. In this sense, (SP0n) converges
to (P0) when n!1. Suppose that we eliminate a priori all but a
finite number of solutions for (P0). This can easily be achieved by
eliminating all solutions for which the total number of agents is
unreasonably large. Let Y� be the set of optimal solutions of (P0)
and suppose that no SL constraint is satisfied exactly for these solu-
tions. Let Y�n be the set of optimal solutions of (SP0n). Then, the fol-
lowing theorem implies that for n large enough, an optimal
solution to the sample problem is also optimal for the original
problem. It can be proved by a direct adaptation of the results of
Vogel (1994) and Atlason et al. (2004); see also Cez�ik and L’Ecuyer
(2008).

Theorem 1. With probability 1, there is an integer N0 <1 such
that for all n P N0, Y�n ¼ Y�. Moreover, suppose that the service
level estimators satisfy the standard large-deviation principle (a mild
assumption): For every � > 0, there are positive integers N0 and j
such that for all n P N0 and y 2 Y, Pðjĝn;k;pðy;xÞ�
gk;pðyÞj > �Þ 6 e�nj for all k, p, and for the aggregate service levels
as well. Then, there are positive real numbers a and b such that for
all n,

P½Y�n ¼ Y��P 1� ae�bn:

We solve (SP0n) by the cutting-plane method described earlier, with
the functions g replaced by their empirical counterparts. The major
practical difficulty is to obtain the subgradients �q. In fact, the func-
tions ĝ in the empirical problem (computed by simulation) are not
necessarily concave for finite n, even in the areas where the func-
tions g of (P0) are concave. To obtain a (tentative) subgradient �q
of a function ĝ at �y, we use forward finite differences as follows.
For j ¼ 1; . . . ; IP, we choose an integer dj P 0, we compute the func-
tion ĝ at �y and at �y þ djej for j ¼ 1; . . . ; IP, where ej is the jth unit vec-
tor, and we define �q as the IP-dimensional vector whose jth
component is

�qj ¼ ½ĝð�y þ djejÞ � ĝð�yÞ�=dj: ð3Þ

In our experiments, we used the same heuristic as in Cez�ik and
L’Ecuyer (2008) to select the dj’s: We took dj ¼ 3 when the SL cor-
responding to the considered cut was less than 0.5, dj ¼ 2 when it
was between 0.5 and 0.65, and dj ¼ 1 when it was greater than
0.65. When we need a subgradient for a period-specific empirical
SL (ĝp or ĝk;p), the finite difference is formed only for those compo-
nents of y corresponding to the given period; the other elements of
�q are set to zero. This heuristic introduces inaccuracies, because ĝp

and ĝk;p depend in general on the staffing of all periods up to p or
even pþ 1, but it reduces the work significantly.

Computing �q via (3) requires IP þ 1 simulations of n days each.
This is by far the most time-consuming part of the algorithm. Even
for medium-size problems, these simulations can easily require an
excessive amount of time. For this reason, we use yet another
important short-cut: We generally use a smaller value of n for esti-
mating the subgradients than for checking feasibility. (The latter
requires a single n-day simulation experiment.) That is, we com-
pute each ĝð�y þ djejÞ in (3) using n0 < n days of simulation, instead
of n days. In most of our experiments (including those reported in
this paper), we have used n0 � n=10.
With all these approximations and the simulation noise, we rec-
ognize that the vector �q thus obtained is only a heuristic guess for a
subgradient. It may fail to be a subgradient. In that case the cut (2)
may remove feasible staffing solutions including the optimal one,
and this may lead our algorithm to a suboptimal schedule; Atlason
et al. (2004) and Cez�ik and L’Ecuyer (2008) give examples of this.
For this reason, it is a good idea to run the algorithm more than
once with different streams of random numbers and/or slightly dif-
ferent parameters, and retain the best solution found.

At each step of the algorithm, after adding new linear cuts, we
solve a relaxation of (SP0n) in which the SL constraints have been
replaced by a set of linear constraints. This is an integer program-
ming (IP) problem. But when the number of integer variables is
large, we just solve it as a linear program (LP) instead, because
solving the IP becomes too slow. To recover an integer solution,
we select a threshold d between 0 and 1; then we round up (to
the next integer) the real numbers whose fractional part is larger
than d and we truncate (round down) the other ones. These two
versions of the CP algorithm are denoted CP-IP and CP-LP.

When we add new cuts, we give priority to the cuts associated
with the global SL constraints, followed by aggregate ones specific
to a call type, followed by aggregate ones specific to a period, fol-
lowed by the remaining ones. This is motivated by the intuitive
observation that the more aggregation we have, the smoother is
the empirical SL function, because it involves a larger number of
calls. So its gradient is less likely to oscillate and the vector q de-
fined earlier is more likely to be a subgradient. Moreover, in the
presence of abandonments, the SL functions tend to be non-con-
cave in the areas where the SL is very small, and very small SL val-
ues tend to occur less often for the aggregated measures than for
the more detailed ones that were averaged. Adding cuts that
strengthen the aggregate SL often helps to increase the small SL
values associated with specific periods and call types.

After adding enough linear cuts, we eventually end up with a
feasible solution for (SP0n). This solution may be infeasible for
(P0) (because of random noise, especially if n is small) or may be
feasible but suboptimal for (P0) (because one of the cuts may have
removed the optimal solution of (P0) from the feasible set of
(SP0n)). To try improving our solution to (SP0n), we perform a local
search around it. In the CP-LP version, before launching this local
search, the solution must be rounded to integers. This is done using
a threshold d as explained earlier. To determine this threshold, we
perform a binary search over the interval ½0;1�, up to an accuracy of
0.01, to find the largest value of d that yields a feasible integer solu-
tion for (SP0n).

The local search proceeds by iteratively considering longer sim-
ulations to check the feasibility of the solutions that it examines.
The number of days used in these simulations, n1, starts from a va-
lue n2 (smaller than n) specified as an input parameter and in-
creases at each iteration by 50% of this value. Each iteration of
the local search tries to solve SP0n1 , in three phases. In the first
phase, the current solution is checked again for feasibility with
the new value of n1 and agents are added at minimum cost until
feasibility has been restored, if required. In the second phase, we
attempt to reduce the cost of the solution by removing one shift
at a time (we try each combination of shift type and agent type),
until none of the possibilities is feasible. We further attempt to re-
duce the cost in the third phase by iteratively considering switch
moves in which we try to replace an agent/shift pair by another
one with smaller cost; the candidates for the switch moves are
drawn at random, at each step, and the phase terminates when a
maximum number of consecutive moves without improvement is
reached (we used 40 for that number). After the third phase, the
current solution is tested for feasibility in a simulation of duration
n days. If it is feasible or if a time limit has been reached, the local
search terminates, otherwise n1 is increased and a new iteration is



Table 1
Description of the 285 shifts for our examples.

Type Length Shift start Break 1 delay Lunch start Break 3 delay

8:00 1:30, 1:45,
2:00

12:00, 12:30 1:30, 1:45,
2:00

1 7:30 8:00 1:30, 1:45,
2:00

13:00 1:30, 1:45

8:30, 9:00,
9:30

1:30, 1:45,
2:00

12:00, 12:30,
13:00

1:30, 1:45,
2:00

2 7:45 9:15 1:30, 1:45,
2:00

12:00, 12:30,
13:00

1:30, 1:45,
2:00

3 8:00 9:00 1:30, 1:45,
2:00

12:00, 12:30,
13:00

1:30, 1:45,
2:00

4 8:15 8:45 1:30, 1:45,
2:00

12:00, 12:30,
13:00

1:30, 1:45,
2:00

5 8:30 8:30 1:30, 1:45,
2:00

12:00, 12:30,
13:00

2:00, 2:15,
2:30

6 9:00 8:00 3:00, 3:15,
3:30

12:00, 13:30,
14:00

1:15, 1:30,
1:45

3:45, 4:00

7 6:30 10:00 1:30, 1:45,
2:00

13:00, 13:30,
14:00

0:45, 1:00,
1:15
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performed. Thus, at the end of the local search procedure, we have
a feasible solution for either SP0n1 or SP0n. The reason for using
shorter, but increasingly long, simulations in the local search is
the need to find some balance between limiting the time required
to evaluate a large number of candidate solutions and ensuring the
feasibility of the solutions considered (it is pointless to spend time
examining a large number of solutions if they all turn up to be
infeasible).

If we start the cutting-plane algorithm with a full relaxation of
(SP0n) (no constraint at all), the optimal solution of this relaxation
is y ¼ 0. The functions ĝ are not concave at 0, and we cannot get
subgradients at that point, so we cannot start the algorithm from
there. As a heuristic to quickly remove this area where the staffing
is too small and the SL is non-concave, we restrict the set of admis-
sible solutions a priori by imposing (extra) initial constraints. To do
that, we impose that for each period p, the skill supply of the avail-
able agents covers at least ak times the total load for each call type
k (defined as the arrival rate of that call type divided by its service
rate), where each ak is a constant, usually close to 1. Finding the
corresponding linear constraints is easily achieved by solving a
max flow problem in a graph. See Cez�ik and L’Ecuyer (2008) for
the details. A pseudocode of the entire algorithm is provided in
the on-line appendix.
4. Computational results

In order to assess the performance of the proposed algorithm, as
well as the impact of flexibility on solutions, a number of problem
instances were solved with the proposed algorithm and the two-
step (TS) method. These instances were constructed to be repre-
sentative of real-life call centers, based on suggestions from people
at Bell Canada. Their general setting is characterized as follows, un-
less stated otherwise.

The call center opens at 8:00 AM and closes at 5:00 PM; the
working day is divided into P ¼ 36 15-minute periods. Shifts vary
in length between 6.5 hours (26 periods) and 9 hours (36 periods)
and include a 30-minute lunch break near the middle and two 15-
minute coffee breaks, one pre-lunch and one post-lunch. A shift is
specified by five attributes: length, start time, time between the
shift start and the beginning of the pre-lunch break (break 1 delay),
lunch break start time, and time between the end of the lunch
break and the beginning of the post-lunch break (break 3 delay).
Table 1 shows the possible values of these attributes. There are
105 shifts of type 1, 45 shifts of type 6, and 27 shifts for each of
the five other types, for a total of 285 shifts.

Call arrivals are assumed to obey a stationary Poisson process
over each period, for each call type, and independent across call
types. The profile of the arrival rates in the different periods are in-
spired from observations in real-life call centers at Bell Canada
(Avramidis et al., 2004). They are plotted separately for each in-
stance. All service times are exponential with service rate l ¼ 8
calls per hour. Patience times have a mixture distribution: the pa-
tience is 0 with probability 0.001, and with probability 0.999, it is
exponential with rate 0.1 per minute. The routing policy is an
agents’ preference-based router (Buist and L’Ecuyer, 2005). These
assumptions are not all very realistic; for example, the arrival
streams of different call types are likely to be dependent, and the
service times are usually non-exponential. But these simplifica-
tions should not affect much our algorithm.

For most instances, we only consider aggregate service level con-
straints for each period. These require that at least 80% of all the calls
received during the period be answered within 20 seconds (i.e., we
have sp ¼ 20 s and lp ¼ 0:8 for each p; these are typical values used
in many call centers, often because there are SL regulations based
on these values). The satisfaction of these constraints implies that
the global constraint with s ¼ 20 s and l ¼ 0:8 is automatically satis-
fied, but we still require this explicitly, because this constraint plays
a key role in the cutting-plane algorithm. In some cases, we also im-
pose disaggregate SL constraints for each (call type, period) combina-
tion ðk; pÞwith sk;p ¼ 20 s and lk;p ¼ 0:5 for all k and p.

Note that this in turn implies the satisfaction of aggregate SL
constraints for each call type k with sk ¼ 20 s and lk ¼ 0:5. In prac-
tice, the aim of these disaggregated constraints is to avoid gross SL
imbalance between the different call types or periods. Their target
levels are typically lower than for the global constraint.

The formula used to compute agents’ costs accounts for both
the number of skills in the agent’s skill set and the length of the
shift being worked:

ciq ¼ ð1þ ðgi � 1Þ1Þlq=30 for all i and q; ð4Þ
where lq is the length (in periods) of shift q, 30 is the number of
periods in a ‘‘standard” 7.5-hour shift, gi is the cardinality of Si,
and 1 is an instance-specific parameter that represents the cost
associated with each agent skill.

We first compare the two solution methods described (i.e., TS
and CP) on three instances that correspond to a small (Section
4.1), a medium-sized (Section 4.2) and a larger call center (Section
4.3). For the medium-size center, two variants are considered: M1,
in which only aggregate SL constraints considered, and M2 with
aggregate and disaggregate SL constraints. For the larger center,
we also examine the impact of having a longer working day. This
is motivated by the idea that the available shift types and the SL
constraints may have a significant impact on the performance of
the algorithm, as well as on the cost of the solution.

Both TS and CP use CPLEX 9.0 to solve the optimization prob-
lems. To allow a fair comparison of the methods, we allocate the
same CPU time ‘‘budget” to each. Considering the nature of the
algorithms, this cannot be done by simply stopping them when
this time limit is reached. Instead, we must carefully adjust, by trial
and error, the number n of simulated days, which is a key param-
eter of both methods, to obtain running times close to the target
budget. It is clear that one would not use such a procedure in a
practical context, but this is necessary for the comparative study.
For each instance, we consider several different budgets, since
we expect that a higher value of n will produce more accurate
and more stable results. Furthermore, in each case, r replications
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Fig. 1. Small center: arrival rates.

Table 3
Small center: scheduling solutions.

Algorithm Agent type Shift type

1 2 3 4 5 6 7

CP-IP 1 7 1 3 2 1 6 3
2 2 1 0 0 1 4 0

TS 1 7 1 2 2 1 7 2
2 1 1 1 0 1 4 1
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of each method/budget combination are performed to account for
the random elements in both methods.

In the first phase of TS, to simulate each individual period of the
call center and evaluate the results of the simulations, we use the
batch means method (Law and Kelton, 2000). Each batch is consti-
tuted by a minimum number of 30 simulation time units and sta-
tistical observations are collected on a minimum of 50 batches,
using 2 warmup batches before starting to collect statistics.

Final solutions obtained by the two methods were simulated for
n� ¼ 50;000 days as an additional (much more stringent)
feasibility test, and each solution was declared feasible or not
according to the result of this test, i.e., according to the feasibility
of ðSP0n� Þ.

For each instance (or variant), results are summarized in a table
with the following column headings: budget, the given CPU time
budget; n, the number of simulated days for checking feasibility
when adding cutting planes and for the local search at the end of
the algorithm (we took n0 � n=10); n2, the starting number of days
in local search simulations; CPUavg, the average CPU time per rep-
lication; Min cost and Med cost, which are respectively the mini-
mum and median costs of all feasible solutions for (SP0n� )
obtained by this method over the r replications; P�, the percentage
of replications that returned a feasible solution for (SP0n� ); and P�1,
the percentage that returned a feasible solution with cost within
1% of the best known feasible solution (the lowest-cost feasible
solution for (SP0n� ) generated by either algorithm, over all replica-
tions and CPU time budgets, in all experiments that we have done,
including those described in Section 4.4 and several others).

We also report the maximum relative violation gap (in percent)
observed in a SL constraint for each type of constraint; Gperiod and
Gcall;period refer respectively to violations of SL constraint for periods
and for individual (call type, period) combinations.
Table 2
Small center: results obtained with CP-IP and TS for different CPU time budgets.

Budget (min) Algorithm n n2 CPUavg (seconds)

3 CP-IP 120 50 191
TS 600 205

15 CP-IP 1500 800 916
TS 2800 831

30 CP-IP 2000 1000 1751
TS 5500 1739

60 CP-IP 3000 1500 3031
TS 9000 2810
4.1. A small call center

This instance has K ¼ 2 call types and I ¼ 2 agent types, with
S1 ¼ f1g and S2 ¼ f1;2g. Agent costs are computed by setting the
parameter 1 equals to 0:2 in formula 4. Arrival rates for the two call
types are plotted in Fig. 1. All SL constraints are enforced in this in-
stance. Four different CPU time budgets were considered: 3, 15, 30
and 60 minutes. Results, based on r ¼ 32 replications, are dis-
played in Table 2.

Several observations can be made from Table 2. First, CP-IP is
able to find cheaper feasible solutions more often than TS for all
CPU budgets, except for very short CPU time. As expected, the
probability of finding good solutions with CP-IP improves as the
CPU budget and length of simulation are increased. On the other
hand, it is interesting to observe that the performance of TS does
not really improve with a larger time budget. This points out that
finding a better staffing solution per period does not necessarily
lead to a better scheduling solution. TS also has great difficulty
finding feasible solutions, although constraint violations were al-
most always inferior to 1% (for both TS and CP-IP). In practice, a
manager might be willing to use almost-feasible solutions, consid-
ering the fact that the center will always experience stochastic var-
iation in the arrival process and the SL in any case. For this reason,
it is probably useful to report slightly infeasible solutions in gen-
eral, and not only the feasible ones.

Table 3 gives an aggregate view of the best feasible scheduling
solutions obtained by CP-IP and TS in these runs. In this table, shift
types correspond to the length of the shifts as indicated in Table 1.
Both methods return solutions with the same number of agents
(31), most of which are specialists (type 1). Further analysis of
these solutions reveals that CP-IP schedules agents to slightly
shorter shifts and uses more specialists than TS (23 vs 22), and thus
gives a cheaper solution. We have also solved a variant of this
problem in which both types of specialists were allowed. Under
the same cost structure as before, the optimal solution for that case
also uses 31 agents, but is somewhat cheaper (the optimal value is
34.45) since 26 agents are now specialists (again, 23 of these are
type-1 specialists, while the three others handle type-2 calls).

Service levels for the CP-IP solution from Table 3 are plotted in
Fig. 2. We see (1) a wide variation of the SL throughout the day and
(2) that calls of type 1 have much better SL than those of type 2.
Min cost Med cost P�1 P� Gperiod Gcall;period

36.47 37.67 0 34 2.65 3.22
35.57 35.57 0 3 1.46 0

35.13 36.10 9 66 0.36 0.47
35.59 35.64 0 12 0.73 0

35.19 35.99 3 69 0.36 0.07
35.59 35.67 0 9 0.56 0

35.17 35.77 22 78 0.42 0
35.51 35.66 0 12 0.58 0
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This imbalance can be explained by the fact that the type 1 calls
can be answered by less expensive specialists, while type 2 calls
must be handled by generalists. This observation highlights the
fact that to ensure a fair treatment of all call types in a real-life set-
ting, it is often necessary to include call type specific SL constraints
(either over the whole day or for each period) in the problem
formulation.

4.2. A medium-sized call center

In the medium-sized instances, there are K ¼ 5 call types and
I ¼ 15 agent types. Five of the agents types are specialists handling
a single call type, while the other ten are generalists handling be-
tween 2 and 5 call types. Details on skill sets can be found in Table
4. The parameter 1 used to compute agent costs in formula 4 is
now equal to 0.1. Arrival rates for all call types are plotted in Fig. 3.

As mentioned earlier, we consider two variants of this example:
in M1, only global and per period SL constraints are enforced, while
M2 also includes disaggregate SL constraints.

Since in practice one may find it hard to satisfy all SL constraints
and since real-life call center managers are often interested pri-
marily in global SL, it seemed interesting to compare these two
variants. For each of them, we performed r ¼ 8 replications for sev-
eral CPU time budgets of 15, 30 and 60 minutes. Because solving
the IP instances to optimality would require unacceptable running
time, we experimented with two solution strategies: in the first,
we used CP-LP instead of CP-IP, while in the second, we set a time
limit varying from 10 to 90 seconds (for long budget) for the CPLEX
solver in CP-IP. CP-IP generally requires fewer iterations than CP-
LP, which compensates for the additional IP solving time. The re-
sults for M1 and M2 are summarized in Tables 5 and 6. Overall,
the performance of CP-IP and CP-LP is similar: both methods have
a good chance to find lower-cost (5% cheaper) feasible solutions
than TS, but all the solutions obtained by TS are feasible.

CP-IP and CP-LP had to execute more iterations to optimize M2

and the solutions are a little more expensive than in M1; this was
expected since M1 is a relaxation of M2. An interesting conclusion
that one could draw here is that the increase in cost incurred when
imposing the disaggregate SL constraints is rather marginal. Again,
Table 4
Medium-sized center: skill sets.

Skill Agent types

1 1, 6, 9, 10, 11, 14, 15
2 2, 7, 9, 10, 12, 13, 14, 15
3 3, 8, 13, 15
4 4, 11, 12, 13, 14, 15
5 5, 6, 7, 8, 10, 11, 12, 14, 15
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it is worth noting that the performance of TS appears invariant to
the CPU time, but also to the additional disaggregate SL
constraints.

4.3. A larger call center

The larger center instances have K ¼ 20 call types and I ¼ 35
agent types. Twenty of the agents types are specialists handling a
single call type, while the 15 other types are generalists handling
between 4 and 9 call types. Details on skill sets can be found in
Avramidis et al. (2007b) and in the appendix. Agent costs are com-
puted with 1 ¼ 0:1. We only consider SL constraints by period, plus
the global SL constraint. Two CPU time budgets are examined: 5
and 10 hours. Because the size of the problem is too large to run
CP-IP efficiently (even with limited IP solving time), we only exe-
cute CP-LP and perform r ¼ 8 replications.

One of our objectives with this example is to show that the per-
formance of CP-LP does not depend much on the particular struc-
ture of the shifts. We thus consider again two variants: L36, which
uses the 9-hour working day and the same shift structure as the
previous examples, and L52, which has a working day starting at
8:00 AM and ending at 9:00 PM; in that variant, the total number
of periods is 52 and all the shifts have a fixed length of 7.5 hours,
thus yielding a total of 123 different shifts (considering also shifts
starting at 1:00 PM and 1:30 PM in order to cover the additional
periods). Arrival rates for the L36 variant and the 36 first periods
of L52, follow exactly the same pattern as in the medium-size
example (see Fig. 3), with different scalings for the different call
types; for L52 they then decrease slowly during the last 16 periods.
The results for L36 are displayed in Table 7.

Each run of CP-LP has to execute in total around 20,000 simula-
tions. Although the CPU budgets are several hours, each simulation
is actually quite short (averages of 0.7 and 1.3 seconds/simulation
respectively). CP-LP has difficulty finding feasible solutions, even
though constraint violations are typically very small. TS always
finds feasible solutions, but the solutions returned are on average
25% more expensive than those obtained with CP-LP. Surprisingly,
increasing the CPU budget does not improve the performance of TS.
This confirms our observations of the previous section regarding
the limited performance of TS. Optimizing periods independently
does not seem to lead to a better scheduling solution. On closer
examination of the best scheduling solutions obtained by the two
methods, we find that the CP-LP solution is less expensive because
it covers the demand with only 52 agents compared to 62 for TS.

The results for the L52 variant are reported in Table 8. On this
larger problem, each run of CP-LP has to execute in total around
35,000 simulations. Because each simulation needs to be short
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(less than 1 second), there is a higher probability of ending up with
an infeasible solution. However, the violation gap decreases as the
time budget increases. All the solutions returned by TS were de-
clared feasible, but they are 20% more expensive. When we exam-
ine the best solutions found by CP-LP and by TS for the L52 instance,
we first remark that CP-LP uses only 94 agents compared to 104 for
TS. We also note that 6 agents in the CP-LP solution are specialists,
while there is 1 in the TS solution. Furthermore, TS uses 32 expen-
sive generalists with 7 skills or more compared to only 22 for CP-
LP. These three factors combined explain the large difference in
cost.

Our motivation for investigating the 52-period example was to
verify that CP-LP performed correctly for instances with a different
shift structure. Our results confirm this, but at the same time they
highlight one of the potential shortcomings of the approach, which
is that, because of simulation noise, when there is a large number
of constraints, one often ends up with no feasible solution, even
though several near-feasible solutions may have been identified.
We address this issue next.
Table 5
M1: results obtained with CP-LP and TS for different CPU time budgets.

Budget (min) Algorithm n n2 CPUavg (seconds)

15 CP-IP 200 80 764
CP-LP 200 80 972
TS 1000 864

30 CP-IP 600 100 1776
CP-LP 600 100 1947
TS 1333 1494

60 CP-IP 1000 400 2981
CP-LP 1000 400 2987
TS 4000 3603

Table 7
L36: results obtained with CP-LP and TS for different CPU time budgets.

Budget (hour) Algorithm n n2 CPUavg (min)

5 CP-LP 400 50 261
TS 4000 268

10 CP-LP 500 80 506
TS 6000 602

Table 8
L52: results obtained with CP-LP and TS for different CPU time budgets.

Budget (h) Algorithm n n2 CPUavg (min)

5 CP-LP 200 50 300
TS 3000 257

10 CP-LP 400 50 696
TS 4400 561

Table 6
M2: results obtained with CP-LP and TS varying the CPU time budget.

Budget (min) Algorithm n n2 CPUavg (seconds) M

15 CP-IP 200 80 664 20
CP-LP 200 80 1146 20
TS 1000 903 21

30 CP-IP 300 80 2188 20
CP-LP 300 80 1827 20
TS 1333 1804 21

60 CP-IP 400 100 3106 20
CP-LP 400 100 4597 20
TS 4000 3604 21
4.4. Getting more feasible results

Empirical results show that, as problem instances become lar-
ger and more complex, there is a definite possibility that CP would
return a set of low-cost, but only nearly-feasible solutions. While
this may be acceptable in some practical settings, it is nonetheless
annoying to be unable to provide the call center manager with a
solution that meets all his/her requirements. A simple and attrac-
tive way of tackling this problem consists in slightly increasing
the right-hand side value of the SL constraints when applying the
algorithm (except obviously for the final long simulation that is
used to determine the feasibility of solutions). It should be noted
that this idea is not specific to the CP procedure and could there-
fore be applied with any other solution approach.

We first tested this idea on the L52 instance, using values of 0:81
as target SL for all periods. We combined these tests with experi-
ments on the value of the threshold d used for rounding continuous
solutions to integer ones in CP-LP. The rationale for investigating
different values of d is that the rounding procedure introduces a
Minimum cost Median cost P�1 P� Gperiod

20.54 20.99 0 62 0.85
20.29 20.96 0 50 2.33
21.47 21.60 0 100 0

20.18 20.51 12 75 0.88
20.36 20.88 0 62 0.74
21.43 21.61 0 100 0

20.45 20.90 0 62 0.46
20.51 21.26 0 75 0.25
21.49 21.57 0 100 0

Minimum cost Median cost P�1 P� Gperiod

79.17 80.05 0 50 0.77
95.99 100.46 0 100 0

78.38 79.44 12 38 0.65
96.64 100.30 0 100 0

Minimum cost Median cost P�1 P� Gperiod

133.00 133.40 25 37 1.31
161.50 167.85 0 100 0

133.70 134.15 12 25 0.48
158.60 163.40 0 100 0

inimum cost Median cost P�1 P� Gperiod Gcall;period

.80 21.53 0 37 0.43 0.21

.57 21.81 0 62 0.98 2.28

.47 21.59 0 100 0 0

.92 21.89 0 62 0.32 0

.65 21.22 0 62 1.02 0

.47 21.62 0 100 0 0

.59 21.26 0 62 0.32 3.37

.71 21.47 0 50 0.17 2.21

.53 21.59 0 100 0 0
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heuristic element in what would otherwise be an exact procedure
and that selecting the best value for this threshold is far from
obvious.

In our experiments, we considered three different values of d
(0.5, 0.6 and 0.7) for CPU budgets of 5 and 10 hours, and we ran
8 replications in each case. The chance of obtaining good feasible
solutions has greatly improved and even had all 8 solutions feasi-
ble for one test case. The solutions also tend to cost slightly more.
The results are summarized in Table 9. These results show that the
value selected for d seems to have a small impact on the quality of
the solutions obtained. Using a d closer to 1 results in a lower
incumbent rounded solution in CP-LP and may not represent well
the incumbent LP solution, in particular when there are few agents
per (group,shift)-combination. This can lead to bad cuts in early
stages of CP-LP, which happened in the test case d ¼ 0:7. In fact,
it seems to be much more important to make sure that the runs
that are made do produce feasible solutions, in order to have a lar-
ger set to choose from.

We then ran CP-LP with the original 0.80 target value for differ-
ent values of d. These tests clearly showed that modifying d alone
was not sufficient to consistently obtain feasible solutions, since
more than half of these runs returned infeasible solutions.

We also ran the algorithm with a target SL value of 0.81 for the
other instances (keeping the value of d unchanged at 0.5). The re-
sults can be summarized as follows:

	 For the small center, all runs returned feasible solutions (except
for very short time budget). The solutions tend to cost slightly
more than the ones obtained previously, but a better solution
was found with a cost of 35.11.

	 For the medium-sized instances, almost every run produced a
feasible solution, but we did not find a better solution.

	 For the L36 instance, all runs yielded a feasible solution, and we
found a better solution with a cost of 78.27.

Overall, slightly increasing the value of the SL target value is a
useful device for making sure that the method will return feasible
solutions. There is no guarantee that this will provide a better solu-
tion, but it may very well do so, especially when there is a large
number of constraints. The variability of our results highlights once
again the stochastic nature of the algorithm, which cannot be
avoided considering the significant amount of noise in the
simulations.

4.5. The impact of flexibility

We performed another series of numerical experiments to
quantify empirically the impact of the flexibility provided by a rich
set of shift types. Those experiments were performed on the small
center of Section 4.1. We considered three sets of shift types: the
original one with all 285 shifts, a slightly reduced one with 267
shifts, obtained by deleting the 26-period and some 36-period
shifts, and adding some 35-period ones, and finally a much more
Table 9
L52: results obtained with a target SL of 0.81.

d (h) CPU budget Minimum cost Median cost P�

0.5 5 133.90 135.35 50
10 133.70 134.85 100

0.6 5 133.70 135.00 87
10 134.50 135.15 100

0.7 5 139.00 140.20 87
10 136.70 139.15 75
restricted set in which we only allow the 105, 7.5-hour shifts.
The staffing solutions corresponding to the best scheduling solu-
tions obtained for these three cases are plotted in Fig. 4, along with
the optimal staffing solution computed by considering each period
individually. Three main conclusions can be drawn from this
figure:

1. As shown by the solution with 285 shifts, if enough flexibility is
introduced in the set of available shifts, it is possible to find
schedules that track closely the staffing requirements.

2. Even a slight decrease in flexibility (e.g., by going from 285 to
267 shifts) can lead to a significant overstaffing in some periods.

3. Schedules with a relatively small number of fixed-length shifts
(the 105-shift case) are bound to suffer from major overstaffing.

It follows that, while the complexity of the scheduling problem
significantly increases with the number of available shifts, there
are definite benefits to be reaped from the introduction of more
varied shift types.

5. Conclusion

We have proposed in this paper a simulation-based methodol-
ogy to optimize agent scheduling over one day in a multiskill call
center. Even though the use of common random numbers reduces
the simulation noise (or variance) significantly, there is still a fair
amount of randomness in the solution provided by the algorithm,
mainly due to the fact that the simulation length must be kept
short (because the estimation of each subgradient requires simula-
tions at up to thousands of different parameter values). Yet, to our
knowledge, better solutions are found with this approach than
with any other method we know. In particular, during the develop-
ment of the cutting-plane algorithm, we also implemented simul-
taneously a metaheuristic method based on neighborhood search
combined with queueing approximation, along the lines of
Avramidis et al. (2009), but we were unable to make it competitive
for solving the scheduling problem.

In practice, one may run the algorithm a few times (e.g., over-
night) to obtain a few solutions and retain the best found. We also
showed that by slightly perturbing the SL targets, it is possible to
overcome some of the problems caused by the presence of the sim-
ulation noise and thus to greatly increase the probability of obtain-
ing feasible, high-quality solutions.

Future research on this problem includes the search for faster
ways of estimating the subgradients, refining the algorithm to fur-
ther reduce the noise in the returned solution, and extending the
technique to simultaneously optimize the scheduling and the rout-
ing of calls (via dynamic rules).
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