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1. Additional comments on the routing rules
This section provides some additional comments on the routing policies P, PD and WR.

1.1. Priority Routing (P)
A common situation where priority routing is used in practice is when an agent group is given a
primary skill and secondary skills. The priorities will be set such that an agent from this group will
first try to serve a call corresponding to his primary skill before serving any call corresponding to
one of his secondary skills.

1.2. Priorities with Delays (PD)
If the objective function is FS(π), i.e., involves only the SL, then according to intuition we may want
to impose a delay slightly smaller than the AWT for certain call types, to increase their chance of
abandonment before the AWT in case they have to wait. This would in turn improve the quality
of service of the remaining customers in terms of SL and average waiting times, and improve the
objective function. In particular, if we consider the possibility of balking, where the patience time
has a mass at zero (a customer hangs up immediately upon entering a waiting queue), and if the
abandonments are not penalized, then it is often optimal to impose very short delays for all calls.
We do not consider balking in our numerical examples.

1.3. Weight-based Routing (WR)
To better understand the relationship between the WR policy and the more traditional priority
lists, and convince ourselves that the WR policy is more general and flexible than the G, P and
PD policies, we now examine how these policies can be approximated arbitrary closely by the
WR policies. The global FCFS routing can be approximated by setting qk,g = 0, ak,g = 1, and
bk,g = ε > 0, for all pairs (k, g), where ε is arbitrarily small.
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If we have a policy P that uses only the type-to-group priorities, or only the group-to-type
priorities, or if the priority lists are symmetric (the primary call type of a group and the primary
group of a call type are the same pair, which is often the case in practice), then it suffices either
to set the qk,g ≥ 0 according to the priorities and ak,g = 1, or to set ak,g > 0 accordingly to the
priorities and qk,g = 0, with bk,g = ε in both cases.

If the priority lists are not symmetric, then we can use qk,g to reproduce the type-to-group
priorities and ak,g for the group-to-type priorities, and bk,g = ε. The parameters qk,g must be set by
small increments while ak,g must be set by large increments. When a call arrives, its waiting time
is 0, so ak,g has no influence in the selection of the group. But when an idle agent chooses a call
in the queue, qk,g must be negligible compared to ak,g. The same setting applies to approximate
the policy PD with time delays. One can use the qk,g for the type-to-group priorities and for the
delays, since both cannot be applicable simultaneously. If a call is delayed by a group, then the
type-to-group priority for that group is meaningless and vice versa. Similarly, one can set the ak,g
according to the group-to-type priorities and the delays.

Typically, the group-to-type priorities dominate when the call center is overloaded (most calls
have to wait) and the type-to-group priorities dominate when the call center is underloaded (most
calls do not wait). In these cases, one may still obtain a good approximation by converting only
the group-to-type priorities in the high-traffic situation and the type-to-group priorities in the
low-traffic case. We can simplify the weight policy to approximate the priority rules with qk,g only,
using WR-sep.

2. Details on the MGA for routing optimization
This section describes how we apply the modified genetic algorithm (MGA) to optimize the param-
eters of the routing policies considered in this paper.

For the WR and LGcµ policies, for all initial parameters θ(0), we start with mean 0 and a
large variance. Depending on the time unit used, choosing the right scale for qk,g, ak,g and bk,g will
improve the starting solutions. For example, if the time unit is in second, then we set the variance
of qk,g to be 100 times larger than those of ak,g and bk,g. In the case of hours, we set the variance
of qk,g to be 100 times smaller.

For WR-neg, we perform a pre-selection of the solutions such that any solution for which ak,g < 0
and bk,g < 0 for any pair (k, g) is automatically rejected (because such rule is not realistic), and a
new one is generated. That is, at each iteration of the MGA, random solutions are generated from
Φ(θ) until there are P admissible solutions, and these P solutions are then evaluated by simulation.
This pre-selection procedure is particularly useful at the beginning of the algorithm, where many
bad candidate solutions are rejected without requiring any simulation.

We also use the normal distribution to generate the parameters of LGcµ, the delays for the
policies PD and PDT, and the idle agent thresholds for the policies PT and PDT. The negative
delays and agent thresholds are replaced by 0. For these policies, we set the initial parameters with
small positive mean and variance. In the numerical experiments, we use initial means of 10 seconds
and one idle agent, and the same for the initial standard deviations.

Optimizing the priority lists with MGA is more complicated, because it is a combinatorial
problem. Here, we assume that the skill sets Sg and hg = |Sg| are fixed, and we only decide on the
priorities. To generate a solution, we generate the type-to-group and the group-to-type priority
lists independently. We describe how to create the preference list Lg of group g, with skill set Sg.
The type-to-group priority list Gk of call type k is generated in a similar way. Note that even in
very large call centers, there may be many priority lists, but these lists are usually small.

If hg = 1, then the preference list is trivial and there is nothing to do, so we now assume that
hg > 1. The distribution used to generate the list Lg has parameters αg,k > 0 for k ∈ Sg and
βg,n ∈ [0.05,0.95] for n= 1, . . . , hg − 1. We initialize αg,k = 1 for all k and βg,n = 0.5 for all n. The
priority list is generated in two independent steps:
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1. We generate a permutation P = (p1, p2, . . . , phg) such that pi ∈ Sg, for all i and pi 6= pj for
i 6= j. To do this, we generate a random variate zg,k uniformly distributed over the interval [0, αg,k],
for each k ∈ Sg, and the permutation is obtained by sorting these zg,k’s in increasing order. Note
that the hg! permutations do not have all equal probabilities. Call types k with smaller αg,k have
more chance to appear earlier in the list and to have higher priorities.

2. Given the permutation, we now have to decide on the subsets L(·)
g of call types having equal

priorities in this list. That is, we must decide between “equal” and “higher than” for the pri-
ority relationship between any two successive positions in the permutation P. There are hg − 1
relationships to determine, and the nth one is chosen to be “equal” with probability βg,n, for
n = 1, . . . , hg − 1. More precisely, call types pn and pn+1 have the same priority with probability
βg,n, else call type pn has higher priority. We bound βg,n away from 0 and 1 to allow for a minimum
of diversification.
The distribution parameters αg,k and βg,n are updated at each iteration as follows. For αg,k, we
simply take the average rank of call type k in the priority lists of group g over the P̂ elite solutions.
Call types with equal priorities have the same rank. Those with the highest priority have rank 1,
those with the next priority have rank 2, and so on. To update βg,n, we compute the proportion of
call types at position n having the same priority as the call types at position n+ 1 in the P̂ elite
solutions. For the stopping criterion based on the variance of Φ(θ), we only look at the variance
of the ranks used to update αg,k, from the elite sample, for each g and k.

For the policy PD, we optimize both the priority rules and delays simultaneously for small size
call centers. For larger call centers, we found that a 2-stage approach where the only priority rules
are optimized first and the delays after is more efficient (although suboptimal) when the execution
time is limited. We also use a 2-stage approach to optimize the policy PT for large call centers.

Combining the priorities, delays and agent thresholds in the policy PDT quickly increases the
number parameters and optimizing all these parameters simultaneously becomes very difficult.
Instead, we optimize subsets of parameters iteratively with the MGA, using a multi-stage approach
(itMGA stages). We always start the first stage with the priority rules, since they tend to have
a bigger impact on the PMs. For the itMGA−1 remaining stages, we optimize subsets chosen
randomly from: (1) priorities, (2) priorities and delays, (3) priorities and thresholds, and (4) delays.
A tabu list is used to store the subsets that give no improvement and these subsets cannot be
chosen while they are in the list. This algorithm for PDT is very time-consuming, more than for
WR and LGcµ, because of the multiple executions of the MGA. We allow larger execution times
for this algorithm.

3. Additional comments on the numerical examples
In this section, we give further comments on the numerical results of the X and N models. We also
give additional details on the model parameters of the real-life based example with 6 call types
and 8 agent groups. Finally, we include a new example with 8 call types and 10 agent groups.

3.1. Comments on the solutions for the X-model
We now discuss further how the routing solutions for the X-model look like. Among the 5 retained
solutions for each policy, we always report and discuss the best one. We first compare the solutions
for the objective function FS. For policy P, group i gives high priority to call type i, for i= 1,2,
and for both call and agent selections. Note that this is not equivalent to a fastest-server-first rule,
because here µ1,2 = µ2,2. For PD, the best solution sets the same group-to-type priorities as for P
and sets the delays to d1,2 = 16.1 and d2,1 = 2.7 seconds. Note that if we had dk,g > τk = 20, then all
calls of type k served by group g would have a “bad service”. PD has more abandonments than P
overall, because call type 1 has 10 times more volume than type 2 and the penalties are not weigthed
by call volumes; so it is easier to improve the SL of type 2 (with the same staffing vector). For PT,
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the type-to-group priority lists are identical to P, and the group-to-type lists are L1 = ({2},{1})
and L2 = ({1,2}), with thresholds m1,2 = 0.95, m2,1 = 1.62, and m2,2 = 0.09. The small positive
value of m2,2 is only an artefact of the “incomplete” convergence of MGA. Replacing m2,2 with 0
reduces the penalty by less than 0.2. The PDT solution is mixed: the priorities are the same as for
P, the delays are d1,2 = 14.7 and d2,1 = 7.8 seconds, and the thresholds are (m1,1,m1,2) = (0.63,0.80)
and (m2,1,m2,2) = (1.64,0.004). The threshold m2,2 is practically 0, but m1,1 is not (putting it from
0.63 to 0 increases the cost from 4.9 to 8.45; with 0.63, there are 0.05% more abandonments and
the average waiting times are 0.2 seconds larger, but S1 is 0.8% larger and S2 is 0.2% smaller).
The policy LGcµ often has lower SL and higher abandonments than WR and WR-idnum, and
this makes it more expensive. For WR, the PMs for FS are just slightly below those of PD. The
large qk,g gives more weight on the faster group, as expected in this inefficient-sharing context. The
coefficient a1,2 is relatively large (and larger than a2,2), but this is to compensate for the negative
q1,2 and to create dynamic delays. Observe in Table 3 of the main paper that for all solutions of
WR, the parameter q1,2 is negative, and the parameters q1,1 and q2,2 are positive.

There are similarities between the parameters qk,g of WR-sep and WR. The solution for WR-sep
allows the possibility of delay for the pair (k= 1, g= 2), just like WR. The best solution of WR-sep2
is: (q1, q2) = (575,797), (a1, a2) = (15.1,0.028), (r1, r2) = (374,−783), and (b1, b2) = (12.4,0). Group
2 will prioritize call type 1 once the waiting time is greater than 14.7 seconds. The PMs are similar
to those of LGcµ.

The best solution with WR-neg for F λ
SA has negative coefficients and significantly smaller cost

than WR. Like for WR, we have q1,2 < 0 and a1,2 > 0, which creates “delays” that decrease as
time increases. But there are also opposite cases with q2,1, q2,2 > 0 and a2,1, a2,2 < 0, where delays
increase (or are initiated) as wait times increase! The small call type 2 is even less important with
WR-neg and F λ

SA: the agents are discouraged to serve call type 2 if it has waited too long, unless
the queue of type 1 is empty and an agent has been idle for a long time.

Since agents can serve all call types in the X-model, it is not hard to have fair agent occupancy;
even policy G has occupancy levels O= (95.9,96.1). The difficult part is to reduce the SL penalties
in FSO.

3.2. Additional details on the example with 6 call types and 8 groups
The service time distribution parameters are estimated from approximately one year of data. For
each of the nearly 1500 agents, the data contains her daily average service time for each call type,
and the daily number of calls of each type she served. Considering only the agents that belong to
one of the 8 selected groups, we estimate the service time distribution of a group by aggregating the
agents of the same group, weighted by the number of served calls. After this aggregation, we have
240 to 252 days of service time observations for 17 skill pairs; this corresponds approximately to a
period of one year excluding weekends. The other skills have smaller numbers of daily observations,
with the smallest being 62 days. Many reasons can explain this difference of observed days: the
routing has changed over time, agents have moved to different groups, some groups do not work
everyday, etc.

The service times of the 25 skill pairs are modeled as lognormal distributions, and Table 1 shows,
for each pair, the mean µ and standard deviation σ of the underlying normal distribution, followed
by the mean and standard deviation of the lognormal distribution, in minute units.

3.3. An example with 8 call types and 10 agent groups
We consider a larger example with 8 call types and 10 agent groups. The arrival pro-
cess is Poisson, and the service and patience times are exponential with rates (λ1, . . . , λ8) =
(250,200,100,80,50,20,15,10), (µ1, . . . , µ8) = (10,6,6,10,6,6,8,10), and (ν1, . . . , ν8) = (10,8,10,
12,6,10,12,10), all per hour. The staffing vector is (y1, . . . , y10) = (21,12,14,8,16,5,3,7,8,9) for a
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Table 1 The lognormal distribution parameters of the service times for each of the 25 skills in the
example with 6 call types and 8 groups.

Call type Group µ σ mean Std. dev. Call type Group µ σ mean Std. dev.

1 1 2.126 0.278 8.7 6.1 3 8 1.862 0.451 7.1 11.5
1 2 2.352 0.275 10.9 9.3 4 1 2.140 0.322 9.0 8.8
1 5 2.343 0.326 11.0 13.5 5 1 1.924 0.334 7.2 6.2
1 6 2.260 0.322 10.1 11.1 5 3 1.826 0.498 7.0 13.9
1 8 2.116 0.374 8.9 11.8 5 4 1.949 0.343 7.5 6.9
2 2 2.293 0.273 10.3 8.2 5 5 1.958 0.376 7.6 8.8
2 6 2.386 0.268 11.3 9.5 5 6 2.117 0.338 8.8 9.4
3 1 2.036 0.312 8.0 6.6 5 7 1.898 0.397 7.2 8.9
3 3 1.749 0.614 6.9 22.0 5 8 1.887 0.399 7.2 8.8
3 4 1.921 0.390 7.4 8.9 6 4 1.514 0.497 5.1 7.4
3 5 1.965 0.458 7.9 14.7 6 7 1.640 0.413 5.6 5.9
3 6 2.172 0.357 9.4 11.9 6 8 1.768 0.445 6.5 9.2
3 7 1.899 0.499 7.6 16.2

total of 103 agents. The skill sets are S1 = {1,4}, S2 = {2,5}, S3 = {3,4,7}, S4 = {4,6,8}, S5 =
{2,5}, S6 = {6,7,8}, S7 = {1,3,7}, S8 = {2,4,8}, S9 = {1,3,4,8} and S10 = {2,7,8}. The average
agent occupancy is around 90%, but the average occupancy per group can vary between 75% and
95%. Compared to the example with 6 types and 8 groups, this model has 3 more skills, but the
stochastic processes are simpler. The SL targets are tk = 80% with τk = 20 seconds for all call types.
The simulation parameters are T = 100 hours and n= 10 replications.

We execute the MGA with P = 400, P̂ = 20 and maxIt = 40. For PDT, we take maxIt = 20,
P = 200, P̂ = 10 and we set the multi-step parameter itGMA = 10. We optimize the parameters of
PD and PT with a two-stage MGA. The first stage optimizes the priorities with maxIt = 30 and
the second stage optimizes the delays or thresholds with maxIt = 10. An optimization run takes
roughly 14 hours. Contrary to the real-life based example, the solution costs do not improve much
further with additional CPU time.

Table 2 Average and lowest cost estimated out-of-sample for the retained policy, for the
3 runs, for the large example with 8 call types and 10 groups.

Objective G P PD* PT* PDT LGcµ WR WR-sep WR-idnum WR-neg

FS 616 231 192 147 165 209 107 108 96 61
F ∗
S 616 211 176 137 156 206 104 102 95 57

FλSA 26.3 14.4 13.3 11.3 11.9 13.6 9.4 9.1 8.6 7.7

Fλ∗SA 26.3 14.3 13.0 10.8 11.7 13.5 9.4 9.1 8.6 7.2

Table 2 reports the average costs (rows FS and F λ
SA) and lowest costs (rows F ∗

S and F λ∗
SA) of 3

optimization runs, evaluated out-of-sample. The lowest costs of each objective function are shown
in bold font. PD* and PT* in the table denote PD and PT policies whose parameters have been
optimized via two-stage MGA (the solutions from the single-stage MGA are worse than P in this
case). The WR-idnum policy clearly wins, followed by WR and WR-sep. If we allow negative
coefficients, then WR-neg gives even lower costs.

3.4. N-model with penalties on expected waiting times only
We now examine an example of an N-model under a heavy-traffic regime with penalty costs based
on expected waiting times only, where either a cµ-type rule or a priority rule (such as policy P),
depending on the asymptotic regime and the waiting (holding) costs, is known to be asymptotically
optimal, as shown in Tezcan and Dai (2010). Our aim is to examine how well WR and LGcµ,
combined with MGA, perform in those types of situations.
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There are two call types and two agent groups. Group 1 can serve only call type 1, while group
2 can serve both types 1 and 2. The arrivals are Poisson with rates λ1 = 5.7 and λ2 = 0.6 call
per second for types 1 and 2 respectively. There are no abandonments. The service times are
exponential, with means that depend only on the agent group (not on the call type); the mean is
10 minutes for agents of group 1 and 9 minutes for agents of group 2. There are y1 = 2850 and
y2 = 580 agents, and the average agent occupancy is 99% (a heavy-traffic situation). This system
evolves over successive independent “days” of length T (the time horizon). The penalty function
involves only the expected waiting times:

FW(a) = aE[W1] +E[W2],

where Wk is the waiting time of a call of type k selected randomly over all days and a is a penalty
weight on call type 1. To relate with the objective function (8) considered by the Gcµ rule in the
main paper, we can rewrite FW(a) as the following expected cumulative weighted sum of waiting
times over one day:

FW(a) =E

[
a

N1∑
n=1

W1,n

λ1T
+

N2∑
n=1

W2,n

λ2T

]
,

where Nk is the number of arrivals of type k during the day and Wk,n is the waiting time of the
n-th call of type k.

We report experiments with two values of a, namely a = 3 and a = 20. The optimal policy is
(at least to a very close approximation) a fixed priority rule (policy P) when a= 3, and a cµ-type
rule when a = 20. Note that these two rules can be mimicked by both LGcµ and WR for this
N-model. We also tested non-heavy-traffic settings, with arrival rates 100 times smaller and with
smaller staffing, y1 = 30 and y2 = 9, for which the average occupancy is approximately 94%. For
each routing policy and each of these four settings, we optimized the routing parameters for FW(a)
with MGA, and we did this 3 times independently. The costs of the best solutions (evaluated out-
of-sample) are presented in Table 3. The results agree with the theory: policy P is nearly-optimal
for a= 3 and LGcµ gives a nearly-optimal policy when a= 20. Overall, LGcµ, WR and WR-idnum
perform well in all cases.

Table 3 Comparing the best costs out of 3 runs for the N-model
example, with objective function FW(a).

Heavy-traffic a G P LGcµ WR WR-idnum WR-idt

Yes 3 143 117 117 118 116 123
20 746 493 407 419 410 466

No 3 691 582 582 581 581 584
20 3360 3212 2684 2670 2666 2678
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