Calcul moléculaire

But : ordinateur moléculaire

Pourquoi?

- vitesse
- coûts
- «car c'est là»
- médecin dans la cellule (Shapiro) :
 observe les chemins de signaliastion, produit des signaux (c-à-d enzymes) lui-même, traitement de maladies au niveau cellulaire

Outils

Rappel : notre répertoire d'outils de biotechnologie

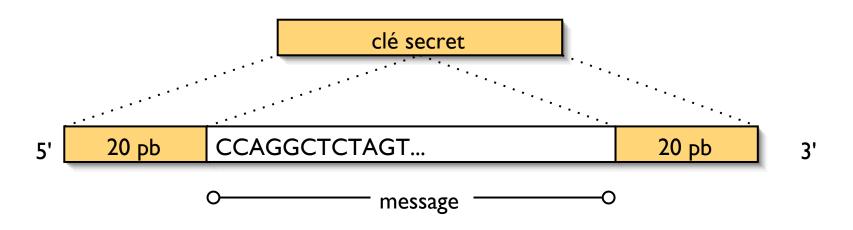
- hybridation
- PCR polymerase chain reaction
- enzymes de restriction
- clonage
- electrophoresis
- séquençage

Encodage

Encodage d'information par ADN : c'est presque trivial :)

Exemple: message secret (*microdot*)

```
A=CGA K=AAG
```

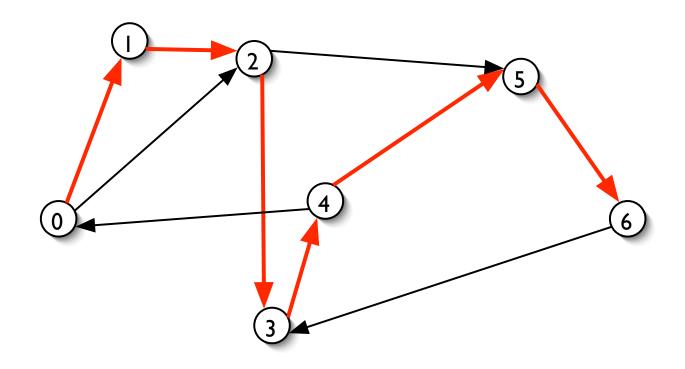

B=CCA L=TGC

C=GTT M=TCC

. . .

«Bonjour la tristesse» \rightarrow CCAGGCTCTAGT...

Message secret - 2

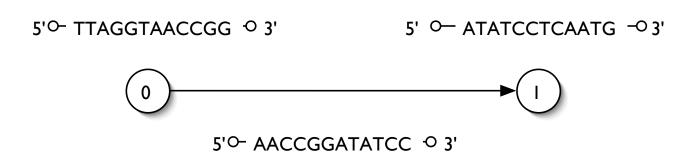


mélanger le message secret avec d'autres molécules ADN

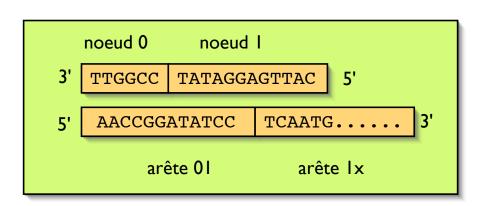
amplification du message par PCR — il faut savoir le clé secret (nombre de possibilités : 4⁴⁰)

Encodage de graphes

Expérience classique de Leonard Adleman (1994) : chemin Hamiltonien



Encodage de graphes - 2


Noeuds encodés par oligonucléotides $O_i = O_i^{(g)}O_i^{(d)}$, arêtes encodés par oligos $O_{ij} = O_i^{(d)}O_j^{(g)}$

mélanger : $\overline{O_i}$, pour $i=1,\ldots,5$ (Watson-Crick complément) ; O_{ij} ; $O_0^{({\tt d})}$; $\overline{O_6^{({\tt g})}}$

Encodage de graphes - 3

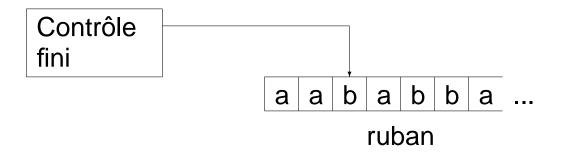
chemin encodé par une molécule d'ADN à deux brins

Encodage de graphes - 4

chaque molécule formée correspond à un chemin :

- 1. amplification par PCR (filtrer les chemins $0 \rightarrow 6$)
- 2. mesurer la longueur
- 3. filtrer par chaque O_i pour vérifier sa présence

Problèmes : espace exponentiel (nbre exponentiel de chemins), modèle de calcul (formation de molécules en une dimension à partir d'un ensemble de pièces) est décidable \Rightarrow n'est pas aussi puissant que la machine de Turing


Calcul moléculaire

logiciel, entrée, sortie, hardware

on veut implanter une machine de Turing universelle à l'aide d'ADN, enzymes, etc.

Machine de Turing

Modèle:

Caractéristiques :

- Une machine de Turing peut lire ou écrire
- La tête de lecture peut bouger à gauche ou à droite
- Le ruban est infini vers la droite
- Quand on décide d'accepter ou de rejeter, c'est une décision finale.

Machine de Turing

DÈfinition 3.1:

Une machine de Turing (MT) est un 7-tuplet $(Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$ o

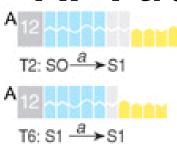
- Q est l'ensemble fini d'états,
- $-\Sigma$ est l'alphabet,
- − Γ est l'alphabet de ruban,

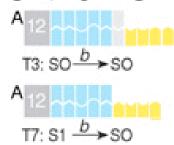
$$\sqcup \in \Gamma$$
 et $\Sigma \subseteq \Gamma$,

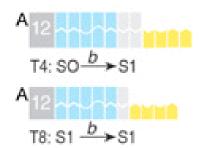
- $-\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ est la fonction de transition,
- $-q_0$ est l'état initial,
- q_a est l'état acceptant,
- $-q_r$ est l'état **rejetant**.

Calcul

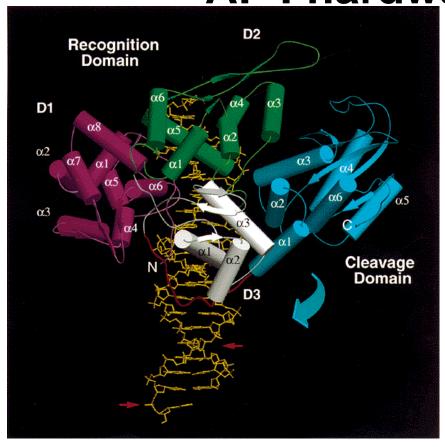

[présentation de Ehud Shapiro]

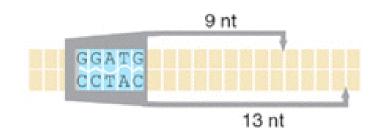

Calcul par automate fini

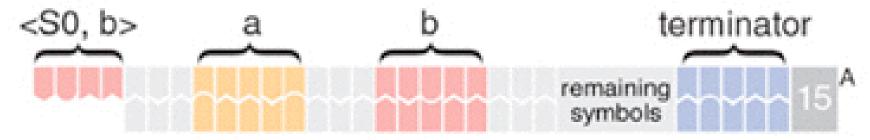

Automate fini à deux états : S0 et S1, alphabet : $\{a,b\}$

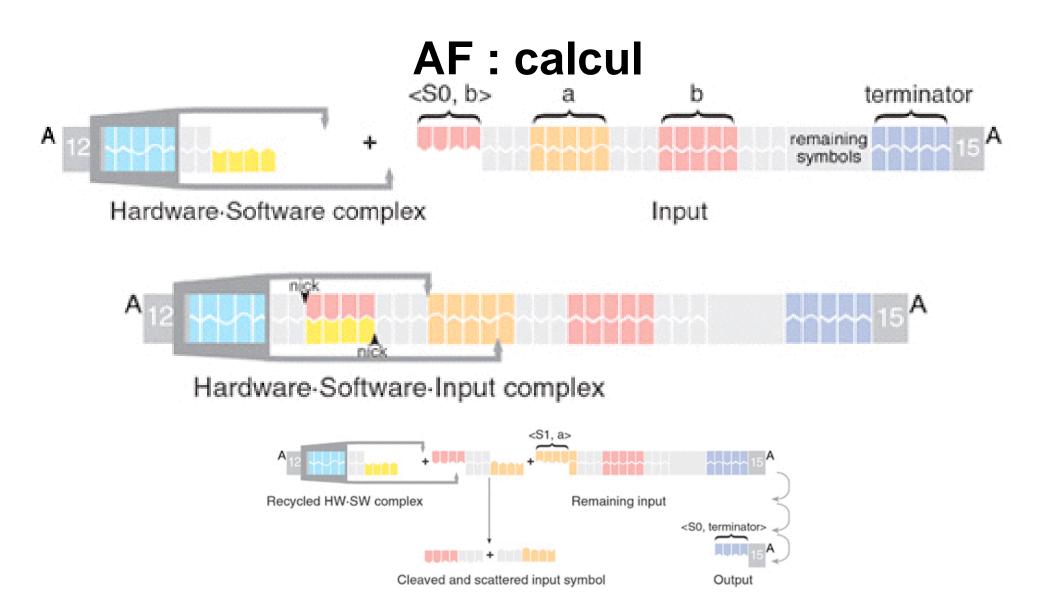

Symbo	ol a	b	terminator (t)
encodings <state, symbol<br="">sticky enc</state,>	ool> TGGC	GCAC	GTCGG

AF: transitions








AF : hardware — Fokl

AF: configurations

