Séquençage

Comment déterminer la séquence d'une molécule ADN (ou ARN)?

Notre répertoire d'outils de biotechnologie :

- hybridation
- PCR polymerase chain reaction
- enzymes de restriction
- clonage
- séquençage : méthode de Sanger

Enzymes de restriction

coupent l'ADN à un site spécifique

Nom	Site
Alul	AG.CT
EcoRI	G.AATTC
HindIII	A.AGCTT
centaines d'autres	

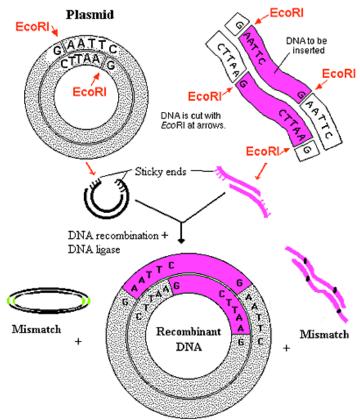
Enzymes de restriction 2

souvent le site reconnu par un ER est un palindrôme : le complément inverse a la même séquence

```
---->
5' GAATTC
CTTAAG 3'
```

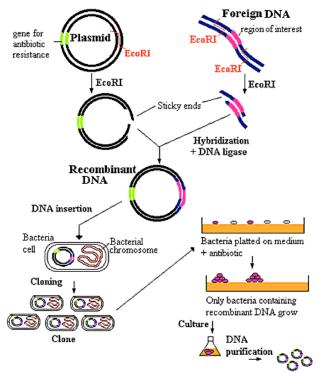
sticky ends

⇒ à l'aide d'une enzyme de ligase on peut joindre des amorces de ADN d'origines différentes coupées par le même ER


Clonage

Idée:

- 1. amorces de ADN après coupure par un ER
- 2. insertion dans vecteur dans une cellule hôte (bactérienne ou virale)
- 3. culture et purification


vecteurs : plasmids, phages et cosmids ; BAC (*Bacterial Artificial Chromosome*) et PAC

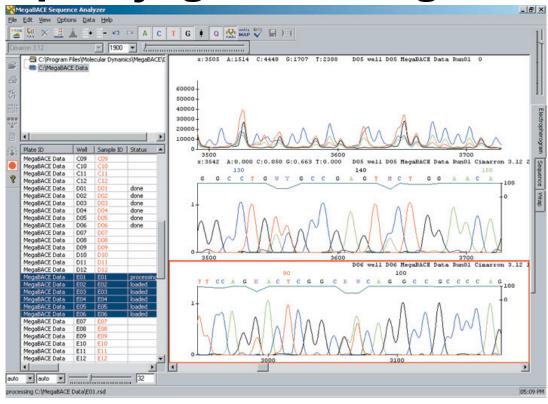
Clonage: insertion d'une amorce

Inserting a DNA Sample into a Plasmid

Clonage: culture

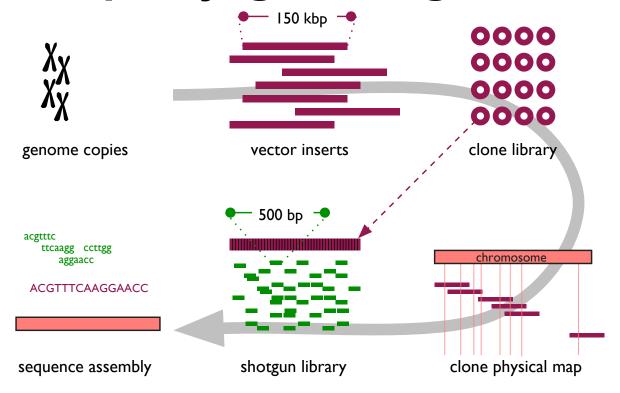
Cloning into a plasmid

[animation]


Séquençage d'un fragment

séquençage par la méthode de Sanger

[animation]


produit des séquences de longueur entre 50-600

Séquençage d'un fragment 2

http://www.megabace.com/

Séquençage d'un génome

Séquençage d'un BAC

(méthode de shotgun : fragments aléatoires séquencés)

[exemple]

approche:

- 1. détection de chevauchements
- 2. layout
- 3. séquence de consensus

Chevauchements

- PD pour alignement semi-globale
- recherche rapide
- ⇒ graphe de chevauchements (*overlap graph*)

Chemins dans le graphe de chevauchements

chemin = super-séquence

pondération des arêtes par la taille du chevauchement

chemin Hamiltonien : super-séquence

la super-séquence plus courte : NP-difficile

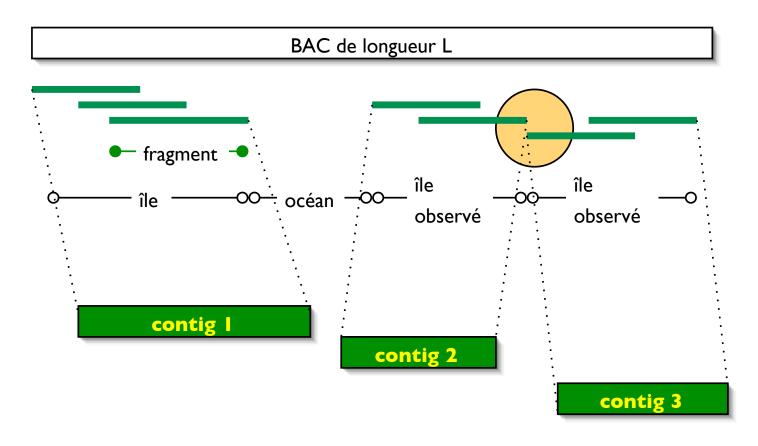
problèmes : erreurs de lecture, répétitions, orientation inconnue...

Séquence de consensus

- majorité
- pondération par qualité des fragments (Phrap)
- \Rightarrow contigs

Modèle statistique pour shotgun

nombre de fragments : n


longueur d'un fragment : ℓ

longueur du BAC : L

couverture (coverage) : $c = n\ell/L$

chevauchement minimal : $\theta\ell$, $0 < \theta < 1$

Modèle - terminologie

Thm. La probabilité qu'une position du BAC est couverte par au moins un fragment est cca. $(1 - e^{-c})$.

Preuve. Probabilité qu'un fragment fixé couvre la position : ℓ/L

Probabilité qu'aucun fragment ne la couvre pas : $\left(1-\frac{\ell}{L}\right)^n$.

Approximation : $(1 - a/x)^x \approx e^{-a}$.

Thm. Le nombre des océans est cca. $ne^{-c(1-\theta)} = \frac{\ell}{L}ce^{-c(1-\theta)}$.

Preuve. Probabilité qu'un fragment fixé est le dernier fragment d'un île observé :

$$p = \left(1 - \frac{(1-\theta)\ell}{L}\right)^{n-1}.$$

+approximation comme avant

Espérance du nombre des océans = np.

Position du fragment définie par la position de son côté droit : variables aléatoires X_1, X_2, \ldots, X_n .

Fixons un fragment (X_1) . Quelle est la position Y_1 du premier fragment après X_1 ? Probabilité que $Y_1 > X_1 + h\ell$ est

$$J(h) = \left(1 - \frac{h\ell}{L}\right)^{n-1} \approx \left(1 - \frac{ch}{n}\right)^n \approx e^{-ch}.$$

Thm. Le nombre de fragments dans un île est cca. $e^{c(1-\theta)}$.

Preuve. Soit M le nombre des fragments dans l'île.

Considérons le premier fragment de l'île. Probabilité que c'est un île singulaire (M=1) : $p_1=J(1-\theta)$.

Probabilité que M=k : $p_k=\left(1-J(1-\theta)\right)^{k-1}J(1-\theta)$ — distribution géometrique. Espérance de M est $1/J(1-\theta)$.

Cartes physiques

- 1. hybridation : STS (sequence-tagged site)
- 2. empreintes (fingerprints)

utilité : filtrage de clônes (detection de chevauchements entre les clônes)

⇒ selection des clônes pour séquençage complet (sequence-ready map)

Cartes STS

retrouver l'ordre des marqueurs et des clônes

⇒ problème des '1's consécutifs

en pratique : voyageur commerçant (erreurs de hybridation)

Hybridation: pooling

10	15	20	25	5
14	19	24	4	9
18	23	3	8	13
22	2	7	12	17
1	6	11	16	21

8	11	19	22	5
15	18	21	4	7
17	25	3	6	14
24	2	10	13	16
1	9	12	20	23

Cartes d'empreintes

Problème de *Double digest*.

Digestion part deux enzymes de restriction (A et B) : taille de fragments pour A, taille de fragments pour B, taille de fragments pour A et B.

Modèle statistique : même que pour séquençage shotgun

Scaffolds

Problème de répétitions avec shotgun simple

Une solution : *double barrel shotgun* (fragments séquencés des deux extremités)

Cartes d'empreintes