BLAST

BLAST : recherche par hachage + théorie de probabilités pour alignements locaux

Hachage — idée principale : pour alignement local rapide entre S et T

- 1. fixer k > 0
- 2. comparer chaque sous-mot de longueur k (k-mer) de S avec ceux de T
- 3. extension des matches pour obtenir un alignement local entre S et T
- \Rightarrow on trouvera rapidement les alignements qui contiennent k matches consécutifs

HACHAGE

Deux séquences S, T

Fonction de hachage : $h: \{A, C, G, T\}^k \mapsto \mathcal{H}$

hit :
$$(i, j)$$
 avec $h(S[i..i + k - 1]) = h(T[j..j + k - 1])$

Technique : listes Occ(u) de positions où $h^{-1}(u)$ apparaît

- 1. pour $i \leftarrow 1, \ldots, |S| k + 1$ faire
- 2. $\mathsf{cl\acute{e}} \leftarrow h(S[i..i+k-1])$
- 3. ajouter i à la fin de la liste Occ(Clé)
- 4. pour $j \leftarrow 1, \ldots, |T| k + 1$ faire
- 5. $\mathsf{clé} \leftarrow h(T[j..j+k-1])$
- 6. traitement [extension?] des hits (i, j): $i \in Occ(clé)$

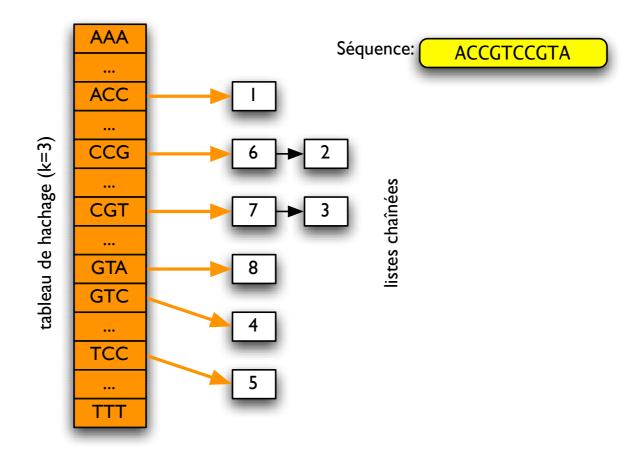
HACHAGE — STRUCTURE DE DONNÉES

Trouver les clés partagés : stocker les occurrences (\mathbf{Occ}) de tous les clés de S en un tableau de hachage

Implantation facile en Java : on peut utiliser les sous-mots w comme clés directement, Hashtable calcule des clés de hachage automatiquement, liste chaînée pour chaque $\mathsf{Occ}(w)$

(utilise plus de mémoire que nécessaire...)

TABLEAU DE k-MERS



Ma, Tromp et Li. Bioinformatics 18:440.

IMPLANTATION

1. Encodage des k-mers en 2k bits :

$$A \rightarrow 00, C \rightarrow 01, G \rightarrow 10, T \rightarrow 11.$$

Java int : 32 bits ($k \le 16$); long : 64 bits ($k \le 32$).

2. Encodage des listes chaînées :

chaque position de la séquence n'apparaît qu'une fois!

Définir un tableau int [] successeur où successeur [i] donne la position qui suit i dans une des listes chaînées ou égale à -1 si i est la dernier objet dans une liste.

Tête de chaque liste est trouvée par un tableau int [] tete où tete[i] donne la première position ou le k-mer encodé par i se trouve.

Mémoire : $(4^k + |S|)$ fois taille de int (4 octets).

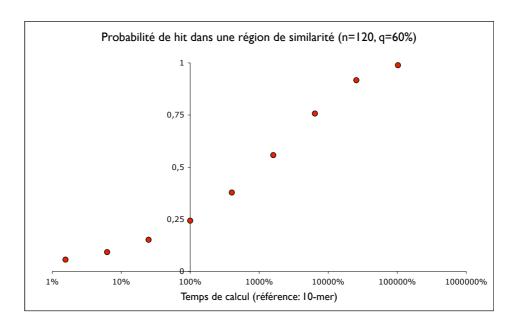
IMPLANTATION — JAVA

```
HT1 int[] tete=new int[1<<(2*k)];
HT2 int[] successeur=new int[S.length()-k+1];
HT3 pour tout i, tete[i] \leftarrow -1
HT4 for (int i=0; i<S.length()-k+1; i++) {
        calcul de l'encodage w pour le sous-mot S[i..i + k - 1];
HT5
HT6 successeur[i]=tete[w];
HT7 tete[w]=i;
HT8 }
HT9 for (int j=0; j<T.length()-k+1; <math>j++) {
       calcul de l'encodage w pour le sous-mot T[j..j+k-1];
HT10
HT11 int i=tete[w];
HT12 while (i !=-1) {
           extension du hit (i, j)
HT13
HT14
           i=successeur[i];
HT15
HT16 }
```

HACHAGE — PERFORMANCE

Spécificité : mesurée par nombre de *hits* entre deux séquences sans homologies (p.e., aléatoires)

Sensibilité : mesurée par la probabilité de hit dans une région de homologie



HACHAGE — NOMBRE DE hits

Modèle : S aléatoire, avec nucléotides iid selon p; T aléatoire, avec nucléotides iid selon $q: \mathbb{P}\{S[i]=c\}=p_c$ et $\mathbb{P}\{T[j]=c'\}=q_{c'}$.

Fonction de hachage : identité h(u) = u, $\mathcal{H} = \Sigma^k$ ($\Sigma = \{A, C, G, T\}$)

Thm. Soit $\beta = \sum_{c \in \Sigma} p_c q_c$. Alors le nombre de *hits* en espérance est $st\beta^k$ où s = |S| - k + 1 et t = |T| - k + 1.

DÉTOUR — NOMBRE DE HITS

L'espérance de nombre de hits est la même pour tous les sous-mots $w \in \Sigma^k$. Est-ce que la distribution est la même aussi? Non!

Exemple : «pas tous les mots sont créés égaux»

Exemple : T est une séquence de longueur n «au hasard»

au hasard : chaque caractère de T est 0 ou 1 avec probabilités $\frac{1}{2}$ - $\frac{1}{2}$.

Quelle est la probabilité de voir w = 00 ou w = 01?