Alignement de génomes

Visualisation des alignements : PIPs

PIP - percent identity plot

(on considère les blocs entre les trous, et on affiche le pourcentage de matchs dans chaque bloc)

LAGAN : ALIGNEMENT GLOBAL AVEC ANCRES

sélection d'ancres : chaîne optimale d'alignements locaux

Quelques autres idées

- recalcul de scores (alignement local avec trous : trouver le placement optimal du trou entre deux hits)
- génération de nouveaux ancres plus épais dans des régions sans ancres par hachage plus sensible

Programmation dynamique éparse

Liste de rectangles (alignements locaux) :
rectangle R en position (R.s1, R.t1), (R.s2, R.t2) avec score R.v
chaîne : ensemble de rectangles non-chevauchant

PD ÉPARSE 2

Récurrence pour calculer $V(R)$: score maximum d'une chaîne qui finit par rectangle R

Clé : maintenir la liste \mathcal{L}_{j} de rectangles actifs pour $j=0, \ldots,|T|$

PD ÉPARSE 3

Déf. Rectangle R est actif pour j ssi
(1) $R . t 2 \leq j$; et
(2) $\forall R^{\prime}$ avec R^{\prime}.t2 $\leq j$: si $R^{\prime} . s 2 \leq R$.s 2 alors $V\left(R^{\prime}\right) \leq V(R)$.

Lemme. Si $R^{\prime} . s 2=R . s 2$ et tous les deux sont actifs, alors $V\left(R^{\prime}\right)=V(R)$.
$\Rightarrow \mathcal{L}$ contient des rectangles actifs avec.$s 2$ différents - choisir R avec $R . t 2$ minimum si >1 rectangles actifs avec le même.$s 2$.

PD ÉPARSE 4

Trier les .t1,.$t 2$: liste \mathcal{J}, calculer \mathcal{L}_{j} pour $j \in \mathcal{J}$ en ordre ascendant

PD ÉPARSE 5

en arrivant au côté gauche du rectangle R :

- trouver $R^{\prime} \in \mathcal{L}_{R . t 1}$ t.q. $R^{\prime} . s 2 \leq R . s 1$ avec $V\left(R^{\prime}\right)$ maximal
- $V(R) \leftarrow V\left(R^{\prime}\right)+R . v$ (si aucun tel R^{\prime}, alors $\left.V(R) \leftarrow R . v\right)$

Lemme. Si $R, R^{\prime} \in \mathcal{L}_{j}$, alors $R . s 2 \neq R^{\prime} . s 2$ et $R . s 2<R^{\prime} . s 2$ ssi $V(R)<V\left(R^{\prime}\right)$.
Preuve. Par définition de \mathcal{L}_{j}.
\Rightarrow stocker \mathcal{L}_{j} dans l'ordre de.$s 2$ et $V(\cdot)$ en même temps

PD ÉPARSE 6

en arrivant au côté droit du rectangle $R-$ mise à jour de \mathcal{L} :

- supprimer $R^{\prime} \in \mathcal{L}$ t.q. $R^{\prime} . s 2 \geq R$.s 2 et $V\left(R^{\prime}\right)<V(R)$
- trouver $R^{\prime} \in \mathcal{L}$ t.q. $R^{\prime} . s 2 \leq R . s 2$ et $V\left(R^{\prime}\right)$ max. : si $V\left(R^{\prime}\right)=V(R)$ et $R^{\prime} . s 2<R . s 2$, ou si $V\left(R^{\prime}\right)<V(R)$, alors insérer R dans \mathcal{L} juste après R^{\prime} (ou s'il n'y a pas de R^{\prime} avec $R^{\prime} . s 2 \leq R . s 2$, insérer au début)

Temps de calcul : $O(r \log r)$ pour r rectangles (utiliser un arbre binaire balancé ; chaque rectangle est inclus à ou est supprimé de \mathcal{L} une fois au plus)

Constitution d'un Génome

CONSTITUTION D'UN GÉNOME 2

en Procaryotes : 90-97\% codant

Alignement de génomes

Problème : beaucoup de réarrangements, insertions indépendantes dans les deux génomes
\rightarrow n'utiliser que les chaînes d'alignements locaux
on veut détecter des régions synténiques - déscendantes de la même région dans l'ancêtre commun

Synténies

(chromosomes humains coloriés par syntenies dans souris et rat)

Micro-RÉARRANGEMENTS

beaucoup de réarrangements à tous les niveaux

Chaînes et nets

Chaînage récursive - chaînes imbriquées

Alignement global - RÉARRANGEMENTS

A)

B)

C)

D)

(B. transposition, C. inversion, D. duplication)

Dans des synténies humain-souris : par 1 Mbp on a en moyenne
2 inversions, 17 duplications, 7 transpositions, 200 deletions de longueur $>100 \mathrm{pb}$,

Alignement glocal

réarrangements : inversions et translocations sont permises
A. alignements locaux
B. chaîne 1-monotone
C. LAGAN dans les blocs sans inversions

EXEMPLE : α-GLOBINES DANS LE SOURIS

[breakpoint dans le souris]

α-GLOBINES DANS LE SOURIS

α-GLOBINES

Tufarelli \& al. Genome Res. 14 :623 (2004)

Alignment Comme annotation

Annotation d'un génome : segments avec des propriétés (gène, promoteur, exon, intron, ...)

Alignment de deux ou plusieurs génomes : peut être consideré comme l'annotation d'un génome par les autres

Alignement : ensemble de blocs où chaque bloc est une région d'un seul génome, ou l'alignement local de multiples génomes

ENSEMBLE DE BLOCS

Projection des blocs sur un génome

génome

1	2	3	4	5	4	6

EXEMPLE

