Logic synthesis and optimization

- Determine microscopic structure of the circuit.
- Explore \textit{(area-delay)} trade-off:
 - Combinational circuits:
 * I/O delay.
 - Sequential circuits:
 * \textit{cycle-time}.
- Explore \textit{(power-delay)} trade-off.
- Enhance circuit testability.

Circuit implementation issues

- Implementation styles:
 - Two-level (e.g. PLA macro cells).
 - Multi-level (e.g. cell-based, array-based).
- Operation:
 - Combinational.
 - Sequential:
 * Synchronous
 * Asynchronous.
Design flow in logic synthesis

• Circuit capture:
 – Tabular specifications of functions or finite-state machines (FSMs).
 – Schematic capture.
 – Hardware Description Languages (HDLs).

• Synthesis and optimization:
 – Map circuit representation to abstract model.
 – Transformations on abstract model.
 – Library binding.

Abstract models

• Models based on graphs.
 • Useful for:
 – Machine-level processing.
 – Reasoning about properties.
 • Derived from language models by compilation.

Structural views

• Netlists:
 – Modules, nets, incidence.
 – Ports.
 – Hierarchy.

• Incidence (sparse) matrix of a graph.
Logic functions

- Black-box model of a combinational module.
- Defined on Boolean Algebra.
- *Support variables* correspond to module inputs.
- Logic functions may have multiple outputs and be *incompletely specified*.

Logic networks

- Mixed structural/behavioral views.
- Useful for multiple-level logic (combinational and sequential).
- Interconnection of modules:
 - Logic gates.
 - Logic functions.

Example

- Model behavior of sequential circuits.
- Graph:
 - Vertices = states.
 - Edges = transitions.
Major logic synthesis problems

- Optimization of logic function representation.
 - Minimization of two-level forms.
 - Optimization of Binary Decision Diagrams (BDDs).

- Synthesis of combinational multiple-level logic networks.
 - Optimization or area, delay, power, testability.

- Optimization of FSM models.
 - State minimization, encoding.

- Synthesis of sequential multiple-level logic networks.
 - Optimization or area, delay, power, testability.

- Library binding.
 - Optimal selection of library cells.

Combinational logic design background

- Boolean algebra:
 - Quintuple \((B, +, \cdot, 0, 1)\)
 - Binary Boolean algebra \(B = \{0, 1\}\)

- Boolean function:
 - Single output: \(f : B^n \rightarrow B\).
 - Multiple output: \(f : B^n \rightarrow B^m\).
 - Incompletely specified:
 * don’t care symbol *.
 * \(f : B^n \rightarrow \{0, 1, *\}^m\).

The don’t care conditions

- We don’t care about the value of the function.

- Related to the environment:
 - Input patterns that never occur.
 - Input patterns such that some output is never observed.

- Very important for synthesis and optimization.

Definitions

- Scalar function:
 - \(ON - set\): subset of the domain such that \(f\) is true.
 - \(OFF - set\): subset of the domain such that \(f\) is false.
 - \(DC - set\): subset of the domain such that \(f\) is a don’t care.

- Multiple-output function:
 - Defined for each component.
Definitions

- **Boolean variables.**
- **Boolean literal:** variable and complement.
- **Product or cube:** product of literals.
- **Implicant:** product implying a value of a function (usually TRUE).
 - Hypercube in the Boolean space.
- **Minterm:** product of all input variables implying a value of a function (usually TRUE).
 - Vertex in the Boolean space.

Tabular representations

- **Truth table:**
 - List of all minterms of a function.
- **Implicant table or cover:**
 - List of implicants of a function sufficient to define function.
- **Remark:**
 - Implicant tables are smaller in size.

Example of truth table

\[x = ab + a'c; \quad y = ab + bc + ac \]
Example of implicant table
\[x = ab + d'c; \quad y = ab + bc + ac \]

<table>
<thead>
<tr>
<th>abc</th>
<th>xy</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>10</td>
</tr>
<tr>
<td>*11</td>
<td>11</td>
</tr>
<tr>
<td>101</td>
<td>01</td>
</tr>
<tr>
<td>11*</td>
<td>11</td>
</tr>
</tbody>
</table>

Cubical representation of minterms and implicants

\[
\begin{align*}
 f_1 &= d'c' + d'bc + abc + abc + abc' \\
 f_2 &= d'bc + d'c
\end{align*}
\]

Two-level logic optimization motivation

- Reduce size of the representation.
- Direct implementation:
 - PLAs - reduce size and delay.
- Other implementation styles (e.g. multi-level):
 - Reduce amount of information.
 - Simplify local functions and connections.

Programmable logic arrays

- Macro-cells with rectangular structure.
- Implement any multi-output function.
- Layout easily generated by module generators.
- Fairly popular in the seventies/eighties (NMOS).
- Still used for control-unit implementation.
Programmable logic array

Two-level optimization

- Assumptions:
 - Primary goal is to reduce the number of implicants.
 - All implicants have the same cost.
 - Secondary goal is to reduce the number of literals.

- Rationale:
 - Implicants correspond to PLA rows.
 - Literals correspond to transistors.

\[f_1 = a'b + b'c + ab \quad f_2 = b'c \]

Definitions

- Minimum cover:
 - Cover of the function with minimum number of implicants.
 - Global optimum.

- Minimal cover or irredundant cover:
 - Cover of the function that is not a proper superset of another cover.
 - No implicant can be dropped.
 - Local optimum.

- Minimal cover w.r.t. 1-implicant containment.
 - No implicant is contained by another one.
 - Weak local optimum.

Example

\[f_1 = d'\bar{b}'c' + d'b'c + ab'c + abc + ab'd' \]
\[f_2 = a'b'c + ab'c \]
Definitions

- **Prime implicant:**
 - Implicant not contained by any other implicant.

- **Prime cover:**
 - Cover of prime implicants.

- **Essential prime implicant:**
 - There exist some minterm covered only by that prime implicant.

Logic minimization

- **Exact methods:**
 - Compute minimum cover.
 - Often impossible for large functions.
 - Based on Quine McCluskey method.

- **Heuristic methods:**
 - Compute minimal covers (possibly minimum).
 - Large variety of methods and programs:
 * MINI, PRESTO, ESPRESSO.

Exact logic minimization

- **Quine’s theorem:**
 - There is a minimum cover that is prime.

- **Consequence:**
 - Search for minimum cover can be restricted to prime implicants.

- **Quine McCluskey method:**
 - Compute prime implicants.
 - Determine minimum cover.

Prime implicant table

- **Rows:** minterms.
- **Columns:** prime implicants.

- **Exponential size:**
 - 2^n minterms.
 - Up to $3^n/n$ prime implicants.

- **Remark:**
 - Some functions have much fewer primes.
 - Minterms can be grouped together.
• Function: \(f = a'b'c' + a'b'c + ab'c + abc + abc' \)

• Primes:

\[
\begin{array}{c|cccc}
& \alpha & \beta & \gamma & \delta \\
000 & 1 & 0 & 0 & 0 \\
001 & 1 & 1 & 0 & 0 \\
101 & 0 & 1 & 1 & 0 \\
111 & 0 & 0 & 1 & 1 \\
110 & 0 & 0 & 0 & 1 \\
\end{array}
\]

• Implicant table:

```
000 1 0 0 0
001 1 1 0 0
101 0 1 1 0
111 0 0 1 1
110 0 0 0 1
```

• Reduce table:
 - Iteratively identify essentials, save them in the cover, remove covered minterms.

• Petrick’s method.
 - Write covering clauses in pos form.
 - Multiply out pos form into sop form.
 - Select cube of minimum size.
 - Remark:
 * Multiplying out clauses is exponential.

• pos clauses:
 - \((\alpha)(\alpha + \beta)(\beta + \gamma)(\gamma + \delta) = 1\)

• sop form:
 - \(\alpha \beta \delta + \alpha \gamma \delta = 1\)

• Solutions:
 - \(\{\alpha, \beta, \delta\}\)
 - \(\{\alpha, \gamma, \delta\}\)
Matrix representation

- View table as Boolean matrix: A.
- Selection Boolean vector for primes: x.
- Determine x such that:
 - $A \cdot x \geq 1$.
 - Select enough columns to cover all rows.
- Minimize cardinality of x:
 - Example: $x = [1101]^T$

Example

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
0 \\
1
\end{bmatrix}
=
\begin{bmatrix}
1 \\
2 \\
1 \\
1
\end{bmatrix}
\]

Covering problem

- Set covering problem:
 - A set S. (Minterm set).
 - A collection C of subsets. (Implicant set).
 - Select fewest elements of C to cover S.
- Intractable.
- Exact method:
 - Branch and bound algorithm.
- Heuristic methods.

Example

edge-cover of a hypergraph
Branch and bound algorithm

- Tree search of the solution space:
 - Potentially exponential search.

- Use bounding function:
 - If the lower bound on the solution cost that can be derived from a set of future choices exceeds the cost of the best solution seen so far:
 - Kill the search.

- Good pruning may reduce run-time.

Example

```
Example  

(a)  
(a)  

(b)  
(b)  

(Killed subtree)

(a)  

(b)  

Branch and bound algorithm

BRANCH AND BOUND {
  Current_best = anything;
  Current_cost = \infty;
  S = \emptyset;
  while (S \neq \emptyset) do {
    Select an element in s \in S;
    Remove s from S;
    Make a branching decision based on s yielding sequences \{s_i, i = 1, 2, \ldots, m\}:
    for (i = 1 to m) {
      Compute the lower bound b_i of s_i;
      if (b_i \geq Current_cost)
        Kill s_i;
      else {
        if (s_i is a complete solution) {
          Current_best = s_i;
          Current_cost = cost of s_i;
        }
        else
          Add s_i to set S;
      }
    }
  }
}

Branch and bound algorithm for covering
Reduction strategies

- Partitioning:
  - If A is block diagonal:
    * Solve covering problem for corresponding blocks.

- Essentials (EPI):
  - Column incident to one (or more) row with single 1:
    * Select column.
    * Remove covered row(s) from table.
Branch and bound algorithm for covering

Reduction strategies

- Column (implicant) dominance:
  - If $a_{ki} \geq a_{kj} \forall k$:
    * remove column $j$.

- Row (minterm) dominance:
  - If $a_{ik} \geq a_{jk} \forall k$:
    * Remove row $i$.

Example reduction

- Fourth column is essential.
- Fifth column is dominated.
- Fifth row is dominant.

\[
A = \begin{bmatrix}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}
\]

Branch and bound covering algorithm

\[
EXACT\_COVER(A, x, b) \{
\begin{align*}
\text{Reduce matrix } A \text{ and update corresponding } x; \\
\text{if } (\text{Current estimate } \geq |b|) \text{ return } (b); \\
\text{if } (A \text{ has no rows}) \text{ return } (x); \\
\text{Select a branching column } c; \\
x_c = 1; \\
A = A \text{ after deleting } c \text{ and rows incident to it}; \\
\bar{x} = EXACT\_COVER(A, x, b); \\
\text{if } (|x| < |b|)
  \begin{align*}
  b &= \bar{x}; \\
x_c &= 0; \\
A &= A \text{ after deleting } c; \\
\bar{x} &= EXACT\_COVER(A, x, b); \\
\text{if } (|x| < |b|)
  \begin{align*}
  b &= \bar{x}; \\
\text{return } (b);
  \end{align*}
\end{align*}
\}
\]
Bounding function

- Estimate lower bound on the covers derived from the current x.

- The sum of the ones in x, plus bound on cover for local A:
  - Independent set of rows:
    * No 1 in same column.
  - Build graph denoting pairwise independence.
  - Find clique number.
  - Approximation (lower) is acceptable.

Example

\[
A = \begin{bmatrix}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}
\]

- Row 4 independent from 1,2,3.
- Clique number is 2.
- Bound is 2.

Example

\[
A = \begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{bmatrix}
\]

- Choose first column:
  - Recur with \( \bar{A} = [11] \).
    * Delete one dominated column.
    * Take other column (essential).
  - New cost is 3.

Example

\[
A = \begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{bmatrix}
\]

- Choose first column:
  - Find another solution with cost 3 (discarded).
- Exact minimizer [Rudell].

- Exact branch and bound covering.

- Compact implicant table:
  - Group together minterms covered by the same implicants.

- Very efficient. Solves most problems.

Example Prime implicant table (after removing essentials)

<table>
<thead>
<tr>
<th></th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\epsilon)</th>
<th>(\zeta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000,0010</td>
<td>1 1 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>0 0 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recent developments

- Many minimization problems can be solved exactly today.

- Usually bottleneck is table size.

- Implicit representation of prime implicants:
  - Methods based on BDDs [COUDERT]:
    * To represent sets.
    * To do dominance simplification.
  - Methods based on signature cubes [MCGEER]:
    * Represent set of primes.
Summary

Exact two-level minimization of logic functions

- Based on derivatives of Quine-McCluskey method.
- Many minimization problems can be now solved exactly.
- Usual problems are memory size and time.

Boolean relations

- Generalization of Boolean functions.
- More than one output pattern may correspond to an input pattern.
- Some degrees of freedom in finding an implementation:
  - More general than don't care conditions.
- Problem:
  - Given a Boolean relation, find minimum cover of a compatible function.

Example

Consider the following truth table:

<table>
<thead>
<tr>
<th>$a_1$</th>
<th>$a_0$</th>
<th>$b_1$</th>
<th>$b_0$</th>
<th>$x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{000, 001, 010}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>{000, 001, 010}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>{000, 001, 010}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>{000, 001, 010}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{000, 001, 010}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>{000, 001, 010}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>{011, 100}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>{101, 110, 111}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>{101, 110, 111}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>{101, 110, 111}</td>
</tr>
</tbody>
</table>

• Compare:
  - $a + b > 4$ ?
  - $a + b < 3$ ?

Example

Consider the following logic circuit with inputs $a_1, a_0, b_1, b_0$ and output $x$.

- Comparator $N_2$: $f_0, f_1$.
- Adder $N_1$: $f_0, f_1, f_2$.

- Compare:
  - $a + b > 4$ ?
  - $a + b < 3$ ?
Example (2)

Minimum implementation

<table>
<thead>
<tr>
<th>$a_1$</th>
<th>$a_0$</th>
<th>$b_1$</th>
<th>$b_0$</th>
<th>$x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>*</td>
<td>1</td>
<td>*</td>
<td>010</td>
</tr>
<tr>
<td>1</td>
<td>*</td>
<td>0</td>
<td>*</td>
<td>010</td>
</tr>
<tr>
<td>1</td>
<td>*</td>
<td>1</td>
<td>*</td>
<td>100</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
<td>1</td>
<td>001</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>001</td>
</tr>
</tbody>
</table>

- Remark:
  - Circuit is no longer an adder.

Minimization of Boolean relations

- Since there are many possible output values there are many logic functions implementing the relation.
  - Compatible functions.
- Find a function with minimum cardinality.
- Do not enumerate all possible functions:
  - May be too many.
- Represent the primes of all possible functions:
  - Compatible primes ($c$ — primes).

Minimization of Boolean relations

- Exact:
  - Find a set of compatible primes.
  - Solve a binate covering problem.
    - Consistency relations.
- Heuristic:
  - Iterative improvement [GYOCRO].

Example

- Boolean relation:
  
  0 0 0 | { 00 }
  
  0 0 1 | { 00 }
  
  0 1 0 | { 00 }
  
  0 1 1 | { 10 }
  
  1 0 0 | { 00 }
  
  1 0 1 | { 01 }
  
  1 1 0 | { 00,11 }
  
  1 1 1 | { 00,11 }

- Compatible primes:
  
  $\alpha$ | 0 1 1 | 10
  
  $\beta$ | 1 0 1 | 01
  
  $\gamma$ | 1 1 0 | 11
  
  $\delta$ | 1 1 1 | 11
  
  $\epsilon$ | * 1 1 | 10
  
  $\zeta$ | 1 * 1 | 01
  
  $\eta$ | 1 1 * | 11
**Example**

- Input 011 – output 10.
  - Covering clause \((α + ε)\).

- Input 111 – output 00 or 11.
  - No implicant – 00 – correct.
  - Either \(η\) or \(ε \cup ζ\) – output 11 – correct.
  - Only \(ε\) or \(ζ\) is selected – output 10 or 01 – WRONG.
  - Covering clause \(η + εζ + εζ'\) – binate.

- Overall covering clause:
  
  \[(α + ε) \cdot (β + ζ) \cdot (ε + ζ' + η) \cdot (ε' + ζ + η)\]

**Binate covering**

- Covering problem with *binate clause*.

- Implications:
  - The selection of a prime may exclude other primes.

- No guarantee of finding a feasible solution:
  - Inconsistent clauses.

  - Much harder to solve than unate cover.
  - Branch and bound algorithm.
  - BDD-based methods.

---

**Summary**  
**Boolean relations**

- Generalization of Boolean functions.
  - Many possible output patterns.

- Useful for modeling:
  - Cascaded blocks.
  - Portions of multiple-level networks.

- More degree of freedom in implementation.

- Harder problem to solve.