Abstract Compilation: a New Implementation
Paradigm for Static Analysis

Dominique Boucher and Marc Feeley

Département d’informatique et de recherche opérationnelle (IRO)
Université de Montréal
C.P. 6128, succ. centre-ville, Montréal, Québec, Canada H3C 3J7
E-mail: {boucherd,feeley}@iro.umontreal.ca

Abstract. For large programs, static analysis can be one of the most
time-consuming phases of the whole compilation process. We propose a
new paradigm for the implementation of static analyses that is inspired
by partial evaluation techniques. Our paradigm does not reduce the com-
plexity of these analyses, but it allows an efficient implementation. We
illustrate this paradigm by its application to the problem of control flow
analysis of functional programs. We show that the analysis can be sped
up by a factor of 2 over the usual abstract interpretation method.

Keywords: Abstract interpretation, static analysis, partial evaluation,
compilation, control flow analysis.

1 Introduction

As the trend in designing higher level languages continues, it is increasingly
becoming important to design compilation techniques to implement them effi-
ciently. Optimizing compilers for such languages must typically perform a variety
of static analyses to apply their optimizations. Most of these analyses are very
time-consuming. It is therefore essential to perform them as efficiently as possi-
ble. Speed of analysis is the issue addressed in this paper.

For the class of first-order imperative languages, several techniques for static
analysis have been designed and are now well established [1, 6]. Static analysis
of higher-order functional languages is more difficult because the control flow
graph (call graph) is not known at compile-time. Nevertheless, several kinds of
analyses have been designed [2, 7, 15] and some have been successfully integrated
in real compilers [13, 15].

1.1 A New Paradigm

A popular approach for implementing static analyses is non-standard interpre-
tation. Even traditional data-flow analysis can be viewed as an interpretation
layer, the flow graph being the abstract program to be “executed”. The more re-
cent analyses, devised in the abstract interpretation framework, are implemented
as true interpreters (for example, see [13]).



But interpretation is costly because it adds a layer of abstraction to the
analysis process. We propose to go one step further and perform what we call
abstract compilation. This new paradigm is based on a simple idea: instead of
interpreting (in some sense) the source program, we compile it into a program
which computes the desired analysis when it is executed.

More formally, suppose we want to compute some static analysis S. S can
be viewed as a function of two arguments. The first is the program p we want
to analyze. The second is an initial abstract environment o that depends on
the analysis to be performed. The result of the analysis, S(p, 09), is an abstract
environment which contains the desired information. The abstract compilation
of p, C(p), would then be a function of one argument such that:

C(p)(o0) = S(p, 00).

Essentially, C is nothing more than a curried version of S. But, as we will see,
only the “real computational part” of S(p,o9) can be kept in the code of C(p).
For instance, there is no traversal of the abstract syntax tree of p in C(p). This
way, all the overhead of interpretation is eliminated. The abstract compilation
process is really a kind of ad hoc partial evaluation. In fact, the abstract compiler
C can be seen as a partial evaluator specialized for the static analysis S.

Devising C directly made us aware of several interesting optimizations that
can be performed to further speed up the analysis. Our results show that, using
the technique of abstract compilation, the analysis can be sped up by over a
factor of 2.

1.2 Overview

In this paper, we demonstrate our paradigm by showing how the control flow
analysis (cfa) of higher-order functional programs can be compiled. We first de-
scribe the analysis and the language we want to analyze. Then, two different
compilation strategies are presented. The first compiles the analysis into a tex-
tual program which is then executed using a general interpretation procedure.
The second shows how we can use closures to produce a more efficient analysis
program. Finally, we compare our results with more conventional implementa-
tions of the cfa.

Throughout the text, the Scheme programming language is used, mainly for
our examples. But note that the compilation algorithms presented here do not
rely on any particular language although they use some Lisp-like notation.

2 Control Flow Analysis

In higher-order functional languages, functions are first-class objects, i.e. they
can be passed as arguments to other functions, returned as the result of func-
tions, stored in data structures, and so on. It is thus more difficult to predict at
compile-time the behavior of programs making heavy use of higher-order func-
tions. One way to do so is the control flow analysis (cfa), of which there exists



several variants [2, 8, 12]. The Ocfa [15] computes, for each call site (a ...) of
a program, the set of functions that could be bound to a at runtime.

To appreciate the usefulness of Ocfa, consider the Scheme program of Fig. 1.
The 0Ocfa would find that in the map function, the only function that can be
bound to £ results from the evaluation of (lambda (y) (+ y x)) (the result of
applying adder to the value 1 or 2). Knowing this, the compiler can optimize
the runtime representation of the closure and the call to £. Rather than being a
record with a code pointer and environment, the “closure” could simply be the
value of x (1 or 2) and the call to £ can be replaced by a jump to the body of
the lambda expression with x as an argument.

(define (adder x) (lambda (y) (+ y x))

(define (map f 1)
(if (null? 1)
()
(cons (f (car 1)) (map f (cdr 1)))))

(let ((1st ’(1 23 45 6)))
(append (map (adder 1) 1st)
(map (adder 2) 1st)))

Fig. 1. A small program

Prog

Call

Lam

Fun

Arg

Var

Const

Prim (primitive functions: if, +, etc.)

TR SeETmNQY
MMMMMMMM

= C
= (F A ... Ap)
| (Qetrec ((Vi Li) --- (V, L)) C)
L=\ (V... V) O)
Fu:=L|V|P
A:=K|V|L

Qg

Fig. 2. Abstract syntax

We will now see how we can compute this cfa. Figure 2 describes the ab-
stract syntax of our source language. It is a continuation passing style (CPS)
A-language. We assume that all programs are fully alpha-converted. We use CPS



to simplify the analysis. Special forms like if can then be considered as primi-
tive functions and all intermediate results are given names. Since only lambda-
expressions, variables, and primitives can appear in the operator position of a
call site, the Ocfa problem is equivalent to the one of finding, for each variable v
occurring in the program, the set of functions that can be bound to v. Our use
of CPS carries no loss of generality since any non-CPS program can be easily
converted to an equivalent CPS program.

Figure 3 gives the functionalities of the abstract interpretation algorithm'
for Ocfa shown in Fig. 4. The following terminology is assumed. First, I |tormals;
stands for the ¢th formal parameter of procedure . Similarly, [ |14y is the body
of procedure ! (a call site). The abstract environments are functions from syn-
tactic domain Var and deliver results in domain 27¢™. The empty environment
is denoted g (o0(v) = @ for all v) and [v + S] stands for the environment o
such that o(z) is S if z = v and () otherwise. Finally, environments can be joined
using the L operator, defined by (o U¢')(v) = o(v) U’ (v).

Ocfa-program : Prog x Env — Env
Ocfa-call : Call x Env — Env

Ocfa-app : Fun x Arg" x Env — Env

2Lam

Ocfa-abstract-app : x Arg® x Env — Env

Ocfa-args : Arg" x Env — Env
Ocfa-prim : Prim X Arg® x Env — Env

lookup : Arg x Env — Env

E/)I;/' = Var — 2Lam

Fig. 3. Functionalities

The Ocfa of a program p is computed by finding an environment ¢ such that
o = Ocfa-program(p, o). This can be done iteratively by successive approxima-
tion, starting with og. It can easily be shown that this process eventually ter-
minates. The approximations og, 07, ... form an ascending chain (taking o C o'
to mean o(v) C o'(v) for all v), since we only add elements to the environ-
ment. Also, since every program is finite, o(v) must be finite for all v. Thus our
algorithm will find ¢ in a finite number of steps.

This is the usual way the Ocfa is implemented. For example, [13] describes
the analysis performed in the Bigloo compiler [14]. It is essentially the same as
the one we have presented. It is also very close to the one presented by Shivers

! For the sake of simplicity, we do not include any error-detection mechanism to the
Ocfa. We thus assume that all programs are syntactically valid.



Ocfa-program(p, o) = Ocfa-call(p, o)

Ocfa-call([(f ai...an)],0) =
Ocfa-app(f, (a1, ..., an), Ocfa-args({ai,...,as), o))
Ocfa-call([(letrec ((vi 1) -+ (vn 1)) O],0) =
let o' =o Uy = {L}U--Ulvn = {l,}]
o = Ocfa-args({l1,...,ln),0")
in Ocfa-call(c,o’)

Ocfa-app(f, (a1,...,an),0) =
cond

isVar(f) :
Ocfa-abstract-app (o (f), (a1,...,an), o)

isPrim(f) :
Ocfa-prim(f, (a1, ...,an),o)

isLam(f) :
let o' =oU [f Iormals, = lookup(a1, o) U - --

e [f i'formalsn = lookup(an, 0)]
in Ocfa-call(f lhody,o")

Ocfa-abstract-app(0, (a1,...,a,),0) =0
Ocfa-abstract-app(S, (a1,...,an),0) =
let | = some member of S
o' =ol [l i'formalslH lOOkup(alv 0)] e
-+ Ul dtormals, = lookup(an, o)]
in Ocfa-abstract-app(S — {l},(a1,...,an),0")

Ocfa-args({),o) = o
Ocfa-args({(a1,...,an),0) =
let o' = if isLam(a1)
then ¢ Ul Ocfa-call(a1 lpody,o)
else o
in Ocfa-args({az,...,an),0")

Ocfa-prim([+], (a1, ...,as), o) = Ocfa-args({a1,...,as),o)
Ocfa-prim([if], {a1,...,as),o) = Ocfa-args({ai,...,as), o)

lookup(e, o) =
cond
isConst(e) :
isVar(e) : o(e)
isLam(e) : {e}

Fig. 4. Ocfa abstract interpretation algorithm



in [15]. We will now show how we can compile the analysis, by extending the
interpretation algorithm.

3 A First Abstract Compiler

When many iterations are needed for the algorithm to reach a fixed point, a lot
of work is done which does not have a direct impact on the result of the analysis.
The reason for this is that each iteration requires a traversal of the entire syntax
tree, examining each node to see if it is an application, an abstraction, etc. This
is the interpretation overhead. When we consider the interpretation algorithm
of Fig. 4, we notice that only three functions can actually influence the result of
the analysis: Ocfa-call when applied to a letrec special form, Ocfa-app when f
is a A-expression, and Ocfa-abstract-app.

What we are interested in is a way to remember only those computations
which affect the final result of the analysis. Consider the sample CPS program
of Fig. 5, where each A-expression has been numbered from 1 to 7 (we will later
refer to these expressions as A; to A7). It defines a currified version of apply,
a function such that ((apply f) x) = (£ x). The program then computes
((apply (apply (A (x) (+ x 1)))) 2).

((A\1 (apply k1)
(apply (A2 (x1 k2)
(+ x1 1 k2))
s (£2)
(apply t2 (A5 (£3) (t3 2 k1))))))

(Ae (f k3)
k3 (A7 (x2 k4)
(f x2 k4))))

tl-cont)

Fig. 5. A small CPS program.

By carefully examining the program, we can determine the particular call
sites where the control flow information will be propagated. The call (A1 Ag
tl-cont) will add A¢ to o(apply) and tl-cont to o(kl). This is the simplest
case. But consider an inner call site, (t3 2 k1), in A5. The analysis will take
each \; € o(t3) and will add o(k1) to o(\; lformals,). In constrast, the call (+
x1 1 k2) adds no information and has no impact on the final result.

Note that only the call sites where the information is propagated are useful
for the computation of the analysis. One way to implement the analysis would



be to first traverse the syntax tree and store the useful call sites in some data
structure and then traverse it at each iteration. But again, there still remains
an interpretation layer, namely the computations needed to traverse the data
structure.

Compilation can overcome this layer of interpretation by replacing the data
structure representing the program to analyse by the control structure of another
program (the “analysis program”). The only “interpretation” that remains is at
the processor level but since this is unavoidable we will not count it. Figure 6
shows a first compilation algorithm for Ocfa. We use a Scheme-like notation for
the produced code. The function comp-program takes as input a program p and
produces p', the analysis program? in source form. When p’ is run, it performs
the analysis by finding an abstract environment such that ¢ = p'(o), by the
technique of successive approximation.

To see how it works, consider the following program:

(A1 (£ c1)
(2 (x c2)
(f x c2))
2
c1))
(A3 (y c3)
(+ y1c3))
tl-cont)

Once compiled, we get the following analysis program:

(A (o)
(A (o)
(A (o)
(@
(A (@
(1) ((A (o) (Ocfa-abstract-app o(f) o x c2))
(2) o U[x — (lookup 2 o)]U[c2 — (lookup cl o)]))
X\ (@) o
a)))
(3) o U[f — (lookup A3 o)] U [cl — (lookup tl-cont o)]))
(I (@) o)
a)))
(A (@)
(A (o)
X\ (o) o)
(X (o) o)
a)))
X\ (@) o)
a)))
a)))

2 We assume that Ocfa-abstract-app and lookup can be “linked” in some way with the
resulting program.



comp-program(p) = comp-call(p)

comp-call([(f a1...an)]) =
let C1 = comp-args({a1,...,an))
C> = comp-app(f, (a1, ..., an))
in [(A () (C2 (C1 0)))]

comp-call([(letrec ((v1 [1) --- (vn 1)) O]) =
let C1 = comp-call(c)
C> = comp-args({l1,...,[2))
in [(A (0) (Ci1 (Co oUvr = {lLi}]U---Uvn = {ln}PN]

comp-app(f, (a1,...,an)) =

cond
isVar(f) :
[(A (o
(Ocfa-abstract-app (o f) o a1 ... an))]
isPrim(f) :
Ocfa-prim(f, (a1, ...,an))
isLam(f) :
let C = comp-call(f lpody)
in [(A (o)
(C oUlf dformals; > (lookup a; )]
comp-args({)) = [(A (o) )]

(
comp-args({(a1,. .
if isLam(a)
then let C1 = comp-call(a1 lpody)
C> = comp-args({az, ..., an))

in [(A (0) (C2 (C1 0)))]

S an)) =

else comp-args({(az,...,an))
comp-prim([+], {a1,...,as)) = comp-args({ai,...,as))

comp-prim([if], (a1, ..., a3)) = comp-args({a,...,as))

Fig. 6. Ocfa compilation algorithm

It is not hard to see that only lines (1), (2), and (3) will contribute to the abstract
environment. We can also see that there are still a number of useless compu-
tations done by this analysis program. Two simple optimizations can further
reduce the number of computations performed at each iteration.

We can first eliminate all the calls to the identity function (A (o) o) by
performing n-reductions. This can be done at low cost by adding additional
tests to the compilation process. For example, assuming that Id-Funct? is true if



its argument is the code of the identity function, the comp-call function becomes:

comp-call([(f a1...an)]) =
let Cy = comp-args({ai,...,an))
C2 = comp-app(f, (a1, . ..,an))
in if Id-funct?(C})

then C>

else if Id-funct?(C>)
then C;
else [(A (o) (C: (C1 0)))]

The second optimization comes from the behavior of lookup. When applied
to a constant, it returns the empty set; when applied to a A-expression, it returns
the set containing only this expression. This leads to the following optimization.
First, we can eliminate all the contributions of the form [v — (lookup ¢ )],
where v is a variable and ¢ is constant. Also, we can remove the environments
of the form [v — {A\x}] and add them to the initial environment. This saves one
iteration, but more importantly, it simplifies the lookup mechanism and makes
each iteration faster.

When these two optimizations are added to the compilation algorithm, the
compiled code for the previous example now becomes

\ (@
(X (o)
(A (o)
X\ (o)
((X (o) (Ocfa-abstract-app o(f) o x c2))
o U[c2 — (Lookup cl o)]))
o))
o Ulcl — (lookup tl-cont o)]))))

Starting with of, = [f — {A3}] (as computed by the second optimization), we
can find that oy = [f — {A3}] is a fixed point for this function in only one
iteration.

This solution is not entirely satisfactory. The layer of abstraction is no longer
present, in the resulting code but the program must be executed in some way,
thus requiring interpretation at another level. If, for example, we use a builtin
interpretation procedure, like Scheme’s eval, our experimentations reveal that
it remains much more efficient to compute the analysis by means of abstract
interpretation. But it is possible to do better.

4 Representing the Compiled Analysis with Closures

Many functional programming languages allow the user to create new functions
via A-expressions. When these expressions are evaluated, they return a closure,
i.e. a function that remembers the current environment.



We will use closures here to overcome the interpretation overhead of the
analysis program. The idea is to represent a compiled expression with a closure.
When this closure is applied, it performs the analysis of the given expression.
We will thus replace the “code generation” by a “closure generation” (as in the
work of Feeley and Lapalme [5]). This leads to the compilation algorithm of
Fig. 7 (without the optimizations discussed above).

comp-program(p) = comp-call(p)

comp-call([(f a1...an)]) =
let C1 = comp-args({ai,...,an))
C> = comp-app(f, (a1, ..., an))
in )\0'.02(01(0'))

comp-call([(letrec ((v1 [1) --- (vn 1)) O]) =
let C1 = comp-call(c)
C> = comp-args({l1,...,ln))
in M\o.C1(Ca(o Ufvr = {Li}]U-- Ufon = {ln}]))

comp-app(f,{(ai,...,an)) =
cond
isVar(f) :
Xo.0cfa-abstract-app (o (f), o, (a1, ..., an))
isPrim(f) :
Ocfa-prim(f, (a1, ...,an))
isLam(f) :
let C = comp-call(f |pody)
in Ao.C(o U[f dormals; —* lookup(a;, o)])

comp-args({)) = Ao.o
comp-args({ai,...,an)) =
if isLam(a.)
then let C1 = comp-call(a1 lpody)
C> = comp-args({az,...,an))
in )\0.02(01(0'))

else comp-args({(az,...,an))
comp-prim([+], {a1,...,as)) = comp-args({ai,...,as))

comp-prim([if], (a1, ..., a3)) = comp-args({a,...,as))

Fig. 7. Ocfa compilation algorithm using closures



Comp-app would thus be implemented as:

(define (comp-app f args)
(cond
((var? f)
(lambda (env)
(Ocfa-abstract-app (env f) env args)))

))

It may seem that this new compilation scheme is not very different from the
previous one; the main difference being that the generated code is no longer
textual. This change of representation has two main advantages.

First, there is no longer a need for an interpretation procedure like eval. Any
language that provides closures can be used to implement the abstract compiler.
Secondly, and more importantly, both the abstract compiler and the analysis
program run much faster because all the Ao.E expressions are also compiled (we

assume that the abstract compiler is itself compiled). Only closures are created
in the process of abstract compilation.

5 Results

We have implemented the Ocfa using the abstract interpretation algorithm and
the compilation algorithm using closures for code generation. Our implementa-
tions handle a larger subset of Scheme than the one presented here. Imperative
constructs such as set!, set-car!, set-cdr!, etc., are treated.

Our implementations also handle the case of functions “escaping” to memory.
By this we mean functions which are stored in data-structures and that could
be later fetched and applied. In order to handle this case conservatively, we
introduce a special variable, £SC, that abstracts the memory. For example, if
the program to analyze contains the call (cons x y k), all the A-expressions
that can be bound to x and y at runtime are added to o(£SC). Conversely, a
call (car x (lambda (z) E)) will cause 0(£SC) to be added to o(z). Clearly,
this approximation is very coarse, but conservative and easy to implement.

The front-end is the same for the three implementations. It performs the
following operations:

1. Tt reads the Scheme program to analyze.

2. It performs a certain number of syntactic expansions to express the program
using a minimum set of constructs (for example, let and let* special forms
are expressed using only the lambda and set! special forms).

3. It CPS-converts the program.

4. Tt labels the A-expressions and a-converts the program. An abstract syntax
tree (AST) results from this last operation.

The Ocfa is then computed directly from the AST.



The implementations have both been written in Scheme and they have been
compiled with the Gambit-C compiler (which generates C code) on a DEC Al-
pha. Set operations have been implemented in C for efficiency reasons. Several
representations for sets have been considered. A list representation was too costly
and bit vectors consumed too much memory (typical sets contain very few ele-
ments and are very sparse). The representation we adopted consists of vectors in
which the elements are sorted. Each set union operation allocates a new vector
in which the elements are merged while being copied.

We ran the Ocfa over the following set of programs:

conform A program that manipulates lattices and partial orders.

earley A parser generator for context-free languages based on Earley’s
algorithm.

interp A small interpreter implementing call-by-need semantics.

lambda A A-calculus interpreter.

lex A lexical analyzer generator.

link The application linker for the Gambit-C compiler.

111 An LL(1) parser generator.

peval A small Scheme partial evaluator.

source A parser for Scheme.

Figure 8 gives the execution times for both implementations on a 160MB
DEC AXP3000 (a DEC Alpha microprocessor under OSF/1). The times are all
given in seconds. The first column gives the number of lines in the program. The
second column gives the number of iterations needed to reach the fixed point
and the third column gives the average number of elements of o(v), where o is
the result of the analysis and v ranges over all the variables of the program. The
interp column gives the execution time required by the abstract interpreter to
perform the analysis. The closure column gives the time for the analysis programs
generated by the second compilation algorithm, including all optimizations dis-
cussed. The numbers in parentheses give the speedup relative to the times given
in the interp column. The last column (gen-+closure) gives the time needed to
generate and execute the analysis programs and to execute them. The numbers
in parentheses give the speedup over interpretation.

We can see that the compilation process can speed up the analysis by a fac-
tor varying between 3 and 5 for most of these programs® The only exception
is interp. We can observe that the average set length (in the last column) for
this program is much higher than for the others (except peval) indicating that
it makes heavy use of higher-order functions and/or that a larger number of
functions are stored in data-structures. Since the sets contain more elements,
relatively more time is spent in the set manipulation procedures compared to

3 We consider that the time spent in the code generation phase can be amortized if
the analysis program is to be run several times. Such a situation can arise in the
global analysis of separately compiled modules.



Number|Number of| Average Execution times

of lines| iterations |set length| interp| closure [ closure+gen
conform 557 3 0.59 0.0648/0.0154 (4.2)[0.0416 (1.56)
earley 648 3 0.41 0.0603/0.0117 (5.2)[{0.0366 (1.65)
interp 411 9 3.02 ||0.1230]0.0435 (2.8)[0.0612 (2.01)
lambda 617 4 0.60 0.1050/0.0326 (3.2)[0.0634 (1.66)
lex 1133 3 0.59 0.1290/0.0266 (4.8)[0.0752 (1.72)
link 1608 6 2.22 0.4687|0.1322 (3.5)(0.2116 (2.12)
111 613 5 0.43 0.0940/0.0226 (4.2)[0.0470 (2.00)
peval 618 5 6.80 0.1727/0.0508 (3.4)[0.0896 (1.93)
source 453 5 0.77 0.0773/0.0195 (4.0){0.0400 (1.93)

Fig. 8. Comparison of two strategies.

the time spent to traverse the syntax tree. So it is not surprising that the inter-
pretation overhead will be less significant and the speedup lower than the other
programs. Note also that even if we consider the time required to generate the
analysis programs (the gen-+closure column), the overall speedup is close to 2 in
almost all cases.

Figure 9 shows the relative benefits of the optimizations we have discussed,
namely the n-reduction and the lookup optimization. The first column gives
the execution times (in seconds) for the analysis programs when the abstract
compiler does not perform any optimization. The next two columns give the
percentage of work that is saved by each optimization. The last column gives
the same information when both optimizations are performed. It proves that it
is worth the effort to add them to the abstract compiler.

[Program|No opt.|n-reduct.[Lookup[All opt.]

conform| 0.0292 18.7%| 28.8%| 47.3%
earley | 0.0274| 26.4%| 37.0%| 57.3%
interp | 0.0675 22.0%| 15.7%| 35.6%
lambda | 0.0507| 23.1%| 18.6%| 35.8%
lex 0.0547| 21.6%| 31.9%| 51.4%
link 0.2137| 20.6%| 16.2%| 38.3%
111 0.0410| 21.5%| 16.9%| 44.9%
peval 0.0846|  20.0%| 17.7%| 40.0%
source 0.0370 24.7%| 18.5%| 47.5%

Fig. 9. Relative benefits of each optimization.



6 Related Work

Although our work is novel in the field of static analysis, it is related to a number
of other works.

Our work originated from the study of abstract interpretation, a framework
well-adapted for the design of static analyses. A growing interest has been shown
for this framework since the pioneering work of the Cousots [4]. It has been ap-
plied to a number of interesting analyses in the area of functional programming,
including strictness analysis [11], reference counting [7], and control flow analy-
sis [15]. In [2], Ayers presents several techniques for the efficient implementation
of the Ocfa. His “initial call sites” correspond to the calls where our technique
can perform the lookup optimization.

Although we present here a more efficient implementation of Ocfa, our para-
digm is not restricted to analyses designed in the abstract interpretation frame-
work. In fact, it can be applied to more conventional data-flow analyses [1, 6].

In [13], Serrano describes the control flow analyses performed in the Bigloo
Scheme to C compiler [14]. His results show that these analyses allow significant
optimizations to be performed. But they also show that it can take 4 to 9 times
longer to compile a program when all the optimizations are enabled. Since his
compiler produces C code, the time spent by the analysis and optimization
process is often compensated by the time saved during the C compilation (the
generated C code is easier to compile).

We argue that if the Bigloo compiler was to produce native code instead of
C code, the time lost would not be compensated, thus revealing the real cost of
control flow analysis (which has an O(n?) worst-case complexity).

Lin and Tan [10] show how to compile the dataflow analysis of logic programs.
Although they named their technique “abstract compilation”, they actually com-
pile Prolog programs into code for the Warren Abstract Machine (WAM) using
a (standard) compiler and that code is passed to an abstract interpreter for the
WAM which computes the dataflow analysis. So there is no concept of analysis
program in this technique, the abstract interpretation is being computed from
another intermediate representation of the source program. Thus, optimizations
of the analysis program, as those we described here, cannot be performed.

The use of closures for code generation has previously been proposed for com-
pilation [5]. The latter describes an approach to compiling where each compiled
expression is embodied by a closure whose application performs the evaluation
of the given expression. This idea of replacing “code generation” by “closure
generation” is essentially the same as we used in our compilation algorithm.

Closure generation is a form of runtime code generation. Leone and Lee [9]
describe a technique for runtime code generation called deferred compilation.
Their results also show that significant speedups can be obtained. For example,
multiplication of sparse matrices is sped up by a factor of 2 using their technique.



7 Future Work

The analysis programs can be much faster if we consider generating machine
code instructions instead of closures. Preliminary results show that they can
typically be sped up by yet another factor of 4 in almost all cases. The only
drawback is that the (abstract) compilation time also increases by a factor of
10, making the overall process slower than abstract interpretation if the analysis
program is run a small number of times. The Scheme-to-C interface that we use
is in part responsible for this increase. Also, the creation of a closure at runtime
is much faster than the generation of a relatively long sequence of machine code
instructions that do the same work. Nevertheless, we believe that the efficiency
of the code generation can be further improved.

Our approach is most beneficial when the analysis is performed several times.
This led us to the idea that the analysis program can be stored in a file and later
reloaded together with other analysis programs in order to perform global control
flow analysis of separately compiled multimodule programs. We are currently
working on this idea [3].

8 Conclusion

We have presented a new way of implementing static analyses. It is based on the
concept of abstract compilation. This paradigm is attractive for several reasons.
It is conceptually simple, it is not restricted to any kind of static analysis, and
more importantly, it can speed up the analysis.

As an example, we have described how to compile the control flow analysis of
higher-order functional languages and our results have shown that the analysis
can be sped up by over a factor of 2.

References

[1] A. V. Aho, R. Sethi and J. D. Ullman. Compilers. Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[2] Andrew E. Ayers. Abstract Analysis and Optimization of Scheme. PhD thesis,
MIT, September 1993.

[3] Dominique Boucher and Marc Feeley. Un systéme pour l’optimisation globale de
programmes d’ordre supérieur par compilation abstraite séparée. Technical report
992, Université de Montréal, september 1995.

[4] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fixed
points. In Proceedings of the 4th ACM Symposium on Principles of Programming
Languages, Los Angeles, 1977, pp. 238-252.

[5] Marc Feeley and Guy Lapalme. Using closures for code generation. Comput. Lang.
12, 47-66, 1987.

[6] Matthew S. Hecht. Flow Analysis of Computer Programs. North-Holland, New
York, 1979.



[7]

[8]

[10]

[11]
[12]
[13]

[14]
[15]

Paul Hudak. A Semantic Model of Reference Counting and its Abstraction (De-
tailed Summary). In Proceedings of the 1986 ACM Conference on Lisp and Func-
tional Programming, 351-363, 1986.

David A. Kranz. ORBIT: An Optimizing Compiler for Scheme. Ph.D. thesis, Yale
University, 1988.

Mark Leone and Peter Lee. Lightweight Run-Time Code Generation. In Proceed-
ings of the 199/ ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, pp. 97-106.

I-P. Lin and J. Tan. Compiling Dataflow Analysis of Logic Programs. In Pro-
ceedings of the 1992 ACM Conference on Programming Language Desing and
Implementation, pp. 106-115.

Alan Mycroft. Abstract Interpretation and Optimizing Transformations for Ap-
plicative Programs. Ph.D. thesis, University of Edinburgh, 1981.

Guillermo Juan Rozas. Taming the Y operator. In Proceedings of the 1992 ACM
Conference on Lisp and Functional Programming, 226-234, 1992.

Manuel Serrano. Control Flow Analysis: a compilation paradigm for functional
languages. In Proceedings of SAC 95.

Manuel Serrano. Bigloo User’s Manual. Inria-Rocquencourt. March 1994.

Olin Shivers. Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,
Carnegie Mellon University, Pittsburgh, 1991.

This article was processed using the I¥TEX macro package with LLNCS style



