
An R7RS Compatible Module System for Termite Scheme
Frédéric Hamel

Université de Montréal
Montréal, Québec, Canada

frederic.hamel@umontreal.ca

Marc Feeley
Université de Montréal

Montréal, Québec, Canada
feeley@iro.umontreal.ca

ABSTRACT
The Termite Scheme language is an existing extension of
Gambit Scheme that has features well suited for programming
heterogeneous distributed systems using a message passing
style. The language supports sending messages containing
procedures and continuations, which simplifies migrating
tasks between nodes during their execution.

A longstanding issue with the original implementation of
Termite is that compiled procedures and continuations can
only be sent to other nodes if the compiled code is already
loaded in the program receiving the message. This is tedious
to arrange in the typical case, and hard or impossible for hot
code updates which are an important use case (updating a
service without interrupting its execution).

Our work has implemented a solution to this problem:
an R7RS compatible module system that automates the
distribution of compiled code. The module system uses a
version control system to manage module versions and provide
a way to distribute code from network accessible repositories.
Modules are identified uniquely using the repository location
and version number. This allows multiple versions of the
same module to coexist in a program, an essential feature to
support hot code updates.

We explain the implementation of our module system and
how it solves various issues related to Termite Scheme and
programming distributed systems. Through an experimental
evaluation we have observed speed improvements for RPC of
close to one order of magnitude.

CCS CONCEPTS
• Software and its engineering → Modules / packages; Mod-
ules / packages; Distributed systems organizing principles;

KEYWORDS
Distributed systems, Concurrency, Remote Procedure Call,
Mobile code, Modules, Scheme
ACM Reference Format:
Frédéric Hamel and Marc Feeley. 2020. An R7RS Compatible
Module System for Termite Scheme. In Proceedings of the 13th
Europeen Lisp Symposium (ELS’20). ACM, New York, NY, USA,
10 pages. https://doi.org/10.5281/zenodo.3742443

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’20, April 27 28, 2020, Zürich, Switzerland
© 2020 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.3742443

1 INTRODUCTION
Distributed systems consist of a set of interconnected com-
putational nodes. Nodes interact by sending and receiving
messages from other nodes over a communication network.
Each node may have a special purpose or there can be more
or less duplication of their function. The World Wide Web
is a notable example that is good to keep in mind to under-
stand some of the issues. It has server and client nodes, they
typically don’t run the same server and client programs, and
the nodes are not centrally managed.

The implementation of a distributed system consists of
developing the programs installed on the nodes that perform
the coordination of the nodes’ actions with those of other
nodes. In a sense, the set of the nodes’ programs constitutes
a global program that must be correct. The challenging
development issues we consider in this paper are the following:

∙ RPC: How is a remote procedure call (RPC) imple-
mented when the program in the sending and receiving
nodes haven’t been designed together?

∙ Code update: How is a node’s program updated when
a bug is fixed or a better version is available?

∙ Task migration: How is a service moved to a new node
when the underlying platform must be changed (oper-
ating system update, hardware upgrades, reboot, . . . )?

∙ Continuous operation: How are service interruptions
avoided in the above situations?

The Termite Scheme language [19] has been designed as
an extension of Gambit Scheme [14] to simplify programming
distributed systems and provide solutions to these issues. It
borrows concepts from the Erlang programming language [4],
but using Scheme syntax and semantics. A particularly in-
teresting feature in our context, not found in Erlang, is the
ability to send messages containing continuations.

The Gambit system on top of which Termite is imple-
mented offers many features useful to program distributed
systems. It generates portable C code that can be compiled
and run on any OS and architecture (32/64 bits, little/big
endian, . . . ). The serialization and deserialization of objects
are independent of their machine representation, allowing the
transmission of most objects between nodes of a distributed
system with different architectures. In particular, procedures
and continuations can be serialized. Moreover interpreted and
compiled code can be freely mixed in the same program. The
serializable procedures allow using a higher-order program-
ming style across nodes, which is useful for implementing
RPC. The serializable continuations allow capturing the state
of a process and sending it to another node to resume it there,
which is useful for code update and task migration.

https://doi.org/10.5281/zenodo.3742443
https://doi.org/10.5281/zenodo.3742443


ELS’20, April 27 28, 2020, Zürich, Switzerland Frédéric Hamel and Marc Feeley

Unfortunately, the original implementation of Termite has
shortcomings when serializing closures and continuations.
When the receiving node has no knowledge of the code it
receives, it must run the code interpreted which is typically
much slower than if it was compiled. In this case, essentially
the source code file’s AST is serialized, making messages
larger. Moreover, this large structure will be sent again if
another instance of the closure is sent. When the code is
compiled, the messages are compact, but the code must
be available in compiled form on the receiving node. This
requires a tedious and error-prone setting up of the nodes’
programs that would be unsustainable in the context of large
independently evolving distributed systems, such as the Web,
and difficult to use for RPC, code update and task migration.

Our work aims to allow sending code between nodes that
both run native compiled executables. This is not a simple
task considering nodes may have different operating systems
and architectures, such as ARM, i386 or x86_64, so compiled
procedures cannot, in general, be sent as machine code.

To reach this goal our approach delegates to the receiving
node the compilation of the modules. Code can be transmitted
between machines of different architectures without the usage
of cross-compilers, which can be challenging to setup robustly.
The code will work on all platforms supported by Gambit
such as Linux, macOS, Windows, etc.

An essential property of the module system is that modules
must have a globally unique name that includes their version.
This allows the coexistence of multiple versions of modules in
a program, a situation occuring when a node is updated with
an improved version of its code without interruption. Our
approach benefits from the use of a version control system
to manage the versions of modules in a disciplined way.

The implementation of code migration has been done in dif-
ferent programming languages such as Java [18], JavaScript [22],
Tcl [20], Erlang [16, 21, 23], and Scheme [3, 9, 13, 17]. Our
work distinguishes itself from these efforts in allowing com-
piled code to be migrated transparently between nodes regard-
less of their architecture and operating system, and without
the destination node having prior knowledge of the code.

Section 2 is a brief tutorial of the Termite Scheme lan-
guage. Section 3 explains existing features of Gambit used
in the implementation of our module system, which is the
subject of Section 4. In Section 5 we evaluate the performance
experimentally. Finally, Section 6 discusses related work.

2 TERMITE SCHEME LANGUAGE
Termite [19] applications consist of multiple Termite nodes
exchanging data in a message-passing style similar to Erlang
[15]. A node is an abstraction of a computing device that is
distinct from the physical nodes (machines) of the distributed
system. In practice a node corresponds to an operating system
process and the physical nodes of the distributed system may
contain a single or multiple Termite nodes.

Within each node there are multiple running threads.
Threads are uniquely identified across the distributed system

with a upid that indicates its location (i.e. a node and a
sequence number within that node).

Each node is identified with an IP address and port. The
procedure make-node is the constructor of node identifiers.
The node-init procedure starts the node’s TCP server and
registers built-in services (spawner, linker, publisher, etc.) The
node’s TCP server allows clients to connect to it remotely.
Without this the node would not be visible on the network.

Services in Termite are nothing more than threads receiving
messages in a loop, performing pattern matching on them
and executing actions according to the result of the matching.
A service is created with the spawn procedure which takes
a thunk to be executed and an optional local name for the
service and returns a thread object. Each thread has a mailbox
that buffers the messages it receives. By default services
created with spawn are only visible to the threads in the
current node. A service can be published globally (to other
nodes) by the procedure publish-service that registers the
thread object under a specific name in a dictionary within
the publisher service. That service resolves services by name.

Communication between nodes is performed with the fol-
lowing procedures:

∙ (! dest msg)
∙ (? [timeout [default]])
∙ (?? pred? [timeout [default]])
∙ (!? dest msg [timeout [default]])

The procedure ! sends the message msg to the mailbox
of the dest thread. The procedure ? waits for a message
to appear in the mailbox and retrieves it, with the optional
parameter timeout specifying how long to wait before re-
turning the default value. If no default value is given and
the timeout expires, an error is raised. The procedure ??
is similar to ? but filters the received message using the
predicate pred? . For the common “send request then receive
response” communication pattern there is the !? procedure
that is a composition of ! and ?, which also automatically
adds a unique tag to the messages to match the response
with the request.

A message can also be received with the recv form which
pattern matches the message. This form is typically used to
dispatch the messages in the implementation of a service.

The following example shows a typical use of these forms to
implement a local service computing the square of a number
and a client requesting to square 5 (both in the same node):
(define square-server

(spawn
(lambda ()

(let loop ()
(recv

((from tag 'square x) ;; message pattern
(! from (list tag (* x x))))

(msg
(warning "Ignored message " msg)))

(loop)))))

(!? square-server (list 'square 5)) ;; => 25



An R7RS Compatible Module System for Termite Scheme ELS’20, April 27 28, 2020, Zürich, Switzerland

;; ping.scm (running on node1)
(declare (block))
(import (termite))

(define pong-server
(remote-service 'pong-server node2))

(define new-server
(spawn

(lambda ()
(let loop () ;; code that will be migrated

(recv
((from tag 'clone)
(call/cc

(lambda (k)
(! from (list tag k)))))

((from tag 'ping)
(! from (list tag 'pong)))

(('update k)
(k #t)))

(loop)))))

(node-init node1)

(!? pong-server 'ping) ; => gnop
(! pong-server (list 'update (!? new-server 'clone)))
(!? pong-server 'ping) ; => pong

;; buggy-pong.scm (running on node2)
(declare (block))
(import (termite))

(define pong-server
(spawn

(lambda ()
(let loop ()

(recv
((from tag 'ping)
(! from (list tag 'gnop))) ;; BUG!

(('update k)
(k #t)))

(loop)))))

(node-init node2)

;; publish the pong server
(publish-service 'pong-server pong-server)

Figure 1: Hot code update example

Here the created thread loops forever receiving lists of the
form (from tag square x ) where from is the source thread,
tag is a unique tag created for this request/response, and x
is the number to square. The thread responds with a message
of the form (tag result ) where result is the square of x .

2.1 Hot code update
In many distributed system implementations, updating the
code of a node requires restarting the program running on
that node. Performing hot code updates while a program is
running is useful to change its behaviour without interrupting
the service. This can be to fix a bug or to extend the service.
In Termite, this is possible in part because both procedures
and continuations are serializable.

A basic ping-pong example is enough to unveil issues of
the original implementation of Termite. In this example there
are two nodes each running a thread; one that sends ping
and the other that replies pong. The Termite Scheme code
in Figure 1 demonstrates how to perform a hot code update
of the server without interrupting its service. The actors
in this scenario are the server (buggy-pong.scm) and the
client (ping.scm). Note that the server’s implementation has
a deliberately introduced bug: it replies to a ping request
with the message gnop instead of pong.

The client application designed to fix the server is com-
posed of a thread that contains the new behaviour of the
server. The thread must handle the same messages as the

buggy pong server to be compatible. Additionally, it is dis-
tinguished in two ways, first it fixes the response message
to pong when receiving ping, second it handles the message
clone which captures the continuation of the client thread
which will be sent to the buggy server to fix it.

The client starts by creating a local service with spawn. It
pings the buggy pong server and prints the (incorrect) result,
creates and sends the continuation of the new-server to the
buggy pong server in an update message. Then, it re-pings
the server and prints the (correct) result. In the original
implementation of Termite this works correctly when the
code is run interpreted, but it fails when compiled. This is
because the message sent by the client contains a continuation
that refers to return points in compiled code that do not
exist on the server that receives the message. Our module
system offers a mechanism solving this problem.

2.2 RPC/RMI
Remote procedure call (RPC) and remote method invocation
(RMI) are both mechanisms that allow remote execution of
code on a remote computer. The essential difference is that
RMI is object-oriented while RPC is not. Java RMI sup-
ports direct transfer of serialized Java classes and distributed
garbage collection. A remote call[5] can be described as the
following sequence of events:

(1) The client calls a local stub with parameters passed to
it in a normal way.



ELS’20, April 27 28, 2020, Zürich, Switzerland Frédéric Hamel and Marc Feeley

(2) The client stub packs the parameters into a message.
This is called marshalling.

(3) The client sends the message to a server on the remote
node.

(4) The server stub unpacks the parameters of the message.
This is called unmarshalling.

(5) Finally, the server stub invokes the procedure with the
arguments. The result is marshalled then sent back to
the client.

In Termite Scheme and Erlang, RPC servers can be imple-
mented by creating a service that dispatches the messages to
the right procedure. The square service example given earlier
is a RPC server allowing a single procedure to be called. In
general, the message dispatch used in the server constrains
the procedures that can be executed to the ones handled by
the dispatcher.

Termite has the on procedure to circumvent this constraint
by allowing the execution of a thunk on any node. This pro-
cedure takes as parameters a node and a thunk and returns
the result of calling the thunk on that node, for example
(on node2 (lambda () (directory-files))). This simpli-
fies the implementation of RPC servers to a simple node
initialized with the node-init procedure.

The procedure remote-spawn is similar to spawn but the
thread it creates is on the node specified as a parameter. This
thread can then be used to execute specific code. No interface
code is required because the client explicitly sends the thunk
to the destination node.

The power of these features rests on the transparent unre-
stricted code migration mechanism possible with our module
system.

3 EXISTING GAMBIT FEATURES
The implementation of our module system uses the following
existing Gambit features.

3.1 Symbolic paths
When a filesystem path begins with ˜˜name it expands to
the path bound to that name in the symbolic path dictionary.
This extension to the filesystem path syntax is convenient for
accessing directories whose location depends on the system
configuration or command line arguments. For example ˜˜lib
is bound to the directory containing the builtin Gambit
libraries and ˜˜userlib is bound to the directory containing
user installed libraries.

3.2 Module loader
A source code file may contain the declaration (##supply-module
module-id ) to identify the file as the module module-id .
It can also contain a set of (##demand-module module-id )
forms indicating dependencies on functionality provided by
the modules identified by module-id . When the file is com-
piled, these properties are embedded in the generated code
and available to the module loader. When the compiled file
M is loaded the Gambit runtime system will ensure that M ’s
required modules are loaded first. The required modules are

searched using the module-id in a set of directories known
as the module search order, which by default is ˜˜userlib
followed by ˜˜lib.

3.3 Object serialization
The serialization of objects in Gambit is done with the proce-
dure object->u8vector which takes as parameters the object
to serialize and optionally a transform procedure which is
called on every sub-object inside the object in order to cus-
tomize the serialization process. The result is a u8vector
(vector of bytes).

The serialization of most objects is straightforward. A
first byte indicates in the upper bits the type of the object,
and possibly some basic property such as its length in the
remaining bits of the byte (if it fits otherwise in the following
bytes). This is followed by the serialization of each field of the
object. For example the vector #(1 2 3) is serialized to the
four bytes #x23 #x51 #x52 #x53. The first byte indicates
the vector type and a length of 3, and the remaining bytes
the type and value of the small integers 1, 2 and 3.

Circular references and shared objects are handled by
keeping track of the position of serialized objects in the byte
stream and using a special type that refers to a previously
serialized object by its position in the stream.

The machine independent serialization of compiled proce-
dures, closures and continuations is based on the serialization
of control points. There are control points for procedure entry
points, closure entry points and non-tail call return points.

The serialization of control points is the key to serialize
closures and continuations. Gambit uses a flat closure repre-
sentation [7]. A closure is a vector-like object containing the
free variables and a reference to a control point (the closure’s
entry point). Gambit uses the incremental stack/heap strategy
[10] for managing continuations. A continuation is a chain of
continuation frames, either stored on the stack or the heap
(the details of the representation are given in [13]).

Continuation frames, like closures, are vector-like objects
containing values and a reference to a control point (the
return point of a non-tail procedure call). These objects are
serialized similarly to vectors. Each of their fields needs to
be serialized, the only particularity is that one of the fields
is a control point.

For historical reasons Gambit uses the term subproce-
dure for control points. Each subprocedure has a parent
which is the toplevel procedure that contains it. The sub-
procedures contained in a given parent are assigned a ma-
chine independent integer index identifying that control
point in the parent: its id. Each toplevel procedure has
itself as a parent and an id of 0. These attributes can
be obtained with the procedures (##subprocedure-parent
subproc ) and (##subprocedure-id subproc ) which access
meta-information maintained by the runtime system. The
inverse operation, namely the retrieval of the subprocedure
with a given parent and id, is performed by the procedure



An R7RS Compatible Module System for Termite Scheme ELS’20, April 27 28, 2020, Zürich, Switzerland

Figure 2: Machine independent control point identification

(##make-subprocedure parent id ). Figure 2 shows a pro-
cedure containing three control points, their logical relation-
ship, and how they can be retrieved with ##make-subprocedure.

The last issue to address is the machine independent
identification of the parent. Gambit has a block compila-
tion declaration, i.e. (##declare (block)), that tells the
compiler that all global variables defined in the file are not
mutated in other files. When this declaration is used, the
Gambit compiler assigns a name to each toplevel procedure,
which is typically the name of the global variable used in the
toplevel define, or a name derived from the filename when
the lambda-expression is not used in a toplevel define. The
serialization of parent procedures uses this name, which is
obtained with the procedure (##subprocedure-parent-name
subproc ). Deserialization needs to recover the reference to
the parent given its name, and this is done with the procedure
(##global-var-primitive-ref name ). This procedure fails
when a toplevel procedure with that name does not exist in
the receiving node’s program. Our module system catches this
case to trigger the dynamic loading of the missing compiled
code with a mechanism explained in Section 4.1. The main
point is that the name of the toplevel procedure contains
enough information to find the corresponding source code,
compile it and load it.

3.4 Namespaces
To avoid clashes of global variables and toplevel macros
between modules, Gambit partitions names into namespaces.
A name is qualified when it contains a #, such as math#pi, and
is unqualified when it does not, such as sqrt. This notation
is inspired by Curtis’ et al module system for Scheme [11]. A
namespace is a prefix that is added to unqualified variable
and macro names to make the name qualified. For example,
the math# namespace applied to the unqualified sqrt results
in the qualified name math#sqrt. A namespace is either the
special empty namespace or a name that ends with a #.

(##namespace ("math#")
("" (def define) if < * -))

(def (fact n)
(if (< n 2) 1 (* n (fact (- n 1)))))

Figure 3: Namespace declaration example

Gambit’s ##namespace declaration controls which names-
pace is added to unqualified names in the scope of the dec-
laration (which is the rest of the file if at toplevel). Three
forms of this declaration exist (to simplify we have used the
ns# namespace):

(1) (##namespace ("ns#"))
(2) (##namespace ("ns#" name1...))
(3) (##namespace ("ns#" (name1 alias1)...))

In the first form, all unqualified identifiers in the scope of
the declaration will be augmented with the ns# prefix. In
the second form only the unqualified names name1 . . . are
augmented. In the third form the unqualified names name1 . . .
are renamed to alias1 . . . and then the ns# prefix is added.

A toplevel ##namespace declaration placed at the begin-
ning of a file can map the names used in the rest of the code
to appropriate namespaces. Figure 3 shows a sample use to
implement a small math library. The declaration maps def
to define (in the empty namespace), and everything else
except if, <, *, - to the math# namespace. Consequently this
code actually defines the math#fact procedure. If the code
contained other definitions they too would define names in
the math# namespace. Another module could access this pro-
cedure directly with the qualified name math#fact, or with
fact if in the scope of a (##namespace ("math#" fact)), or
with factorial if in the scope of a (##namespace ("math#"
(factorial fact))).

4 OUR MODULE SYSTEM
4.1 define-library form
To help with the adoption of our module system we have
designed it to be compatible with the R7RS standard [24].
The main form for defining libraries (which is synonymous
to modules in this paper) is the define-library form which
has the following syntax:

(define-library <library name>
<library declaration> ...)

The first argument is the library name; a non-empty list
of identifiers such as (scheme base). The name is followed
by library declarations which can be any of the following
forms, of which the last six are extensions to the R7RS syntax
offering fine control over the compilation and linking process:

∙ (export <export spec> ...)
∙ (import <import set> ...)
∙ (begin <command or definition> ...)
∙ (include <filename> ...)
∙ (include-ci <filename> ...)
∙ (include-library-declarations <filename> ...)



ELS’20, April 27 28, 2020, Zürich, Switzerland Frédéric Hamel and Marc Feeley

(define-library (github.com/fred hello)
(export hi)
(import (only (scheme base) define)

(rename (scheme write) (display show)))
(begin

(define (hi str)
(show "hello ")
(show str)
(show "\n"))))

Figure 4: The library (github.com/fred hello) exporting
the procedure hi

∙ (cond-expand <cond expand features> ...)
∙ (namespace <namespace> ): e.g. (namespace "X11#")
∙ (cc-options <options> ...): e.g. (cc-options "-O3")
∙ (ld-options <options> ...): e.g. (ld-options "-lX")
∙ (ld-options-prelude <options> ...)
∙ (pkg-config <options> ...): e.g. (pkg-config "X11")
∙ (pkg-config-path <path> ...)

The library’s variable and macro definitions are typically
contained in the begin declaration. It is also possible to put
the definitions in another file that is included with one of
the include forms. The cond-expand form allows conditional
activation of the library declarations it contains depending
on the system’s support for specific features.

The export declaration indicates the list of variables and
macros defined by the library that are accessible to code
importing this library. Like with R7RS the export declaration
can indicate that specific (internal) names are renamed to
other (external) names.

A library declares a dependency to another library with
the import declaration. This declaration identifies the im-
ported library. The import declaration may restrict the sub-
set of exported names that are imported (by default all
exported names are imported). The exported names may
also be renamed. This is specified in the <import set> with
the forms (only ...), (except ...), (rename ...), and
(prefix ...). We have extended the R7RS syntax for im-
ported library names to allow a trailing @version that indi-
cates the specific version required. Any mobile code libraries
imported must have a version indicator for reliable operation
of the module system.

Figures 4 and 5 are an example of libraries defined with
our extended define-library. Figure 4 implements a library
that exports the procedure hi. It uses an import declaration
that imports only the name define exported from the stan-
dard library (scheme base) and all the names exported from
the standard library (scheme write), but with display re-
named to show. Figure 5 is a library that depends on version
1.0 of the library defined in Figure 4.

The R7RS specifies that the library name “is used to
identify the library uniquely when importing from other pro-
grams or libraries”. In the context of mobile code libraries,
our system has the stronger requirement that libraries are

(define-library (gitlab.com/zoo cats)
(import (only (scheme base) define)

(github.com/fred hello @1.0))
(begin

(define (main)
(hi "lion")
(hi "tiger"))))

Figure 5: The library (gitlab.com/zoo cats) which de-
pends on version 1.0 of the library (github.com/fred
hello)

identified uniquely across all nodes of the distributed sys-
tem. This is achieved by requiring mobile code libraries to
be in code repositories hosted by version control system
servers (which could be a public service such as github.com
or a privately managed server) and to use the location of
the repository in the name of the library. The use of a ver-
sion control system allows multiple versions of the library
to be stored in a single repository; each identified with a
specific commit tag. The use of a network accessible repos-
itory makes it possible to obtain the code from any node
of the distributed system. In our example the library name
(github.com/fred hello) encodes the location of the repos-
itory, i.e. http://github.com/fred/hello.

The module system uses the library name and version to
construct a unique library identifier. The version is either
implicit (the current commit tag of the version control sys-
tem) or indicated explicitly in the import declaration. All
identifiers in the library name are concatenated with a / sep-
arator followed by an @ and the version identifier (implicit or
explicit). A trailing # is added to get the unique namespace
for the library. Unless the library has a namespace library
declaration to force the namespace (which is mainly useful
for builtin libraries), the namespace derived from the library
name is used to construct the qualified names of the (toplevel)
variables and macros defined by the library. Due to the guar-
anteed namespace uniqueness, name clashes between libraries
are not possible, including different versions of the same li-
brary. In our example, if the version of the library is 1.0, the
definition of hi is in reality defining the global variable with
the qualified name github.com/fred/hello@1.0#hi whereas
if the version is 1.5 it is github.com/fred/hello@1.5#hi
that is defined.

Having the library location and version information in the
global variable name provides valuable information to the
subprocedure deserialization mechanism. When the proce-
dure (##global-var-primitive-ref name ) fails because a
procedure with that name does not exist on the receiving
node the system uses the procedure name to determine where
to fetch a copy of the repository for the library containing
that procedure, and which version of the repository is needed.
A local copy of the repository at the required version is
then made and the Gambit compiler is invoked to create the
compiled code which is dynamically loaded into the running



An R7RS Compatible Module System for Termite Scheme ELS’20, April 27 28, 2020, Zürich, Switzerland

;; expansion of (define-library (github.com/fred hello) ...)

(##declare (block))

(##supply-module github.com/fred/hello@1.0)

(##namespace ("github.com/fred/hello@1.0#")
("" define

(show display)
write-shared
write
write-simple))

(define (hi str) ;; defines github.com/fred/hello@1.0#hi
(show "hello ") ;; calls display
(show str) ;; same
(show "\n")) ;; same

;; expansion of (define-library (gitlab.com/zoo cats) ...)

(##declare (block))

(##supply-module gitlab.com/zoo/cats@2.0)
(##demand-module github.com/fred/hello@1.0)

(##namespace ("gitlab.com/zoo/cats@2.0#")
("" define)
("github.com/fred/hello@1.0#" hi))

(define (main) ;; defines gitlab.com/zoo/cats@2.0#main
(hi "lion") ;; calls github.com/fred/hello@1.0#hi
(hi "tiger")) ;; same

Figure 6: Expansion of version 1.0 of the library
(github.com/fred hello) and version 2.0 of the library
(gitlab.com/zoo cats)

program, allowing the deserialization to resume. The com-
piled code is kept locally to avoid costly recompilations if
that version of the library is used again in the future. The
local copy of the repository is also kept to avoid fetching it
again if another version of the library is required.

4.2 Implementation of define-library
The define-library form is implemented as a macro that
expands into existing Gambit forms. For the libraries shown
in Figures 4 and 5, expanding the define-library forms
produces the code shown in Figure 6, for versions 1.0 and
2.0 of the libraries respectively.

The expanded code starts with a (##declare (block))
declaration that informs the compiler that variables defined
in the library will not be mutated in other libraries (this se-
mantics is part of the R7RS specification). This enables some
optimizations by the compiler, such as constant propagation
and inlining, and it also causes the compiler to assign to each
toplevel procedure a name that includes the library’s location
and version, necessary for the deserialization process.

This is followed by a (##supply-module library-id ) that
provides the module loader with the identity of the library and
version implemented by the code. For each imported library

(with a non-empty set of definitions), a (##demand-module
library-id ) is generated to inform the module loader that
the specified library must be loaded first. The handling of
exported and imported names is done through a generated
##namespace form that maps the names used in the library’s
code to the qualified names. The definition of all imported
macros is then generated.

After that the library’s code is generated in its original
form. No further processing is needed by the define-library
macro because the compiler will use the namespace declara-
tions to map the names appropriately during the compilation
process.

4.3 Other features
In this section we explain other features of the module system
that are not essential for reaching our goal but that are useful
in day-to-day use.

4.3.1 Optional version. During the development phase it is
good to have a fast turnaround time when debugging a library.
It would be tedious to assign a new version after each change
of the code. For this reason the module system distinguishes
installed libraries from those that are not installed. When
a local copy of a library has been obtained from a version
controlled repository (on the network or the local filesystem)
it is installed and the different versions can be referenced
in import declarations. A library that is stored in a local
directory, possibly managed by a version control system, is
not installed. In this case import declarations must not refer
to a specific version and the current state of the code is used.
This improves the workflow as it avoids having to install the
library after each change. Nevertheless, if it is in a version
controlled repository, it is possible to install it whenever there
is a need to assign a version to it.

4.3.2 Module aliases. With the (define-module-alias
lib1 lib2) form, symbolic names can be defined to refer
to libraries and library references can be redirected to other
locations. This is useful for the development phase for quickly
swapping one library for another. It also allows putting the
choice of library versions in a centralized place instead of
each and every import declaration to be able to upgrade
to new versions with a single edit. For example, when the
following definitions are in effect:

(define-module-alias (gitlab.com/zoo cats)
(gitlab.com/zoo cats @2.0))

(define-module-alias (fh)
(github.com/fred hello))

an (import (gitlab.com/zoo cats)) will import the library
(gitlab.com/zoo cats @2.0) and an (import (fh @1.0))
will import the library (github.com/fred hello @1.0). The
module alias definitions that are put at the root of a library’s
directory in the file _setup_.scm of a directory will apply
automatically to the libraries in that directory (with lexical



ELS’20, April 27 28, 2020, Zürich, Switzerland Frédéric Hamel and Marc Feeley

scoping rules respecting the nesting of the directories up to
the root of the repository).

4.3.3 Library management. Automatically installing a li-
brary from the network when it is referenced in a deserializa-
tion could be a security issue. The Gambit interpreter allows
manual installation of modules through command-line argu-
ments, for example gsi -install github.com/fred/hello.
Moreover, the runtime system maintains a whitelist of the
locations from which libraries are unconditionally installed.
By default the whitelist contains only github.com/gambit,
the Gambit project account. The whitelist can be extended
through environment variables and command line arguments.
When the library’s location is not on the whitelist a con-
firmation will be asked of the user if a REPL is currently
started (the runtime system can be configured to always ask
for confirmation, or to always refuse to install such libraries).

5 EVALUATION
The original implementation of Termite Scheme was able to
send messages containing code that the receiving node did not
have as long as the code was interpreted. Our module system
extends this capability to compiled code. In this section we
evaluate experimentally the performance gain due to the
more compact messages and the faster compiled code.

Three machines with different operating systems and archi-
tectures were used in the experiments to exercice the machine
independence. All three machines are on the same Gigabit
ethernet LAN. The machine MARM/Linux is a 4-core armv7l
with 2GB RAM running Linux 4.19 (Raspberry Pi). The
machine Mx86/macOS is a 6-core Intel i7-8700B with 32GB
RAM running macOS. The machine Mx86/Linux is a water-
cooled 4-core Intel i7-7700K with 16GB RAM running Linux
4.9. The later machine is the fastest and the execution time
measurements are the most stable of the three machines due
to the better thermal control. This fast machine is always
used as the destination of the code migrations; a situation
that is representative of the case where the destination of a
RPC is a fast compute server.

Three standard Scheme benchmark programs of different
source code sizes (in bytes) were used to see the effect of the
code size:

∙ Puzzle (4K)
∙ Scheme (40K)
∙ Compiler (400K)

The internal iteration count of the programs was adjusted
so that they would have an execution time when interpreted
that is roughly proportional to their size. So 400K has both
the largest code size and the longest run time (roughly 10
seconds on Mx86/Linux).

The programs are adapted to our use case as follows.
The program is turned into a library by wrapping it in
a define-library form that exports the program’s main
entry point and the library is put in a repository hosted
on github.com. A separate driver program simply imports
the library and then causes the program to be executed

Mx86/macOS
Time (ms) 4K 40K 400K
Total for RPC 146.4 ± 0.6 966.9 ± 6.1 10463.8 ± 3.3
On destination 131.6 ± 0.2 948.7 ± 5.9 10381.0 ± 2.7

MARM/Linux
Time (ms) 4K 40K 400K
Total for RPC 179.2 ± 1.6 1002.7 ± 8.1 10801.1 ± 11.0
On destination 132.6 ± 0.7 954.6 ± 0.0 10390.5 ± 2.6

Figure 7: Timings in the INTERPRETED scenario with
Mx86/macOS or MARM/Linux as the start node

Mx86/macOS
Time (ms) 4K 40K 400K
Total for RPC 15.5 ± 0.7 48.5 ± 0.6 478.7 ± 0.6
On destination 2.2 ± 0.0 35.2 ± 0.1 463.3 ± 0.3

MARM/Linux
Time (ms) 4K 40K 400K
Total for RPC 26.9 ± 1.2 60.4 ± 0.6 492.5 ± 0.7
On destination 2.2 ± 0.0 35.2 ± 0.0 462.8 ± 0.3

Figure 8: Timings in the STEADY-STATE scenario with
Mx86/macOS or MARM/Linux as the start node

Mx86/macOS
Time (ms) 4K 40K 400K
Total for RPC 1208.6 2460.3 148536.2
On destination 2.2 36.1 464.7

MARM/Linux
Time (ms) 4K 40K 400K
Total for RPC 1159.8 2502.0 153272.6
On destination 2.2 37.1 464.1

Figure 9: Timings in the FIRST-INSTALL scenario with
Mx86/macOS or MARM/Linux as the start node

on Mx86/Linux using Termite’s on form calling the library’s
“main”. The total execution time is measured and also the ex-
ecution time on the destination node. The difference between
these measures is accounted for by the message transfers,
the serialization and deserialization, and when the library
isn’t currently installed, the installation of the library source
code locally from github.com, the Scheme to C compilation,
and the C compilation. The programs are run 20 times, the
top and bottom outliers are removed to account for random
variations in the network latency, and the tables of results
contain the average and standard deviation for each measure
in milliseconds.

Three scenarios are tested:
∙ INTERPRETED: The whole program is interpreted.

This represents the performance achievable before our
module system was implemented.

∙ FIRST-INSTALL: The compiled program is executed
and the destination machine is installing the library
for the first time.



An R7RS Compatible Module System for Termite Scheme ELS’20, April 27 28, 2020, Zürich, Switzerland

∙ STEADY-STATE: The compiled program is executed
and the destination machine has previously installed
and compiled the library.

Figures 7, 8, and 9 give the timings for the INTER-
PRETED, STEADY-STATE, and FIRST-INSTALL scenar-
ios respectively with either Mx86/macOS or MARM/Linux as
the start node, and always Mx86/Linux as the destination
node.

The first observation is that in all the scenarios the speed
of the start node has very little bearing on the total RPC
time. This is to be expected because most of the work is done
on the destination node. The slower times are generally for
MARM/Linux. This can be explained by the higher messaging
overhead.

The message transfer overhead (network latency and se-
rialization/deserialization) will increase with the size of the
messages. In the STEADY-STATE scenario the messages
are the parameters of the called procedure and the result.
This goes from less than a hundred bytes (for 4K) to tens
of kilobytes (for 400K). In this scenario the messaging over-
head varies between 13-15ms for Mx86/macOS and between
25-30ms for MARM/Linux (slower processor and network in-
terface). The execution time on the destination is essentially
identical. In the INTERPRETED scenario the messages also
carry a representation of the code to be executed, which is
large for 400K. In this scenario the messaging overhead varies
between 15-83ms for Mx86/macOS and between 47-411ms for
MARM/Linux (here again the overhead is impacted by the
slower processor and network interface). Nevertheless the
messaging overhead represents a small fraction of the total
RPC time. For the STEADY-STATE scenario, as expected
the messaging overhead is at its highest for 4K, the shortest
running program, because messaging represents more work
than the actual computation on the destination.

To evaluate the speed improvement of RPC calls achieved
with our module system, we can compare the INTERPRETED
and STEADY-STATE scenarios. The total RPC time for
STEADY-STATE is up to 22x faster for Mx86/macOS and
MARM/Linux on 400K. The shortest running program, 4K,
has the lowest but still considerable speedup of 6x-9x.

Figures 9 shows that the time for the installation and com-
pilation of the library can be quite large for large programs
(400K, which is about 10,000 LOC, takes about 150 seconds
and the others less than 2.5 seconds). Thankfully, installation
only has to be done once per library and version used and
libraries are rarely so big, especially when good modular
programming practices are used.

6 RELATED WORK
The package management offered by our system supports
installing multiple versions of a package, which ensures the
same dependencies on all nodes. The package management
of the Go [6] programming language supports installing and
using multiple versions of a module, but it does not support
execution time installation of modules that is needed for hot
code update. QuickLisp [27] follows a different approach of

only keeping the last installed version of packages, which
can break dependencies. The module identification does not
include the location as the module names are mapped to their
location using a central directory, which means the module
names have to be registered to avoid name clashes. Like our
system, QuickLisp stores modules on public VCS services
and has an automatic installation of modules but it is not
tied to deserialization. Nix [12] is a system package manager
that shares the same idea of keeping multiple versions of a
package to avoid breaking dependencies. However, it is not
meant to be used as a language package manager and thus
it is not integrated with a specific language. Erlang supports
hot code update but because the module identification does
not contain the location of the library the installation of
modules must be done separately.

Before the R6RS standard was ratified (2007), most Scheme
systems had designed their custom module system. Support
for R6RS and its module system was added to some systems
notably Chez Scheme, Guile, Larceny, and PLT Scheme (now
Racket). The R6RS standard includes a library form to
define libraries which has much syntactic similarity to the
R7RS define-library form used by our work. A relevant
difference is R6RS’ support for version information in the
library name. Our module system allows version informa-
tion in import declarations but not in the define-library
form. We believe it is less error prone to obtain this informa-
tion from the underlying version control system as it avoids
possible inconsistencies with the code.

Since the ratification of R7RS (2017), support for its less
complex module system is growing among Scheme systems
with close to 20 systems supporting it. For the strictly R6RS
compliant ones the Akku.scm project [26] has developed
a converter from the R7RS define-library form to the
R6RS library form. The more widespread support for R7RS’
module system is one of the motivations for adopting it in
our work.

Over the years different groups have implemented module
systems extending Gambit Scheme. Black Hole [1] is an R5RS
compatible module system designed to add as little extra
syntax as possible to Gambit Scheme. JazzScheme [8] and
Gerbil [25] are more intrusive as they promote a whole new
custom program structure and syntax, and add features such
as object orientation. The SchemeSpheres [2] project has used
a prototype implementation of our define-library macro,
so it has much similarity to our latest work.

However, none of these systems offer the same combination
of features as our work and specifically none offers transparent
deserialization of compiled procedures and continuations.

The library naming approach we have used which includes
the repository location to identify the library could be used
by other R7RS Scheme systems without modifying their
implementation. This would help avoid library name clashes
and also pave the way for future extensions of those Scheme
systems to automatically install the library from a public
repository (independent of any support for procedure and
continuation deserialization).



ELS’20, April 27 28, 2020, Zürich, Switzerland Frédéric Hamel and Marc Feeley

ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada.

REFERENCES
[1] Black Hole, a R5RS compatible module system for gambit. https:

//github.com/per-gron/blackhole, 2019. Accessed: 2020-02-21.
[2] Schemespheres. https://github.com/alvatar/spheres, 2019. Ac-

cessed: 2020-02-21.
[3] David Alan and David Alan Halls. Applying mobile code to

distributed systems. Technical report, 1997.
[4] Joe Armstrong. A history of erlang. In Proceedings of the

Third ACM SIGPLAN Conference on History of Programming
Languages, HOPL III, page 6–1–6–26, New York, NY, USA, 2007.
Association for Computing Machinery. ISBN 9781595937667. doi:
10.1145/1238844.1238850. URL https://doi.org/10.1145/1238844.
1238850.

[5] Andrew Birrell and Bruce Jay Nelson. Implementing remote
procedure calls. ACM Trans. Comput. Syst., 2(1):39–59, 1984.
doi: 10.1145/2080.357392. URL http://doi.acm.org/10.1145/2080.
357392.

[6] Tyler Bui-Palsulich and Eno Compton. Go reference manual
1.13.5. https://blog.golang.org/using-go-modules, 2019.

[7] Luca Cardelli. The functional abstract machine, 1983.
[8] Guillaume Cartier and Louis-Julien Guillemette. Jazzscheme:

Evolution of a lisp-based development system. In 2010 Workshop
on Scheme and Functional Programming, page 50. Citeseer, 2010.

[9] Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-
order distributed objects. ACM Trans. Program. Lang. Syst.,
17(5):704–739, September 1995. ISSN 0164-0925. doi: 10.1145/
213978.213986. URL https://doi.org/10.1145/213978.213986.

[10] William D. Clinger, Anne H. Hartheimer, and Eric M. Ost. Imple-
mentation strategies for first-class continuations. Higher-Order
and Symbolic Computation, 12(1):7–45, Apr 1999. ISSN 1573-
0557. doi: 10.1023/A:1010016816429. URL https://doi.org/10.
1023/A:1010016816429.

[11] Pavel Curtis and James Rauen. A module system for scheme. In
Proceedings of the 1990 ACM Conference on LISP and Func-
tional Programming, LFP ’90, pages 13–19, New York, NY, USA,
1990. ACM. ISBN 0-89791-368-X. doi: 10.1145/91556.91573. URL
http://doi.acm.org/10.1145/91556.91573.

[12] Eelco Dolstra, Merijn Jonge, and Eelco Visser. Nix: A Safe and
Policy-Free System for Software Deployment. pages 79–92, 01
2004.

[13] Marc Feeley. Compiling for multi-language task migration.
SIGPLAN Not., 51(2):63–77, October 2015. ISSN 0362-1340.
doi: 10.1145/2936313.2816713. URL http://doi.acm.org/10.1145/
2936313.2816713.

[14] Marc Feeley. Gambit v4.9.3. Reference Manual, 2 2019. URL
http://www.iro.umontreal.ca/~gambit/doc/gambit.pdf.

[15] Marc Feeley and Philip W. Trinder, editors. Proceedings of the
2006 ACM SIGPLAN Workshop on Erlang, Portland, Oregon,
USA, September 16, 2006, 2006. ACM. ISBN 1-59593-490-1.

[16] Adrian Francalanza and Tyron Zerafa. Code management au-
tomation for Erlang remote actors. In Jamali et al. [21], pages
13–18. ISBN 978-1-4503-2602-5. doi: 10.1145/2541329.2541344.
URL https://doi.org/10.1145/2541329.2541344.

[17] Matthew Daniel Fuchs. Dreme: For Life in the Net. PhD thesis,
USA, 1995. AAI9609199.

[18] Stefan Fünfrocken. Transparent migration of java-based mo-
bile agents: Capturing and re-establishing the state of java pro-
grams. Personal Technologies, 2(2):109–116, Jun 1998. ISSN
1617-4917. doi: 10.1007/BF01324941. URL https://doi.org/10.
1007/BF01324941.

[19] Guillaume Germain. Concurrency oriented programming in Ter-
mite Scheme. In Feeley and Trinder [15], page 20. ISBN 1-59593-
490-1. doi: 10.1145/1159789.1159795. URL http://doi.acm.org/
10.1145/1159789.1159795.

[20] Robert S. Gray. Agent tcl: A flexible and secure mobile-agent
system. In Proceedings of the 4th Conference on USENIX Tcl/Tk
Workshop, 1996 - Volume 4, TCLTK’96, pages 9–23, Berkeley,
CA, USA, 1996. USENIX Association. URL http://dl.acm.org/
citation.cfm?id=1267498.1267500.

[21] Nadeem Jamali, Alessandro Ricci, Gera Weiss, and Akinori
Yonezawa, editors. Proceedings of the 2013 Workshop on Pro-
gramming based on Actors, Agents, and Decentralized Con-
trol, AGERE!@SPLASH 2013, Indianapolis, IN, USA, Octo-
ber 27-28, 2013, 2013. ACM. ISBN 978-1-4503-2602-5. URL
http://dl.acm.org/citation.cfm?id=2541329.

[22] A. Lukić, N. Luburić, M. Vidaković, and M. Holbl. Development of
multi-agent framework in JavaScript. In ICIST 2017 Proceedings
Vol.1, pages 261–265, 2017.

[23] Stefan M, Raymond Bimazubute, and Herbert Stoyan. Mobile
intelligent Agents in Erlang. In Fourth International ICSC
Symposium on ENGINEERING OF INTELLIGENT SYSTEMS
(EIS 2004), 2004.

[24] Alex Shinn, John Cowan, and Arthur A. Gleckler. Revised7 report
on the algorithmic language Scheme. 2017.

[25] Dimitris Vyzovitis. Gerbil scheme. https://cons.io/, 2020. Ac-
cessed: 2020-02-21.

[26] Göran Weinholt. Akku package management made easy. https:
//akkuscm.org/, 2019. Accessed: 2020-02-21.

[27] Zach Beane. QuickLisp. https://github.com/quicklisp, 2020.
Accessed: 2020-04-02.

https://github.com/per-gron/blackhole
https://github.com/per-gron/blackhole
https://github.com/alvatar/spheres
https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1145/1238844.1238850
http://doi.acm.org/10.1145/2080.357392
http://doi.acm.org/10.1145/2080.357392
https://blog.golang.org/using-go-modules
https://doi.org/10.1145/213978.213986
https://doi.org/10.1023/A:1010016816429
https://doi.org/10.1023/A:1010016816429
http://doi.acm.org/10.1145/91556.91573
http://doi.acm.org/10.1145/2936313.2816713
http://doi.acm.org/10.1145/2936313.2816713
http://www.iro.umontreal.ca/~gambit/doc/gambit.pdf
https://doi.org/10.1145/2541329.2541344
https://doi.org/10.1007/BF01324941
https://doi.org/10.1007/BF01324941
http://doi.acm.org/10.1145/1159789.1159795
http://doi.acm.org/10.1145/1159789.1159795
http://dl.acm.org/citation.cfm?id=1267498.1267500
http://dl.acm.org/citation.cfm?id=1267498.1267500
http://dl.acm.org/citation.cfm?id=2541329
https://cons.io/
https://akkuscm.org/
https://akkuscm.org/
https://github.com/quicklisp

	Abstract
	1 Introduction
	2 Termite Scheme Language
	2.1 Hot code update
	2.2 RPC/RMI

	3 Existing Gambit Features
	3.1 Symbolic paths
	3.2 Module loader
	3.3 Object serialization
	3.4 Namespaces

	4 Our Module System
	4.1 define-library form
	4.2 Implementation of define-library
	4.3 Other features

	5 Evaluation
	6 Related work
	Acknowledgments
	References

