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ABSTRACT
Property caches are a well-known technique invented over 30 years
ago to improve dynamic object accesses. They have been adapted
to JavaScript, which they have greatly contributed to accelerate.
However, this technique is applicable only when some constraints
are satisfied by the objects, the properties, and the property access
sites. In this work, we propose enhancements to improve two com-
mon usage patterns: prototype accesses and megamorphic accesses.
We have implemented these in the Hopc AOT JavaScript compiler
and we have measured their impact. We observe that they effec-
tively complement traditional caches. They reduce cache misses
and consequently accelerate execution. Moreover, they do not cause
a slowdown in the handling of the other usage patterns.
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1 INTRODUCTION
JavaScript objects are dynamic. At any moment of their lifetime,
properties can be added or deleted. In principle a property access
requires a lookup in the object itself, and, possibly, in all the objects
forming its prototype chain [ECMA International 2011, 2015]. All
fast JavaScript implementations deploy strategies to implement this
lookup operation in nearly constant time. They generally rely on
two ingredients: hidden classes and property caches. Hidden classes
describe object memory layouts. Property caches use these descrip-
tions to access objects directly, avoiding the normal name lookup
operations. Hidden classes and property caches make property ac-
cesses comparable in speed to field accesses of traditional languages
like C and Java.
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Hidden classes and property caches are not new. They were
invented for Self, the first dynamically typed prototype-based lan-
guages [Chambers and Ungar 1989; Chambers et al. 1989], following
Smalltalk’s idea that already used caches at that time for optimizing
method calls [Deutsch and Schiffman 1984]. For the past ten years
they have enjoyed a revival of interest after it was shown how effec-
tive they are at improving Object-Oriented languages performance
in general [Wößand et al. 2014] and specially JavaScript [Google
2018]. Today most JavaScript implementations use them [Ahn et al.
2014; Gong et al. 2015; Schneider 2012]. Hidden classes and property
caches apply in specific situations, which unfortunately means that
some accesses are unoptimized or not treated very efficiently.

(1) Prototype properties problem: hidden classes and prop-
erty caches optimize accesses of properties directly stored
in the object. They do not optimize accesses of properties
stored in one of the objects composing the prototype chain.

(2) Polymorphic properties problem, as property caches re-
quire strict hidden class equivalence for optimizing accesses,
polymorphic data structures and polymorphic method invo-
cations need special treatment to not be left unoptimized.
This has been addressed by the Polymorphic Inline Cache tech-
nique proposed by Holzle et al. [Hölzle et al. 1991], which
resorts to a dynamic search in the cache history. As a linear
or binary search is involved, it is not as efficient as plain
property caches.

We propose solutions to these problems that might become im-
portant with the advent of ECMAScript 6 class-like construct that
simplifies the programming of polymorphic patterns [ECMA In-
ternational 2015]. At the cost of one extra test inserted at each
property access, we optimize prototype property accesses. Trading
memory space for speed, we propose cache property tables that
enable accessing polymorphic objects in constant time. For the
analogy with C++ virtual tables we call these cache tables vtables.

The paper is organized as follows. In Section 2 we briefly present
hidden classes and property caches. This is an introduction for
readers unfamiliar with these implementation techniques. In Sec-
tion 3 we dig deeper in the specificities of JavaScript property reads
and we present our technique for optimizing prototype accesses,
which also applies to improve getter accesses. In Section 4 we show
that hidden classes fail at optimizing polymorphic objects and we
introduce the vtables as a means to eliminate this problem. The
presented techniques and optimizations have been implemented
in Hopc [Serrano 2018], an AOT JavaScript compiler that targets
server-side computations. Hopc compiles modules separately and
the techniques we propose are compatible with this implementation
schema. We outline their implementation in Section 5 and we show
their effectiveness using an experimental evaluation presented in
Section 6. Finally, we present related work in Section 7.
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2 HIDDEN CLASSES AND PROPERTY
CACHES

According to the JavaScript specification [ECMA International
2015], accessing an object property involves the following steps:

(1) convert the property name into a string S ;
(2) if the object owns a property S , return its value;
(3) if the object has a prototype, restart at step (2) with the

prototype object, return undefined otherwise.
Both obj.prop and obj["prop"] access the property with name

"prop". The central point of the property access process is step (2).
Since new properties can be added or removed at any moment,
checking if an object owns a property implies looking for a key (the
property name) in a dictionary (the object). Implemented literally,
this protocol is orders of magnitude slower than those of languages
for which reading a structure field is a single memory read whose
address is computed by adding to a base pointer an offset known at
compile time.

The classical method for optimizing property accesses consists
in associating with each object a hidden class and with each access
a lookup cache [Chambers and Ungar 1989; Chambers et al. 1989;
Deutsch and Schiffman 1984]. When the property name is statically
known, a very frequent case, a property access obj.prop can be
implemented as follows, using C as the implementation language:
if( obj->hclass == cache.hclass ) {

val = obj->elements[ cache.index ]; // cache hit
} else {

val = cacheReadMiss( obj, &cache ); // cache miss
}

On a cache miss, the cache’s hclass attribute is updated with the
object’s hidden class. The object hidden class is updated each time
a property is added or removed so the condition obj->hclass ==

cache->hclass only holds for objects that have exactly the same
structure. Figure 1 shows the memory layout of an object obj own-
ing three properties x, y, and z, its associated hidden class, and a
possible property cache after a cache miss.

index: 1

x: 0

y: 1

z: 2

elements: 123 45

cache

obj

hidden 
class

hclass: 

hclass: 

linkptr

12

0 1 2

Figure 1: A property cache after a miss on property “y”.

Compared to a structure field access obj->prop in C, the overhead
of a cache hit is three memory reads (obj->hclass, cache.hclass,
and cache.index) and one comparison (obj->hclass == cache.hclass).
If self modifying code is used, as JIT compilers do, the two mem-
ory reads from cache can be eliminated because the hclass and
the index values can be directly stored in the machine instructions
that perform the comparison and the fetch operation. In that case,

the property cache is called an inline cache [Chambers et al. 1989].
It has been observed that inline caches improve the performance
over plain property caches up to 25% [Chambers et al. 1989] on
computers of the time1.

A hidden class characterizes an object memory layout at a certain
moment of its lifetime. A simple way to associate hidden classes
with objects is to construct dynamically a deterministic automaton
whose transitions are labeled with added or deleted property names
and states represent hidden classes. Several documents [Artoul 2015;
Bruni 2017; Deutsch and Schiffman 1984; Google 2018; Thompson
2015] explain how hidden classes are built and how inline caches
work in actual industrial implementations.

1 function readX( obj ) {

2 return obj.x;

3 }

4

5 function test( count, N ) {

6 let os = [{ x: 21, y: 31 }, { x: 12, y: 123, z: 45 }];

7 let s = 0;

8 for( let i = 0; i < count; i++ ) {

9 let o = os[ i % N ];

10 s = readX( o );

11 }

12 return s;

13 }

Figure 2: Monomorphic accesses (N=1) vs polymorphic ac-
cesses (N=2).

Let us consider the example of Figure 2 that exercices a property
access in a loop. When the parameter N is 1 the obj.x property
access in readX is always performed on the same object. When N is
2, the object and its type change at each iteration of the loop and
access obj.x is said to be polymorphic. The simple property cache
described previously always misses in this case.

For accelerating polymorphic accesses Hölzle et al. [Hölzle et al.
1991] have proposed polymorphic inline caches (PICs) which extend
cache sizes. Instead of recording only the last hidden class, multiple
or even all classes are stored in the cache and are probed in sequence.
JIT compilers can generate these tests on demand. For an AOT
compiler they can be implemented using a loop as:
for( i = 0; i < cache.size; i++ ) {

if( obj->hclass == cache.hclasses[ i ] ) {

val = obj->elements[ cache.indices[ i ] ]; // cache hit
goto __done;

}

}

val = cacheReadMiss( obj, &cache ); // cache miss
__done:

The study reports that PICs greatly accelerate some programs
(for instance, by 47% for the richards benchmark). PICs are nowa-
days deployed in modern JavaScript implementations (see Sec-
tion 6.2). However, as acknowledged by the authors, PICs are in-
appropriate when the degree of polymorphism increases greatly,
in which case the access is said to be megamorphic. For that, they
1We are not aware of any study that would have updated this result for contemporary
architectures. We think such a study would be of high interest for the community
as in our experience, and despite all our efforts, we have not been able to obtain any
measurable speedup by turning caches into inline caches on modern architectures.
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suggest using a binary search instead. In Section 4 we propose an
alternative approach inspired by virtual tables and in Section 6 we
compare its performance against classical PICs. We show that it
performs faster without incurring a code size or a memory footprint
increase.

3 ACCESSOR AND PROTOTYPE PROPERTIES
Section 2 sketches the main ideas and principles that govern hidden
classes and inline caches. This section focuses on the difficulties
JavaScript specificities raise for implementing fast accesses, namely
accessor properties and prototype chain accesses and the solutions
we propose to mitigate these problems.

3.1 Accessor Properties
JavaScript supports two kinds of properties: value properties and ac-
cessor properties. Value properties are stored in the objects that own
them. Accessor properties are pairs of functions invoked when prop-
erties are read or written (aka. getters and setters). The property
cache schema presented in Section 2 does not cope with accessor
properties and JavaScript implementations that only rely on that
method do not optimize them (see Section 6.2). To improve the
performance of property accesses, Hopc extends the information
stored in the property cache and adds one extra test after a cache
miss.
1 if( obj->hclass == cache.hclass ) {

2 val = obj->elements[ cache.index ];

3 } else if( obj->hclass == cache.aclass ) {

4 // test the "accessor class" for an accessor cache hit
5 val = obj->elements[ cache.index ]( obj );

6 } else {

7 val = cacheReadMiss( obj, &cache );

8 }

On a cache miss, if the property is found in the object, two cases
are now considered.

• If it is a value property, the hclass field of the property cache
is filled as before. A subsequent test at line 1will then succeed
for an object of that type.

• If the property is an accessor property, the extra aclass field of
the cache is filled with the object’s hidden class, the cache’s
index field is set to the index of the getter and the hclass

field is reset. The test at line 3 will then succeed for an object
of that type.

Figure 3 shows the property cache after a cache miss on property x,
assuming that the example of Figure 2 has been modified and the
objects are now defined as:
let os = [ { get x() { return 21 }, y: 31 },

{ get x() { return 12 }, y: 123 } ];

Enhanced property caches enable accessor properties to be han-
dled almost as efficiently as regular properties. There is only an
overhead of one extra test for the former. Figure 12 (Section 6.2)
presents the performance evaluation of the modified micro bench-
mark.

3.2 Prototype Chain Accesses
Hidden classes and property caches cannot efficiently handle prop-
erties located in prototype objects as they compare the class of

index: 1

x: 0

y: 1

z: 2

cache

hidden 
class

hclass: 

linkptr

aclass: 

elements: GET_X 45

hclass: 0 1 2

123

obj

Figure 3: A property cache after a miss on accessor property
“x”.

the object from which the property is fetched, which is not the
object that owns the property when it is stored in an object of the
prototype chain. To optimize these accesses as well, Hopc extends
the property caches with two additions: the class of the object of
the prototype chain that actually owns the property and the owner
itself. The cache probe is modified as follows:
1 if( obj->hclass == cache.hclass ) {

2 val = obj->elements[ cache.index ];

3 } else if( obj->hclass == cache.aclass ) {

4 val = obj->elements[ cache.index ]( obj );

5 } else if( obj->hclass == cache.pclass ) {

6 // test the "prototype class" for a prototype cache hit; the property
7 // is found in the prototype chain
8 val = cache->owner->elements[ cache.index ];

9 } else {

10 val = cacheReadMiss( obj, &cache );

11 }

On a cache miss, a full lookup in the whole prototype chain is
executed. If the property is directly found in the object, the cache is
filled as previously described. If the value found is not an accessor
value, the object owning the property, i.e., the first object in the
prototype chain that defines the searched property, is stored into
the property cache (the owner field). Let us illustrate these new
caches with the following objects:
let p = { cnt: 12345 };

let o = { __proto__: p, x: 12, y: 31 };

The cache configuration after filling the cache when accessing o.cnt
is presented in Figure 4.

owner: 

x: 0

y: 1

elements:

cache

o

hidden 
class 1

hclass: 

hclass: 

linkptr

pclass: 

index: 0

p hclass: 

_proto_: _proto_:

cnt: 0

hidden 
class 2

linkptr

3112 12345elements:

10

aclass: 

0

Figure 4: A prototype cache after a miss on prototype prop-
erty “cnt”.

101



CC ’19, February 16–17, 2019, Washington, DC, USA Manuel Serrano and Marc Feeley

Handling prototypes efficiently in the property cache requires
modifying the hidden class construction. With this modification,
two objects share the same hidden class if i) they have the same
memory layout, and ii) their prototype object is the same. For this,
the __proto__ property is handled differently than other properties.
The link between two hidden classes is labeled with property names,
except when that property is the __proto__ property in which case
the transition is labeled with the actual prototype object. Let us
consider the following objects:
let p1 = { cnt: 45 };

let p2 = { cnt: 0,

toString: function() {return this.x+","+this.y} };

let os = [{ x: 1, y: 2, __proto__: p1 },

{ x: 4, y: 5, __proto__: p2 }];

Four hidden classes are needed for objects os[0] and os[1], see
Figure 5. The transition from hidden classes 0, 1, and 2 are labeled
with the property names x and y. The transitions from the class 2
to class 3 and class 4 are labeled with the two JavaScript objects p1
and p2 that are respectively the prototype of the objects os[0] and
os[1].

x: 0

hidden 
class 3

linkptr

x: 0

y: 1

hidden 
class 2

linkptr

x: 0

hidden 
class 1

linkptr

hidden 
class 0

linkptr

x: 0

hidden 
class 4

linkptr

"x" <p1>"y"

<p2>

y: 1

y: 1

Figure 5: Hidden classes with prototype objects valued tran-
sitions. Hidden classes 2, 3, and 4, are all distinguished heap
allocated objects.

Using prototype objects in the hidden class tree hierarchy and
storing the prototype objects in the property caches requires the
preservation of two runtime invariants.

(1) Objects’ hidden class must be in sync with objects’ proto-
type during their whole lifetimes. That is, prototype objects
used to label transitions between two hidden classes must
correspond to objects’ prototype objects.

(2) Indexes of property cache prototype must be in sync with
the actual structure of prototype objects.

Let us consider the following example that illustrates invariant 1.
1 function readCNT( obj ) { return obj.cnt }

2 let p1 = { cnt: 45 }, p2 = { cnt: 63 };

3 let o = { __proto__: p1 };

4

5 readCNT( o );

6 o.__proto__ = p2;

7 readCNT( o );

The call on line 5 returns 45 while the call on line 7 returns 63.
This is because o’s prototype has changed between the two calls.
The preservation of invariant 1 forces the runtime to invalidate
the cache used in readCNT when the __proto__ property is updated.
Invariant 2 is illustrated by the following example:

1 let p2 = { cnt: 23 }, p1 = { cnt: 45, __proto__: p2 };

2 let o = { __proto__: p1 };

3

4 readCNT( o );

5 delete p1.cnt;

6 readCNT( o );

The call on line 4 returns 45 while the call on line 6 returns 23. This
is because on line 4, the property cnt is found in p1 but on line 6 it
is found in p2, as the property has been removed from p1 on line
5. Here again, the modification of p1 invalidates the cache used in
readCNT.

In Hopc the two invariants are enforced with the following
measures:

(1) all modifications of any prototype property (detected by the
use of property name __proto__ or by the use of the function
setPrototypeOf) invalidate all the property caches pclass

fields and it creates a fresh copy of the object’s hidden class,
distinguished from all already existing hidden classes;

(2) any deletion of an object property invalidates all the property
cache pclass fields;

(3) any overriding of a property already defined in an object’s
prototype chain, invalidates all cache pclass fields. This is
detected on a write cache misses, without the need of any
additional object fields.

These three measures require invalidating all property cache
pclass fields. This might be an expensive operation as it depends
on the size of the program (the more read and write locations in the
source, the more expensive the invalidation is). However, we have
observed that in practice these invalidations are rare. Intuitively
this is because prototype objects are mainly set during the initializa-
tion phase of an application, and because property overriding and
property deletion are rare. To go beyond that intuition, we have
measured how frequent these operations are on a set of JavaScript
programs. The results of this evaluation are presented in Section 6,
Figure 14.

4 VIRTUAL TABLES
Simple property caches assume monomorphic programs. They ef-
fectively optimize repetitive accesses to objects that share the exact
same structure denoted by their identical hidden classes. Polymor-
phic property caches have been proposed to optimize polymorphic
programs. They are effective as long as the degree of polymor-
phism is small, which might no longer hold in JavaScript with
the recent adoption of a class-based object-oriented style. Former
JavaScript versions were fostering prototype-based programming
but ECMAScript 2015 added class declarations to the language,
which, although elaborated over object prototypes, make it easier
to implement the classical programming patterns of traditional
class-based object-oriented languages. This will naturally favor
polymorphic programming, and might demand polymorphic and
megamorphic property accesses to be handled more efficiently. Let
us consider the following JavaScript class declarations:

1 class Point {

2 constructor( x ) { this.x = x; }

3 readX() { return this.x }

4 }

5 class Point2D extends Point {
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6 constructor( x, y ) { super( x ); this.y = y; }

7 }

8 class Point3D extends Point2D {

9 constructor( x, y, z ) { super( x, y ); this.z = z; }

10 }

Instances of the three classes Point, Point2D, and Point3D will be
associated with different hidden classes and accessing the prop-
erty x in the method readX (line 3) will be polymorphic. As already
mentioned in Section 2 such situations can be handled by encod-
ing several tests when probing a cache. The efficiency depends
on the number of different hidden classes. We propose an alterna-
tive technique that handles polymorphic property accesses more
efficiently and whose complexity is independent of the degree of
polymorphism. By analogy with C++, we reuse the terminology
virtual tables (henceforth vtables) for denoting its main ingredient.

A polymorphic access is characterized by objects belonging to
different classes, whether these objects are in an inheritance-like
relationship or not. As hidden classes are of no help in these situa-
tions, we second them with dynamic data structures that keep track
of the accesses that are observed at a particular property access
point in the program.

Hidden classes are extended with virtual tables and property
caches with virtual index fields (hclass->vtable and cache.vindex).
Monomorphic accesses are handled as before: on a cache hit, the
comparison with obj->hclass or obj->pclass succeeds. On a cache
miss the vtable is checked before calling the slow cacheReadMiss

routine. The read property sequence is:
if( obj->hclass == cache.hclass ) {

val = obj->elements[cache.index];

} else if( obj->hclass == cache.aclass ) {

... /∗ as before ∗/ ...

} else {

if( obj->hclass->vtable[cache.vindex] >= 0 ) {

val = obj->elements[obj->hclass->vtable[cache.vindex]];

} else {

val = cacheReadMiss( obj, &cache );

}

}

When cache misses are observed on a particular property access,
a new vtable is allocated and stored in the hidden class. Its size
is given by the value of vindex. The vtable records that for that
particular property access, the property is stored at a known index.
Let us consider the following program fragment:
let os = [{ x: 12345, y: 8 }, { y: -1, x: 543, z: 22 }];

...

var a53 = o.x; /* access point #53 ∗/
...

var a86 = o.x; /* access point #86 ∗/

and let us assume that os[0] and os[1] both flow as o at accesses
#53 and #86. Until a statically configured cache miss threshold is
exhausted the cache configuration for the two access points will
oscillate between the two objects. This is depicted in Figure 6. When
that threshold is passed, vtables are created for the two hidden
classes representing os[0] and os[1]. They are shown in Figure 7.
In this configuration when os[0] flows to access point 53, its hclass
matches neither the cache hclass, aclass, or pclass fields. The
vtable of its hidden class is then used. The vtable entry 53, which
identifies the first access location in the source code, contains the
value 0, which is the index of property x in os[0]. Object os[0]’s

hidden class vtable has enabled accessing property x without any
lookup. The os[1]’s vtable will do the same for the other object
but note that if only two objects reach points #53 and #86 only one
will use a vtable. The other one, more precisely, the last one that
raised a cache miss, will enjoy a fast inline cache with a direct hit
as vtable hits do not invalidate the current cache configuration.

In summary, in this section we have presented a new mechanism
for handling JavaScript polymorphic accesses. For the analogy with
C++ we call this mechanism JavaScript virtual tables. They take
over hidden class comparison on polymorphic reads and writes.
Virtual tables are adapted to the object-oriented style fostered by
the introduction of classes declaration in ECMAScript 2015. Vir-
tual tables are currently deployed in Hopc and their performance
evaluation in this AOT compilation context is presented in Sec-
tion 6. As they do not rely on any static analysis and as they are
created on-demand they could also be easily accommodated by JIT
compilers.

5 IMPLEMENTATION
The cache techniques presented in this paper have been designed
for Hopc, whose implementation stems directly from the cache
techniques described in Sections 2-4, with yet another addition.
At compile time Hopc estimates object allocation sizes using tech-
niques inspired by [Clifford 2015]. When a property is added, if it
fits the object allocation, it is stored inline, which saves one memory
access on read and write accesses (see Figure 9). This requires one
extra entry in each cache for testing inline properties but as caches
are allocated statically (one cache per access in the program), this
has no impact on the programs memory consumption. Initially the
elements field points to the inline_elements. The complete prop-
erty read is presented in Figure 10. The sequence also gives an
opportunity to delay the use of vtables for polymorphic accesses.
Two distinct hidden classes can be recognized for each access point
without using vtables: the first one that matches the imap field and
the second one that matches the cmap field.

Long test sequences have a limited impact on performance as
the experiments we have conducted show that a majority of ac-
cesses are resolved by the first iclass test, a sort of analog to the
hardware level 1 cache hit (Section 6, Figure 14). However long test
sequences enlarge the generated code unnecessarily. As Hopc is an
AOT compiler, it must rely on static analyses to minimize them. For
instance, if no property accessor is ever defined in a compilation
unit, i.e., a JavaScript module, then the test against the property
cache aclass can be omitted, or at least not inlined in the generated
code. Another possibility is to avoid generating prototype tests
(tests against the pclass attribute) for properties that are known to
be only assigned in constructors. None of these simplifications have
been implemented yet in Hopc and they all constitute directions
for future studies.

JIT compilers can reuse enhanced caches without suffering the
code growth incurred by long cache test sequences. They can simply
monitor the caches and switch dynamically from one representation
to another when needed. Figure 14 shows the number of multiple
caches, that is the number of program points for which cache hits
involve at least two different cache maps. The small number of
multiple accesses suggests that JIT compilers will only seldom need
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Figure 6: The cache configurations for points #53 and #86 oscillate between os[0] and os[1] as they both reach the two locations.
This causes an expensive cache miss each time the other object reaches one of these two access points.
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Figure 7: Two virtual tables for os[0] and os[1] hidden classes, after o1 and os[1] have been accessed at points #53 and #86. For
conciseness the cache’s aclass, pclass, and owner fields are omitted.

total cache hits : 259x10^6 (99%) | point property use | miss iclass hclass pclass aclass vtable

total cache iclass hits: 237x10^6 (91%) | --------------------+------------------------------------------------

total cache hclass hits: 4x10^6 (1%) | 2391 go call | 140 0 0 0 0 0

total cache pclass hits: 18x10^6 (7%) | 3830 find call | 419 0 0 1x10^6 0 0

total cache aclass hits: 0 (0%) | 3920 String get | 141 0 0 0 0 0

total cache vtable hits: 0 (0%) | 3936 insert call | 280 0 0 1x10^6 0 0

total cache misses : 8309 (0%) | 5437 findGrea call | 140 0 0 11x10^3 0 0

total cache multiple : 17x10^6 (6%) | 5532 remove call | 140 0 0 11x10^3 0 0

pmap invalidations : 298 | 5549 key get | 1 11x10^3 0 0 0 0

vtables : 508 (1198b) | ...

Figure 8: Cache profiling. Global statistics on the left, per-site (source character number) report on the right.

to resort to more than one test of the full cache check sequence.
So, we conjecture that long test sequences will be harmless in the
context of JIT compilers.

In the context of AOT compilation, the optimized solution of JIT
compilers can be approached with feedback-directed optimization.
This is what we have implemented in Hopc. A first instrumented
execution collects the cache information and reports cache use
statistics. A second compilation only uses the cache probe that
have been used at runtime. Figure 8 shows one such report obtained
when executing the splay.js benchmark. The left column reports

general statistics about caches. It shows that for this execution,
259 × 106 accesses (including gets, puts, and calls) have hit a cache.
Among these accesses, 237 × 106, that is 91%, have hit a level 1
cache, that is an iclass cache. It also shows, that this particular
benchmark has used no accessor map (aclass) nor virtual tables
(vtable). The entry "cache multiple" shows how many caches have
been used with at least two different maps (for instance an iclass

and a pclass).
The right part of the report shows cache information per-site,

i.e., source character position. For instance, at character number
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Figure 9: The memory layout of inlined properties. When
the properties are allocated inline they are stored contigu-
ously to the other object fields.

if( obj->hclass == cache.iclass ) {

val = obj->inline_elements[cache.index];

} else if( obj->hclass == cache.hclass ) {

val = obj->elements[cache.index];

} else if( obj->hclass == cache.aclass ) {

val = obj->elements[cache.index]( obj );

} else if( obj->hclass == cache.pclass ) {

val = cache->owner->elements[cache.index];

} else if( cache.vindex < obj->hclass->vtableLen ) {

val = obj->elements[obj->hclass->vtable(cache.vindex)];

} else {

val = cacheReadMiss(obj, &cache);

}

Figure 10: The complete Hopc “get” implementation.

5549 the “get” access of property “key” has hit the cache 11 × 103
times and missed it once. These statistics are used to recompile the
program and for each access only the logged caches are inlined in
the generated code. For instance, for the point 5549, only the iclass
test is inlined, the other tests are executed in a library function,
before raising a cache miss if necessary. The benefit of this approach
is studied in Section 6 (Figure 15).

6 EXPERIMENTAL EVALUATION
This section measures the impact of cache techniques we propose,
proceeding in two steps. First, it compares Hopc’s performances to
those of the other JavaScript implementations, focusing on read-
ing properties that exercise inline caches and hidden classes. For
this, micro benchmarks are used. This study shows the benefits our
techniques can bring to other systems when simple inline caches
fail. Second, it measures the impact of the techniques when compil-
ing standard JavaScript benchmarks. This gives an estimate of the
benefits one can expected from applying our techniques to more
realistic programs. For that test, only Hopc is used and different
compilation modes are compared with one another.

6.1 The Setting
We have applied the same methodology to all our tests. A single
machine, an Intel Xeon E5-1650 64-bit running Linux 4.17/Debian, is
used. Each test is executed 30 times and the median of wall clock is

collected. Unless explicitly specified, the relative standard deviation
of each test is less than 5%.

For the system comparison we use Google’s V8 6.2.414.54, Java-
ScriptCore 4.0 (Jsc), SpiderMonkey C52.3.1 (Js52), and Microsoft’s
Chakra 1.10 (Ch). As all these systems use JIT-compilers we have
tuned the test to have sufficiently long execution times so that the
warm up time of the JIT is negligible.

Benchmarking JavaScript is difficult because of the distance be-
tween the language and the current hardware design and because
JavaScript optimizations frequently consist in trading memory for
speed, which on modern architectures has sometimes unpredictable
effects on caches and speculation. Our first assignment has been
to design a test program that minimizes the impact of other opti-
mizations the systems deploy. Our starting point was the program
given in Figure 2 that we modified so that the os variable contains
16 different objects. In that source code, the argument count is
used to calibrate the benchmark duration and for ensuring that for
all benchmarks and systems the fastest execution lasts at least 2
seconds. We have used that same program for all tests. Only the
definition of these 16 objects varies from one test to another.
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Figure 11: Cache hits maximal performance.

We started by measuring the optimal performance each system
can deliver with 16 objects all sharing the same hidden class, that
is, when os is defined as:
os = [{x: 21, y: 31}, {x: 12, y: 123}, ..., {x: 6, y: 1}]

With this setting, all accesses hit the cache and optimal perfor-
mance is reached. These collected times will be reference times
of each system with which we will compare the various proposed
techniques when object definitions change. Results are reported
in Figure 11. The horizontal axis is the value of the parameter N,
which controls how many of the 16 objects are actually used. When
N is 1, only the first of the os objects is accessed, when N is 2, the
first and second objects are accessed, etc.

On this test, V8, Js52, and Ch, show surprising execution differ-
ences when N varies. As all reads hit the cache, flat horizontal plots
would be expected for all systems. After narrowing down the issue,

105



CC ’19, February 16–17, 2019, Washington, DC, USA Manuel Serrano and Marc Feeley

we eventually understood that this is due to the computation of
the expression i % N that is used to rotate the objects in the read
access (Figure 2, line 9). The execution of the remainder operation
depends on the actual value of its divisor [Warren 2002, p. 266].
To eliminate this effect, we have modified the test to tabulate the
modulo operations. This slows down all executions but also makes
them steadier for all implementations but Js52. This is presented in
Figure 12, top-left plots.

6.2 System Comparison
We have measured the performance of the caching techniques in
all the situations described in this paper: monomorphic accesses,
polymorphic/megamorphic accesses, getter accesses, and prototype
accesses. All these are shown in Figure 12.

For the monomorphic tests, the 16 objects share the same hid-
den class and all accesses hit the cache. We see that all systems are
in a range of 2s to 4s. Various reasons might explain the perfor-
mance differences, for instance some systems might unroll the main
loop while others, for instance Hopc, do not. These differences are
unimportant for the rest of the evaluation as they are unrelated to
the object accesses but these measures are useful to estimate the
degradation of each system when execution contexts become more
complex.

For the test polymorphic/megamorphic all the objects have
a different hidden class. Then, when N is 2, two different objects are
accessed, when N is 3, three different objects are accessed, etc. For
the first two objects, Hopc uses the imap and cmap entries. It starts
using vtables only when three different objects are used. When N

increases, the frequency of imap and cmap hits decreases and vtables
are used more and more frequently. As they require one additional
read, the general performance decreases slowly. V8, Jsc, and Ch
show no performance penalty for small N values (2 for V8 and 5 for
Jsc and Ch). This could be explained by a loop unrolling that turns
polymorphic accesses into monomorphic ones. Past that limit the
slowdown of V8 and Ch is severe (about 13 times slower for V8
and 20 times for Ch). Js52 and Hopc delivers similar performance
for this test but it must be noted that the slowdown Hopc imposes
compared to monomorphic accesses is in the range 1.5 to 2, while
for Js52 it is of more than 3. The technique Hopc uses to implement
polymorphic/megamorphic accesses is then relativelymore efficient
than those of Js52.

For the test accessor properties the os objects belong to the
same hidden class but the x properties are defined by 16 different
accessors. Js52 and Jsc probably inline that accessor when only
one object is used (N=1). We observe that Js52 and Ch pay a high
price as soon as two objects are used. Jsc delivers stable perfor-
mance up to N is 5. As already suspected, this could be explained
by Js52 unrolling the loop 5 times, an optimization independent
and potentially complementary to the technique used for inline
caches. The other systems face a slowdown much more important
than Hopc does as it outperforms all systems but Jsc when at least
two objects are used. For V8, it should be noted that as for the
polymorphic/megamorphic test, we observe a performance degra-
dation when N=5, which might also confirm the hypothesis of a loop
unrolling optimization.

For theprototype accesses the parameter N controls the number
of accessed object and the length of the prototype chain used to
obtain the property. When N is 1, the property is in the object,
when it is 2, it is in its direct prototype, when it is 3, it is in the
prototype of its prototype, etc. Only V8 andHopc have performance
independent of the prototype chain length. Jsc outperformsHopc up
to N equal 8. That is, Jsc pays no penalty for accessing properties in
the prototype chain when the chain is small. Passed that threshold
the performance degrades severely.

In conclusion, by comparing the optimal performance and the
degraded performance of all systems we can establish that the
techniques we propose enable Hopc to alleviate the impact of cache
misses more effectively the all other systems. This is observed on
the three situations considered in this study. In the next section
we evaluate the practical impact of these optimizations on more
realistic programs.

6.3 General Performance Evaluation
Selecting realistic JavaScript programs has long been identified
as a difficult task [Ratanaworabhan et al. 2010] and is still today
controversial. JavaScript is ubiquitous. It has been designed to run
on the web browser but since some time it is also used extensively
to program the server-side of web applications. Today, various op-
erating systems use it as a scripting language (iOS, GnomeJS, ...).
The current trend is to also use it for programming IoT applications.
Designing a JavaScript benchmark suite representative of all these
possible usages is difficult. In this study, we have collected a set of
programs coming from the Octane, SunSpider, JetStream, Shoutout,
Webtooling test suites from which we have filtered out those that
are browser only and floating point intensive programs. Hopc does
not optimize them yet and on these tests, execution times are domi-
nated by garbage collection times, which makes them inappropriate
to evaluate the impact of the inline caches described in this paper.
To this list, we have added the adaptation of some programs imple-
mented in other dynamic languages. These programs are generally
middle-size programs composed of a single module, with the ex-
ceptions of babylon, which is 10.000 lines long, and js-beautify,
which is a 22.000 line long multi-module program.

We have measured the acceleration obtained with enhanced
property caches over plain property cache. That is, we have col-
lected the execution times of plain property caches (as described in
Section 2) and execution times of the enhanced caches presented in
this paper. This is presented in Figure 13. First, we observe that for
no benchmark the performance degrades when enhanced caches
are used. Second, for all benchmarks but tagcloud we observe a
significant speedup. The minor slowdown observed on tagcloud is
not reproducible on other machines so we suspect it is due to a bad
cache alignment on the particular computer and the particular OS
version used for that experiment. Finally, we also observe highly
different performance impacts. For instance, the benchmark boyer

seems to only benefit from object extensions, while the richards

benchmark mostly benefits from the vtable enhancement.
To better understand the reason for these different behaviors,

we have collected numerical values about cache hits and cache
misses. They are synthesized in Figure 14. The table reports for
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Figure 12: Cache hits performance. The vertical axis is the median of the wall clock execution times. Smaller is better.

each benchmark the number of cache hits and cache misses and
the nature of the cache hits.

None of the benchmarks use property accessors. So, acache sta-
tistics are not included in Figure 14. This might either mean that
optimizing accessors (Section 3.1) is useless or that the benchmarks
do not cover sufficiently all JavaScript aspects. We opt for the sec-
ond hypothesis as we are aware of real programs that use property
accessors (for instance, the internal IO implementation of Node.js
does use accessors). However, we have failed to find standard bench-
marks that use them. As accessor properties impose only a minimal
overhead (an extra test and a small code expansion) that JIT com-
pilers and profile based compilation can eliminate, we think they
are worth including in the arsenal of compiler optimizations.

The first observation that can be drawn from Figure 14 is that
combining all the cache entries eliminate all cache misses for all
accesses. The second observation is that the large majority of ac-
cesses need only one sort of cache entry. Only deltablue-oo uses
many multiple cache entries per access sites. This means in the
general case, the long cache probe sequence can be avoided. This is

confirmed by the next experiment. We have measured the impact
on the code sizes of caches. This is presented in Figure 15. We have
measured the object file sizes produced by the compiler when no
caches are used (the “no cache” column), when the complete cache
sequence is used (“full cache”), and when the sequence is reduced
using the profiling information a first execution has provided (“pro-
file cache”). The smallest size is obviously observed when no caches
at all are used. This is expected as the only code generated is the
call to the cache miss routine. The figure shows the substantial gain
the profile information enables. JIT compilers can expect the same
benefit.

We have collected statistics about the virtual tables. Figure 16
shows the number of virtual tables created per benchmark, the
memory space these tables occupy, and the maximal number of
entries they contain. Benchmarks that use no virtual tables have
been omitted from that table. It shows that very few accesses are
megamorphic but when they are, virtual tables handle them effi-
ciently. This experiment also shows that virtual tables globally use
little memory.
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benchmark Hopc-plain Hopc-proto Hopc
acorn• 18.08 2.6% 17.87 1.9% 4.54 3.4%
babylon• 12.24 2.3% 12.17 1.6% 4.10 2.0%
bague⋆ 0.50 3.1% 0.49 2.2% 0.50 4.2%
base64◦ 3.10 3.3% 3.11 3.4% 3.11 3.0%
binary-tree 59.87 3.7% 17.28 7.9% 16.86 2.5%

boyer† 12.19 3.4% 3.62 3.1% 3.58 0.9%
crypto-aes∗ 2.58 1.0% 2.58 2.6% 2.55 2.3%
crypto-md5∗ 0.60 2.9% 0.59 2.2% 0.59 3.4%

deltablue† 157.87 2.3% 57.01 2.6% 39.63 2.2%
deltablue-oo⋄ 20.60 2.3% 8.72 3.0% 6.19 4.4%

earley† 2.75 2.0% 2.39 2.0% 2.36 1.9%
fannkuch⋄ 3.69 0.6% 3.66 0.9% 3.66 0.5%
js-beautify⋄ 4.50 2.4% 4.09 0.9% 3.81 1.2%
maze⋆ 1.79 2.4% 1.20 2.9% 1.20 3.1%
puzzle⋆ 2.68 0.8% 2.72 0.5% 2.70 0.4%
qsort⋆ 0.83 2.0% 0.84 2.6% 0.83 2.0%

richards† 59.23 1.7% 54.19 3.0% 16.01 1.1%
sieve⋆ 5.76 1.6% 2.50 2.2% 2.49 2.5%

splay† 9.88 4.6% 9.38 5.2% 9.21 5.4%
tagcloud∗ 7.39 10.0% 7.73 4.3% 8.04 5.4%

Figure 13: Results of 30 runs collected on an Intel Xeon E5-
1650 running Linux 4.17/Debian. Median of wall clock times
and relative standard deviation are shown. Smaller time is
better. Hopc-plain shows execution times with traditional
caches. Hopc-proto shows execution times when all (Sec-
tion 3) but vtables are activated. Hopc shows the execution
times when all property caches enhancements are enabled.
Benchmark sources: † Octane, ∗ Jetstream, ◦ Sunspider,⋆ Bgl-
stone, • Webtooling, ⋄ other.

7 RELATEDWORK
JavaScript performance has dramatically improved over the years.
The fastest implementations are due to major industrial actors,
namely Google, Mozilla, Apple, and Microsoft. Some parts of these
implementations are described in more or less formal blogs [Apple
2018; Google 2018; Microsoft 2018; Schneider 2012; Wingo 2013].
Some academic publications also document these systems [Gal and
et al. 2009; Hass and et al. 2017].

Ahn et al. studied the impact of V8 object representation in the
context of web client-side programs [Ahn et al. 2014]. First they
measured the impact of inline caches on various benchmarks. They
show how important this technique is and they also show that
the impact of property caches is highly dependent on the nature
of the programs themselves. Server-side programs appear to be
much more beneficial than client-side programs (in their study,
server-side programs are represented by the classical JavaScript
benchmark suites Octane, Sunspider, and Kraken, and client-side
programs are represented by jsmeter [Ratanaworabhan et al. 2010]).
This is because client-side programs break more frequently the
assumptions that prototypes and method bindings almost never
change during executions. Then, the authors of this study sug-
gest to extract the prototype links and the method bindings from
the hidden classes, which would break the fast prototype chain
access presented Section 3. They present an experimental report
that shows client-side improvements but it also shows server-side
slowdowns. This does not contradict our own results.

The blog article [Bevenius 2018] describes the polymorphic in-
line caching optimization recently added to V8. This optimization

is similar to the one of the SELF system [Hölzle et al. 1991]. The
blog [Bruni 2017] describes the latest V8 property accesses imple-
mentation. It presents a mostly standard property cache implemen-
tation without any details about prototypes, polymorphic accesses,
or megamorphic accesses. It shows the object memory models that
support inline and external properties. Contrary to Hopc, a V8 ob-
ject might simultaneously contain inline and external properties.
Determining the impact of the two strategies is beyond the scope
of the present study that focuses on cache implementation only.

Clifford and his colleagues have proposed a dynamic setting
to keep track more accurately of object sizes [Clifford 2015]. This
enables more efficient allocations and increases the number of
properties that are stored inline. Hopc uses a similar technique.
Although strongly connected, the techniques that focus on the
object memory layouts are not strictly related to the property cache
management studied in this paper.

The virtual tables presented in Section 4 follows a long tradition
of work on fast property accesses and fast type checks for object-
oriented languages. The loose structuring of prototype-based object
orientation makes most studies unsuitable. Techniques developed
for single inheritance testing [Cohen 1992] are inapplicable because
the prototype chaining enables complex inheritance hierarchies.
Techniques developed for multiple inheritance [Alpern et al. 2001;
Ducournau and Morandat 2011] hardly apply because of the dy-
namic context in which JavaScript programs execute that is liable
to create new classes at any time. The originality of Hopc for deal-
ing with polymorphism consists in attaching the virtual tables to
the access point locations instead of attaching them to the object
classes.

The storage strategies developed for optimizing the representa-
tions of homogeneously typed collections [Bolz et al. 2013] com-
plements the following studies as it focuses on the memory layout
and memory organization of objects.

The paper [Gong et al. 2014] presents a profiler for JavaScript that
after a source-to-source transformation pinpoints JIT-unfriendly
code. The profiler is used to track property cache misses but it only
detects inconsistent object layouts, that is objects owning the same
properties but belonging to different hidden classes. Inconsistent
layouts are treated naturally by the vtables mechanism but as their
analysis showsmany tests suffer from this problem, it might suggest
that the compiler should be provided with special optimizations
for removing them. Constructors could be easily optimized using
a static analysis similar to the one used to estimate object sizes. It
could sort the properties and use that sorting for creating consistent
object memory layouts.

8 CONCLUSION
We have presented several techniques that complement and en-
hance property caches used for accessing object properties of Java-
Script like languages. They take over classical caches when the
searched property is either stored in an object of the prototype
chain or defined using accessors. They also support efficiently poly-
morphic and megamorphic property accesses. Finally, they also
support efficient object extensions. These techniques do not apply
as frequently as simple property caches that cover a vast majority of
accesses. However, since they impose no overhead when not used,
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accesses multi inv cached proto accesses vtable accesses
benchmark get+put+call cache misses all all get put get put call
acorn 36×106 849×103 (3%) 58% 10×103 4×106 (15%) 3×106 (36%) 414×103 (2%) 217×103 (4%) 0 (0%)

babylon 26×106 2×106 (5%) 77% 11×103 3×106 (12%) 2×106 (31%) 641×103 (4%) 134×103 (4%) 0 (0%)
bague ∼ 0 0 (0%) 0% 125 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

base64 17×106 47 (0%) 0% 129 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

binary-tree 2×109 56 (0%) 0% 126 303×106 (34%) 606×106 (100%) 0 (0%) 0 (0%) 0 (0%)

boyer 463×106 175 (0%) 0% 131 0 (0%) 103×106 (100%) 0 (0%) 0 (0%) 0 (0%)

crypto-aes 9×106 8×103 (0%) 0% 129 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
crypto-md5 ∼ 0 0 (0%) 0% 129 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

deltablue-oo 2×109 26×106 (2%) 26% 178 5×106 (0%) 17×106 (16%) 0 (0%) 3×106 (3%) 0 (0%)

deltablue 17×109 233×106 (2%) 26% 178 5×109 (32%) 148×106 (16%) 0 (0%) 25×106 (3%) 0 (0%)

earley 10×106 3×103 (0%) 0% 131 0 (0%) 5×106 (89%) 0 (0%) 0 (0%) 0 (0%)
fannkuch ∼ 0 0 (0%) 0% 131 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

js-beautify 47×106 17×103 (0%) 9% 297 7×106 (16%) 2×106 (43%) 0 (0%) 0 (0%) 0 (0%)

maze 72×106 2×106 (2%) 0% 141 7×106 (10%) 7×106 (77%) 0 (0%) 0 (0%) 0 (0%)
puzzle ∼ 0 0 (0%) 0% 125 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
qsort ∼ 0 0 (0%) 0% 129 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

richards 11×109 146×106 (2%) 0% 151 2×109 (19%) 3×106 (0%) 0 (0%) 0 (0%) 0 (0%)

sieve 102×106 19 (0%) 0% 132 0 (0%) 52×106 (100%) 0 (0%) 0 (0%) 0 (0%)

splay 265×106 2×103 (0%) 7% 135 10×106 (5%) 14×106 (19%) 2×106 (0%) 0 (0%) 0 (0%)

tagcloud 56×106 2×103 (0%) 0% 129 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Figure 14: Cache statistics. The two first columns report the global number of hits and misses. The direct cache hits (cmap
hits) are not reported in this table because they correspond to standard JavaScript implementations. These numbers can still
be deduced by subtracting the number of misses from the number of hits. Themulti column shows the number of caches that
use more than one single map. The inv column shows the number of pclass invalidations.

benchmark no cache full cache profile cache
acorn 1645kb 3068kb 2900kb
babylon 3032kb 5686kb 5438kb
bague 27kb 29kb 29kb
base64 37kb 38kb 38kb
binary-tree 38kb 67kb 57kb
boyer 772kb 1139kb 922kb
crypto-aes 103kb 107kb 107kb
crypto-md5 111kb 111kb 111kb
deltablue-oo 212kb 409kb 394kb
deltablue 417kb 1056kb 937kb
earley 713kb 1020kb 834kb
fannkuch 29kb 29kb 29kb
js-beautify 2551kb 4095kb 3916kb
maze 192kb 404kb 376kb
puzzle 35kb 38kb 38kb
qsort 28kb 30kb 30kb
richards 234kb 555kb 505kb
sieve 33kb 40kb 35kb
splay 99kb 195kb 143kb
tagcloud 293kb 350kb 350kb

Figure 15: Object file sizes depending on the compilation
mode. No cache uses no inline cache at all. Full cache cor-
responds to object sizes with the full cache check sequence
generated. Profile cache corresponds to object file sizes after
profile-guided optimization.

they can be integrated in any existing system at no run time cost.
We have validated the approach with an experimental report based
on Hopc, an AOT JavaScript compiler. It shows that the presented
techniques improve performance in situations where simple cache
miss.
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