
Efficient Compilation of Tail Calls
and Continuations to JavaScript

Eric Thivierge Marc Feeley
Université de Montréal
feeley@iro.umontreal.ca

Abstract
This paper describes an approach for compiling Scheme’s tail calls
and first-class continuations to JavaScript, a dynamic language
without those features. Our approach is based on the use of a
simple custom virtual machine intermediate representation that is
translated to JavaScript. We compare this approach, which is used
by the Gambit-JS compiler, to the Replay-C algorithm, used by
Scheme2JS (a derivative of Bigloo), and CPS conversion, used by
Spock (a derivative of Chicken). We analyse the performance of the
three systems with a set of benchmark programs on three popular
JavaScript VMs (V8, JägerMonkey and Nitro). On the benchmark
programs, all systems perform best when executed with V8 and our
approach is consistently faster than the others on all VMs. For some
VMs and benchmarks our approach is moderately faster than the
others (below a factor of 2), but in some cases there is a very large
performance gap (with Nitro there is a slowdown of up to 3 orders
of magnitude for Scheme2JS, and up to 2 orders of magnitude for
Spock).

1. Introduction
There is an increasing trend in implementing programming lan-
guages as compilers to other high-level programming languages.
Such a compiler gives increased portability, allowing the source
language to execute wherever the target language can be executed,
it gives more direct access to the features available in the target
language (libraries, tools, etc), and it makes it easier to integrate
program parts written in the source language with an existing code
base in the target language. Some of the more popular target lan-
guages are C, C++ and Java, or more specifically JVM bytecode.
Recently, JavaScript has also become a popular target due to the
unique role it plays in web browsers and web applications. Cur-
rently, there are over 50 compilers [2] targetting JavaScript, includ-
ing compilers whose source languages are C, C++, Java, Python,
Haskell, and Scheme.

Using a popular dynamic language such as JavaScript, Python
or Ruby as the target language for a Scheme compiler is alluring
because they offer dynamic typing, introspective features, closures
and garbage collection that simplify the translation of Scheme,
which also has those features. The biggest challenge remaining

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SFP ’12 9 September 2012, Copenhagen.
Copyright c� 2012 ACM . . . $10.00

is the implementation of tail calls and first-class continuations
which, in the general case, have no direct equivalent in these tar-
get languages. The support for first-class continuations, and in
particular serializable continuations, is a useful feature for imple-
menting continuation based web frameworks, distributed program-
ming languages supporting process migration (e.g. Termite [9]),
and threaded applications. By targetting JavaScript, such applica-
tions can also execute in web browsers.

A Scheme system conforming to the standard must implement
tail calls without stack growth. Contrary to most other languages,
in Scheme this behavior is a requirement, not an optional optimiza-
tion. A Scheme system must also implement the call/cc primitive
which captures implicit continuations so that they can be invoked
explicitly, possibly multiple times. Because of the complexity and
run-time cost of implementing these features in a high-level tar-
get language, some systems reduce their generality by default (for
example, only transforming self tail calls by using loops, and one-
shot escape continuations by using exceptions), and support the full
generality only through special compilation options.

Various approaches for implementing these features in their
full generality have been used in Scheme compilers targetting
high-level languages such as the Bigloo [14], Chicken [1] and
Gambit-C [7] Scheme to C compilers, and the Scheme2JS [11–13],
Spock [3], and Whalesong [15] Scheme to JavaScript compilers.

Tail calls can be implemented with trampolines to avoid stack
growth when one function jumps to another function. Trampolines
are used in Scheme2JS and Gambit-C.

The approach used by Chicken, Spock, and Whalesong, known
as Cheney on the MTA [4], implements tail calls with normal calls
and uses a non-local escape mechanism, such as throw/catch or
C’s setjmp/longjmp, at appropriate moments to reclaim the use-
less stack frames in bulk. By using a CPS conversion of the code,
the Cheney on the MTA approach makes it possible to reclaim all
stack frames. Indeed all calls are tail calls in the CPS’ed code. As
an interesting side-effect, the implementation of first-class continu-
ations is greatly simplified since all translated functions receive an
explicit continuation function.

In Scheme2JS, first-class continuations are implemented by
copying the stack frames to the heap. In JavaScript, where the
stack can’t be accessed directly, exceptions can be used to visit
the stack frames iteratively (from newest to oldest) to build a copy
in the heap and reclaim the stack frames. The code generated for
functions is structured in such a way that the original stack frames
are recreated by a traversal of the copy in the heap (in other words
functions contain code to save their frames and also recreate them,
depending on whether a continuation is being captured or invoked).
This is known as the Replay-C algorithm in [12].

Gambit-C uses a virtual machine based representation of the
program. The instructions of this virtual machine are translated
to C in a fairly direct way. The virtual machine models the stack

explicitly as a C array, and consequently could implement first-
class continuations with most of the algorithms used by native code
compilers [5]. It uses a fine grained variant of the Hieb-Dybvig-
Bruggeman strategy [10]. In this paper we use a similar virtual
machine based compilation approach but targeting JavaScript.

These approaches offer different tradeoffs. It is convenient to
consider as a baseline a direct translation of Scheme to the target
language that ignores tail calls and first-class continuations, and to
look at the overhead over the baseline for a particular approach.

Being based on a CPS conversion, the Cheney on the MTA ap-
proach makes first-class continuation capture and invocation very
fast, but it slows down non-tail calls due to the overhead of creating
the closure for the continuation, passing it to the called function,
and the added pressure on the garbage collector.

Scheme2JS is designed to favor programs with infrequent first-
class continuation operations. The Replay-C algorithm it uses has
more work to do when first-class continuations are captured and in-
voked, for copying between the stack and heap. Programs that sel-
dom capture and invoke continuations still have an overhead for the
try/catch forms that wrap all non-tail calls, but it is possibly less
work than creating and garbage collecting continuation closures,
which of course depends on the technology used to implement the
target language, which has evolved since Scheme2JS’s creation.

Modeling the stack explicitly as in Gambit-C also has an over-
head because accesses to source language variables are converted,
in the general case, to target language array indexing operations of
the stack. All the approaches generate code with a more complex
structure than the baseline. This also causes overhead because op-
timization by the target VM is hindered.

In this paper we demonstrate that an approach for implement-
ing tail calls and first-class continuations based on a virtual ma-
chine strikes a good balance between simplicity of implementa-
tion and performance. The JavaScript back-end we have devel-
oped for Gambit generates code that is consistently faster than both
Scheme2JS and Spock on the three JavaScript VMs we have tested,
and on some JavaScript VMs the performance gap is very large.

2. Gambit Virtual Machine
The Gambit compiler front-end follows a fairly standard organiza-
tion as a pipeline of stages which parse the source code to construct
an AST, expand macros, apply various program transformations on
the AST (assignment conversion, lambda lifting, inlining, constant
folding, etc), translate the AST to a control flow graph (CFG), and
perform additional optimizations on the CFG. The front-end does
not perform a CPS conversion. Finally the target language specific
back-end converts the CFG to the target language.

2.1 Instruction Set
The CFG is a directed graph of basic blocks containing instructions
of a custom designed virtual machine [8], called the Gambit Virtual
Machine (GVM). The GVM is a simple machine with a set of lo-
cations in which any Scheme object can be stored: general purpose
registers (e.g. r2), a stack of frames (e.g. frame[2] is the second
slot of the topmost stack frame), and global variables. The front-
end will generate GVM code which respects the back-end specific
constraints, such as the number of available GVM registers, the
calling convention, and the set of inlinable Scheme primitives. In
the current back-ends, there are 5 GVM registers, and the calling
convention passes in registers the return address (in r0) and the last
3 arguments (in r1, r2, and r3).

There are seven GVM instructions: label, jump, ifjump, switch,
copy, apply, and close. Each basic block begins with a label in-
struction which identifies the basic block and gives its kind. There
are local blocks and first-class blocks (plain function entry-point,

closure entry-point, function call return-point). References to first-
class blocks can be stored in any GVM location.

The last instruction of a basic block is a branch which transfers
control to another basic block unconditionally (jump) or condition-
ally (ifjump or switch). Conditional and unconditional branches can
branch to local blocks. Only jump instructions can branch to first-
class blocks. In general, function calls are implemented with a jump
instruction specifying the argument count. The label instruction for
the entry-point specifies the function’s number of parameters and
whether or not there is a rest parameter, allowing at function en-
try a dynamic check of the argument count and the creation of the
rest parameter. Function calls to known local functions without a
rest parameter avoid the argument count check (they become jumps
without argument count to local blocks). Scheme’s if and case

forms are respectively implemented using the ifjump and switch in-
structions which branch to one of multiple local blocks.

Data movement and primitive operations (e.g. cons) are respec-
tively performed with the copy and apply instructions. These in-
structions specify the destination GVM location, and the source
operands, which can be any GVM location, immediate Scheme ob-
ject or reference to a first-class block. Conceptually, the copy in-
struction is equivalent to an apply instruction of the identity func-
tion, but they are kept separate for historical reasons.

Finally, the close instruction creates a group of one or more
flat closures. For each closure is specified the closure’s entry-
point, the values of the closed variables, and the destination GVM
location where the closure reference is stored. Mutually referential
closures, which letrec can create, can be constructed because
the assignment to the destinations are conceptually performed after
the closures are allocated but before the content of the closure is
initialized. A jump to a closure reference will transfer control to the
closure entry-point contained in the closure and automatically store
the closure reference in the self register, which is the last GVM
register, i.e. r4, in the current back-ends. The closed variables are
accessed indirectly using the closure reference.

2.2 Stack Frame Management
The GVM does not expose a stack pointer register, or push/pop in-
structions. The allocation and deallocation of stack frames is spec-
ified implicitly in the label and branch instructions. The label in-
struction indicates the topmost frame’s size immediately after it has
been executed. Similarly, the branch instruction at the end of the ba-
sic block indicates the frame size at the transfer of control. The dif-
ference between the exiting and entering frame sizes corresponds to
the amount of stack space allocated (or deallocated if the difference
is negative). The back-end can generate a single stack pointer ad-
justment at every GVM branch instruction. Moreover, the back-end
can use the entering stack frame size to calculate the offset to add
to the stack pointer to access a given stack slot, which are indexed
from the base of the frame.

Tail and non-tail calls must pass arguments to the called func-
tion on the stack and in registers. The arguments on the stack are
known as the activation frame. It is empty if few arguments are
passed. A continuation frame is created for non-tail calls to store
the values needed upon return from the call at the return-point. The
continuation frame always contains the return address of the func-
tion which created the continuation frame.

When a GVM branch instruction corresponds to a tail call, the
topmost stack frame only contains the activation frame. In the case
of a non-tail call, the stack frame includes both the activation frame
and, below it, the continuation frame. When the branch corresponds
to a function return, the stack frame is empty.

In general, a runtime system for the GVM may use a limited size
memory area for allocating stack frames. This does not imply that
recursion depth is limited. Indeed, when the stack area overflows a

1. (declare (standard-bindings)

2. (not safe)

3. (inlining-limit 0))

4.

5. (define (foreach f lst)

6. (let loop ((lst lst))

7. (if (pair? lst)

8. (begin

9. (f (car lst))

10. (loop (cdr lst)))

11. #f)))

Figure 1. Source code of the foreach function

1. #1 fs=0 entry-point nargs=2

2. jump fs=0 #3

3.

4. #2 fs=3 return-point

5. r2 = (##cdr frame[3])

6. r1 = frame[2]

7. r0 = frame[1]

8. jump/poll fs=0 #3

9.

10. #3 fs=0

11. if (##pair? r2) jump fs=0 #4 else #6

12.

13. #4 fs=0

14. frame[1] = r0

15. frame[2] = r1

16. frame[3] = r2

17. r1 = (##car r2)

18. r0 = #2

19. jump/poll fs=3 #5

20.

21. #5 fs=3

22. jump fs=3 frame[2] nargs=1

23.

24. #6 fs=0

25. r1 = ’#f

26. jump fs=0 r0

Figure 2. GVM code generated for the foreach function

new stack area could be allocated from the heap or the stack frames
it contains could be copied to the heap. Either way it is necessary
to detect these overflows and then call a stack overflow handler.

The GVM provides for this through the more general concept
of interrupt. An interrupt is an event, such as a stack area over-
flow, heap overflow, and preemptive multithreading timer interrupt,
which disrupts the normal sequence of execution. The GVM polls
for interrupts using interrupt checks which are spread throughout
the code. GVM branch instructions carrying a poll flag perform in-
terrupt checks. Before the transfer of control, the presence of an
interrupt is checked and an appropriate handler is called if an in-
terrupt is detected. Note that combining the poll operation with
the branch instruction provides some optimization opportunities:
the branch destination can be the destination of the target language
conditional branch in the case of an interrupt check failure.

The front-end guarantees that the frame size grows by at most
one slot per GVM instruction and also that the number of GVM
instructions executed between poll points is bounded by the con-
stant L

max

, the maximum poll latency (see [6] for details). Conse-
quently, the bounds of the stack area will never be exceeded if an
extra L

max

slots are reserved at the end of the stack area.

2.3 Example
To illustrate the operation of the front-end and specifically the
management of the stack, consider the function foreach whose
source code is given in Figure 1. This function contains both a
tail call to loop and a non-tail call to f. To make the GVM code
generated easier to read, declarations are used in the source code to
ensure that the primitive functions pair?, car, and cdr get inlined,
and dynamic type checks are not performed by car and cdr, and
the loop is not unrolled.

The GVM code generated for this example is given in Figure 2
(the code’s syntax has been altered in minor ways from the normal
compiler output to make it easier to follow). In the GVM code
small integers prefixed with a “#” are basic block labels. The front-
end has translated the call to pair? into an ifjump instruction of
the primitive ##pair?. It has also translated the calls to car and
cdr into apply instructions of the primitives ##car and ##cdr

respectively, which do not check the type of their argument.
Basic blocks #1 and #2 are first-class blocks (a function entry-

point and return-point respectively) and the others are local blocks.
Upon entry to the foreach function, at basic block #1, the param-
eters f and lst are contained in r1 and r2 respectively, and r0

contains the return address. When the list lst is non-empty, all
three registers are saved to the stack (at lines 14-16) to create a
continuation frame for the non-tail call to f. r1 is set to the first
element of the list, r0 is set to the return-point, a reference to basic
block #2, and f is jumped to (at line 22) with an argument count of
1 and a frame size of 3 to account for the allocation of the continua-
tion frame and an empty activation frame. At the return-point, basic
block #2, the continuation frame is read (at lines 5-7) to prepare the
tail call to loop (at line 8). The tail call is to a known function so it
is simply a jump to basic block #3 with a frame size of 0 to account
for the deallocation of the continuation frame.

Finally, note the placement of two interrupt checks at lines 8
and 19 which guarantee a bounded number of GVM instructions
executed between interrupt checks.

3. Translation to JavaScript
The main difficulty in translating GVM code to JavaScript concerns
the GVM branch instructions which transfer control from a source
to destination location. To implement tail calls correctly this must
be done without stack growth. We will give the details of the
trampoline approach used by Gambit-JS starting at Section 3.3. We
first need to address some ancillary issues.

We will explain the translation process by referring to the final
JavaScript code produced when compiling the foreach function.
Figure 3 gives the relevant parts of the code.

To avoid name clashes with other code, all JavaScript global
variables and function names are prefixed by “Gambit ” in the code
actually generated by the compiler. For presentation purposes, we
have stripped this prefix and made some minor syntactic changes
(such as removing redundant braces). Some optimizations which
are discussed in Section 3.4 have also been disabled to improve
readability.

3.1 GVM State
Efficient access to the GVM state is critical to achieve good exe-
cution speed. For this reason the GVM state is stored in JavaScript
global variables (lines 1-5 in Figure 3). The stack and global vari-
ables are implemented with JavaScript arrays. Note that JavaScript
arrays grow automatically when storing beyond the last element,
which is convenient for implementing a stack. The registers, stack
pointer and argument count are also JavaScript global variables.

1. var r0, r1, r2, r3, r4; // registers

2. var stack = [false]; // runtime stack

3. var glo = {}; // Scheme global variables

4. var sp = 0; // stack pointer

5. var nargs; // argument count

6.

7. function Pair(car, cdr) {

8. this.car = car;

9. this.cdr = cdr;

10. }

11.

12. function trampoline(pc) {

13. while (pc !== false)

14. pc = pc();

15. }

16.

17. function bb1_foreach() { // entry-point

18. if (nargs !== 2)

19. return wrong_nargs(bb1_foreach);

20. return bb3_foreach;

21. }

22. bb1_foreach.id = "bb1_foreach"; // meta info

23.

24. function bb3_foreach() {

25. if (r2 instanceof Pair) {

26. stack[sp+1] = r0;

27. stack[sp+2] = r1;

28. stack[sp+3] = r2;

29. r1 = r2.car;

30. r0 = bb2_foreach;

31. sp += 3;

32. return poll(bb5_foreach);

33. } else {

34. r1 = false;

35. return r0;

36. }

37. }

38.

39. function bb2_foreach() { // return-point

40. r2 = stack[sp].cdr;

41. r1 = stack[sp-1];

42. r0 = stack[sp-2];

43. sp += -3;

44. return poll(bb3_foreach);

45. }

46. bb2_foreach.id = "bb2_foreach"; // meta info

47. bb2_foreach.fs = 3;

48. bb2_foreach.link = 1;

49.

50. function bb5_foreach() {

51. nargs = 1;

52. return stack[sp-1];

53. }

Figure 3. JavaScript code generated for the foreach function

3.2 Data Representation
When possible, Scheme types are mapped to similar JavaScript
types. For example Booleans to JavaScript Booleans, vectors to
JavaScript arrays, and the empty list to JavaScript’s null.

Some types, such as pairs, strings and characters are JavaScript
objects with their own constructors (for example the constructor for
pairs is at lines 7-10). Strings can’t be mapped to JavaScript strings
which are immutable. However, symbols and keywords are mapped
to JavaScript strings.

In order to implement the full numeric tower, different con-
crete types are used to implement numbers. Fixnums are mapped
to JavaScript numbers, and bignums, flonums, etc are JavaScript
objects with specific constructors.

Functions, whether they are closures or not, are mapped to
JavaScript functions. However, because the function call protocol
uses the GVM registers and stack to pass arguments, the JavaScript
functions are parameterless. For example, the Scheme foreach

function is implemented by the JavaScript bb1 foreach function
at line 17.

3.3 Basic CFG Translation
If we discount the branch destination inlining optimization which
is explained in the next section, the back-end translates each ba-
sic block to a parameterless JavaScript function. Most GVM in-
structions are translated straightforwardly to JavaScript code. The
branch instruction at the end of the basic block is translated to
a return of the destination operand, that is a reference to the
JavaScript function containing the code of the destination basic
block, or a JavaScript closure (see Section 3.7).

For example, the GVM branch instruction at the end of basic
block #1 is translated at line 20 to a return of a reference to
function bb3 foreach which corresponds to basic block #3.

A trampoline, implemented by the function trampoline at line
12, is used to sequence the flow of control from the source to desti-
nation basic blocks. The program is started by calling trampoline

with a reference to the basic block of the program’s entry-point.
The poll function called at lines 32 and 44 is needed for

interrupt handling. After checking for interrupts, the poll function
returns its argument if no interrupts occurred, otherwise it returns
the function that handles the interrupt.

3.4 Optimizations
With the basic translation each GVM branch incurs the run time
cost of one function return and call. The cost of the trampoline and
interrupt checks is reduced using the following optimizations:
Branch destination inlining. Basic blocks that are only referenced
in a single branch instruction or are very short (only contain a
branch instruction) are inlined at the location of the branch. This
happens frequently in ifjump instructions, effectively recovering in
the target language some of the structure of the source if. For
example, the destination basic blocks #4 and #6 have been inlined
in the if at line 25.
Branch destination call. Instead of returning the destination
operand to the trampoline, it is possible to return the result
of calling the destination operand. For example, the branch to
basic block #3 at line 20 is really implemented with return

bb3 foreach();. This makes it possible for the JavaScript VM
to optimize the control flow and perhaps inline the body of the des-
tination function. There will be an accumulation of stack frames on
the JavaScript VM if it doesn’t do tail call optimization. However,
the depth of the stack is bounded because of the presence of the
calls to poll, which cause an unwind of the VM’s stack all the
way back to the trampoline.
Intermittent polling. The frequency of calls to the poll function
is reduced by using a counter. Each branch instruction with a poll
flag decrements the counter. When it reaches 0, the poll function
is called, and the counter is reset (to 100). For example, line 32,
which is a polling branch to basic block #5, is really implemented
with the code:

if (--poll_count === 0)

return poll(bb5_foreach);

else

return bb5_foreach();

3.5 Stack Space Leak
The explicit management of the stack array raises a space leak
issue. When sp is lowered, the slots beyond sp become garbage
conceptually, but the JavaScript VM’s garbage collector is not

aware of this and will consider that all the values contained in those
slots are live. The length of the stack array must be adjusted using
sp to avoid the space leak. This reclaims the unused stack space
and also prevents the garbage collector from retaining the objects
in those slots that would otherwise be reachable.

The resizing of the stack could be done whenever sp is lowered,
but this would be very expensive due to the frequent changes to
sp. Instead, the resizing is performed by the poll function. This
means that there is always some amount of garbage at the end of
the stack array when a garbage collection occurs. However, in a
bounded time (the next call to poll) such garbage will truly be
unreachable. The poll function has the following outline:

function poll(dest) {

poll_count = 100;

stack.length = sp + 1;

... check for interrupts ...

return dest;

}

3.6 Meta Information
The code generated also stores some meta information on the first-
class basic blocks (functions bb1 foreach and bb2 foreach).
The property id set at lines 22 and 46 is required for serialization
of Scheme functions and continuations. For the return-point basic
block #2 the properties fs and link are set at lines 47 and 48. This
is required for the implementation of continuations and is further
discussed in Section 4.

3.7 Closures
The mapping from Scheme closures to JavaScript closures is de-
signed to support closure serialization. The GVM’s flat closures
are composed of a number of slots, including a slot referring to the
closure entry-point. The JavaScript closure has two free variables:
the slots of the Scheme closure (a JavaScript object) and a reference
to the JavaScript closure itself.

Consider the ccons function (curried cons) whose definition
is given in Figure 4 and whose generated JavaScript code is in
Figure 5.

The construction of a Scheme closure is a two step process.
First, it is allocated using the closure alloc function (line 1).
The slots of the closure are the only parameter of closure alloc.
The actual JavaScript closure is the self function defined at line
3. Normally, self is called with no argument (i.e. msg will be
undefined). The slots of the closure are obtained by calling self

with a single false argument.
The property v0 of the slots is set to the closure’s entry-point

(line 16). When the closure is called, with no argument, the prop-
erty v0 of the closure’s slots is accessed (line 6) to branch to the
correct closure entry-point. r4 will have been set to a reference to
the closure itself (line 5), so that access to closed variables is pos-
sible. For example the access to x is translated to reading property
v1 of the slots (line 26).

4. Implementing Continuations
We use the incremental stack/heap strategy for managing contin-
uations [5]. This strategy allows the GVM code to use a standard
function call protocol.

In the incremental stack/heap strategy, the current continuation,
which is conceptually a list of continuation frames, is stored in the
stack and in the heap. The more recent continuation frames are
stored in the stack, and older continuation frames form a linked
chain of objects (as in the “before” part of Figure 7, which has 3
frames in the stack, and one in the heap). The continuation frames
in the stack are not explicitly linked, but those in the heap are.

1. (define (ccons x)

2. (lambda (y) (cons x y)))

Figure 4. Source code of the ccons function

1. function closure_alloc(slots) {

2.

3. function self(msg) {

4. if (msg === false) return slots;

5. r4 = self;

6. return slots.v0;

7. }

8.

9. return self;

10. }

11.

12. function bb1_ccons() { // entry-point

13. if (nargs !== 1)

14. return wrong_nargs(bb1_ccons);

15. var closure1 =

16. closure_alloc({v0:bb2_ccons,v1:r1});

17. stack[sp+1] = closure1;

18. r1 = stack[sp+1];

19. return r0;

20. }

21. bb1_ccons.id = "bb1_ccons"; // meta info

22.

23. function bb2_ccons() { // closure-entry-point

24. if (nargs !== 1)

25. return wrong_nargs(bb2_ccons);

26. r4 = r4(false).v1;

27. r1 = new Pair(r4, r1);

28. return r0;

29. }

30. bb2_ccons.id = "bb2_ccons"; // meta info

Figure 5. JavaScript code generated for the ccons function

1. function underflow() {

2.

3. var frm = stack[0];

4.

5. if (frm === false) // end of continuation?

6. return false; // terminate trampoline

7.

8. var ra = frm[0];

9. var fs = ra.fs;

10. var link = ra.link;

11. stack = frm.slice(0, fs + 1);

12. sp = fs;

13. stack[0] = frm[link];

14. stack[link] = underflow;

15.

16. return ra;

17. }

Figure 6. Definition of the underflow function

Continuation frames are initially allocated in the stack, and in
some cases, such as when the current continuation is reified by
call/cc, they are later copied to the heap. The process of copying
the stack frames to the heap is called continuation heapification.
For this it is necessary to find where each stack frame starts and
ends by parsing all the stack. This is achieved by attaching meta
information to each return point: the continuation frame size (fs),
and the index of the slot in that frame where the return address is
stored (link). For example, the continuation frame created for the

1. function heapify(ra) {

2.

3. if (sp > 0) { // stack has >= 1 frame

4.

5. var fs = ra.fs, link = ra.link;

6. var chain = stack;

7.

8. if (sp > fs) { // stack has >= 2 frames

9. chain = stack.slice(sp - fs, sp + 1);

10. chain[0] = ra;

11. sp = sp - fs;

12. var prev_frame = chain, prev_link = link;

13. ra = prev_frame[prev_link];

14. fs = ra.fs;

15. link = ra.link;

16.

17. while (sp > fs) {

18. var frame = stack.slice(sp - fs, sp + 1);

19. frame[0] = ra;

20. sp = sp - fs;

21. prev_frame[prev_link] = frame;

22. prev_frame = frame; prev_link = link;

23. ra = prev_frame[prev_link];

24. fs = ra.fs;

25. link = ra.link;

26. }

27.

28. prev_frame[prev_link] = stack;

29. }

30.

31. stack.length = fs + 1;

32. stack[link] = stack[0];

33. stack[0] = ra;

34.

35. stack = [chain];

36. sp = 0;

37. }

38.

39. return underflow;

40. }

{
{
{ RA_cD

9

10

11

12

RA_d0

1

2

3

4

RA_c0

1

2

3

4

RA_b0

1

2

3

4

RA_bC
5

6

7

8

underflowB
1

2

3

4

0

stack

0

stack

RA_a0

1

2

3

4

false{A

Before After

RA_a0

1

2

3

4

false

Figure 7. Continuation heapification algorithm and example. Before heapification, continuation frames B, C and D are on the stack. After
heapification with the call heapify(RA d), where RA d is the return address back to the function that created frame D, all frames are in the
heap and explicitly linked using the frame slot normally containing the return address.

non-tail call to f in the foreach has fs=3 and link=1 (this meta
information is set at lines 47-48 in Figure 3).

Given a stack of continuation frames, and the current return
address (ra), it is a simple matter to iterate over the frames from
newest to oldest. The topmost frame has a size of ra.fs, and
stack[sp - ra.fs + ra.link] is the return address in that
frame, which can be used to parse the next stack frame. This pro-
cess is repeated until the base of the stack is reached.

Each continuation frame in the heap is represented as a JavaScript
array with one more element than the frame size. If we call ra the
return address attached to the frame frm, then frm[0] contains ra
and frm[ra.link] contains the next frame in the chain (the value
false marks the end of the chain). In other words, the heap frames
are chained using the slot of the frame that normally contains the
return address. All other slots of the continuation frame are stored
in the corresponding index in the array.

In our implementation, we store in stack[0] the reference to
the most recent continuation frame in the heap (the first in the
chain). The oldest continuation frame in the stack, which starts at
stack[1], is a special frame because the return address it contains
is always the function underflow. When the function that created
that frame returns, the frame will be deallocated, making the stack

empty, and control will be transferred to the underflow function.
This function causes the heap frame in stack[0] to be copied to
the stack and control is transferred to that frame’s return address. In
order to prepare for the next time the stack is emptied, a reference
to the next heap frame is copied to stack[0], and the slot of the
stack frame that contains the return address is set to the function
underflow. The definition of the underflow function is given in
Figure 6.

Continuation heapification is implemented with the heapify

function given in Figure 7. The parameter ra is the return address
back to the function that created the topmost continuation frame.
The algorithm iterates over the stack frames from top to bottom to
create a heap copy. The oldest stack frame is not copied. Instead,
the stack array is simply reused after shrinking it to the right size.
At the end of heapification, the raw representation of the current
continuation is in stack[0].

With the heapify function, it is easy to implement the continu-
ation API of [7]. The Scheme functions continuation-capture
and continuation-return are the primitive continuation ma-
nipulation functions. These functions are implemented by the
JavaScript code given in Figure 8.

1. function bb1_continuation_capture() {

2. var receiver = r1;

3. r0 = heapify(r0);

4. r1 = stack[0];

5. nargs = 1;

6. return receiver;

7. }

8.

9. function bb1_continuation_return() {

10. sp = 0;

11. stack[0] = r1;

12. r0 = underflow;

13. r1 = r2;

14. return r0;

15. }

Figure 8. Implementation of the continuation primitives
continuation-capture and continuation-return

The function continuation-capture is similar to call/cc

but the continuation passed to the receiver function is a raw con-
tinuation (not wrapped in a closure). It is implemented by call-
ing the heapify function with the current return address and
then passing stack[0] to the receiver function. The function
continuation-return takes a raw continuation and a value, and
resumes the continuation with that value as its result. It is imple-
mented by returning to the underflow function after setting up an
empty stack with stack[0] refering to the continuation to resume.

The call/cc function is a thin wrapper over these primitives. It
wraps the raw continuation produced by continuation-capture

in a closure, which is what call/cc’s receiver expects. The imple-
mentation is simply:
(define (call/cc receiver)

(continuation-capture

(lambda (k)

(receiver (lambda (r)

(continuation-return k r))))))

5. Evaluation
In this section we aim to evaluate the performance of the three ap-
proaches discussed in this paper and that are implemented in the
Gambit-JS, Scheme2JS and Spock compilers. We are interested in
evaluating the execution speed. We are not concerned with compi-
lation time (there is no reason to believe that the compilation time
of the different approaches would be significantly different and in
any case most of the compilation time is expected to be in writing
out the JavaScript code).

5.1 Methodology
Our methodology consists in executing with each system specially
selected benchmark programs that represent use-cases of non-tail
calls, tail calls and first-class continuations.

Although it has the virtue of being empirical, the methodology
has pitfalls for the comparison of the approaches because the com-
pilers may adopt different implementation strategies for features
unrelated to tail calls and first-class continuations. Some optimiza-
tion may be implemented in one compiler and not the other, even
though it could have been, giving one compiler an advantage that is
not related to the continuation implementation approach. We are
interested here in comparing the approaches, not the compilers.
For this reason we have carefully chosen the source programs, pro-
gramming style, declarations, and command-line options, to avoid
unrelated differences. The target JavaScript code generated was ex-
amined manually to ensure performance differences were mainly

due to the continuation implementation approach. Specifically, we
have avoided:
Local definitions. The Scheme2JS compiler is able to translate
parts of the source program into the isomorphic JavaScript code
when it can determine that first-class continuations need not be
supported for those parts. This is frequently the case when the
entire benchmark program is a set of definitions within an enclosing
function (because the program analysis is simpler). For example, a
variant of the fib35 benchmark where the recursive function is
local to another function is compiled by Scheme2JS to JavaScript
code that runs 7 times faster on V8 than when the recursive function
is global. The other compilers do not have this optimization.
Non-primitive library functions. Primitive library functions like
cons and car are implemented similarly by the different compilers
and are inlined. More complex library functions, such as append,
map and equal?, have a wider range of possible implementations
(level of type checking, precision of error messages, variation in
object representation, etc). For this reason, programs using non-
primitive library functions have been avoided or they contain a
generic Scheme definition of the function with calls to primitive
library functions.
Type checking. Scheme2JS and Spock primitive functions do not
type check their arguments. Gambit-JS’s type checking was dis-
abled with the declaration (declare (not safe)).
Non-integer numbers. Scheme2JS and Spock use JavaScript num-
bers to represent Scheme numbers (i.e. they have a partial im-
plementation of the numeric tower). The declaration (declare

(fixnum)) was used for Gambit-JS so that all arithmetic opera-
tions would be performed on JavaScript numbers, like the other
systems.
Function inlining. The compilers do user-function inlining differ-
ently and under different conditions. Because function inlining has
a big impact on performance, it has been disabled with Gambit’s
(declare (inlining-limit 0)) declaration and Scheme2JS’s
command line option --max-inline-size 0. Spock does not in-
line functions.

Scheme2JS and Spock do not perform argument count checking
because they use the JavaScript semantics for argument passing
where it is allowed to pass fewer or more arguments than there
are formal parameters. Gambit-JS does perform argument count
checking as it is necessary for rest parameter handling, and it
provides additional safety and precise error messages. It is not easy
to remove the argument count checking in general, and it can be
argued that it is consistent with the virtual machine approach, so
it was not disabled in the experiments. The overhead of argument
count checking is fairly low (we have measured experimentally
using the fib35 benchmark that the overhead is less than 5%).

5.2 Benchmark Programs
There are two groups of benchmark programs. The first group,
containing the programs fib35, nqueens12, and oddeven, do not
manipulate first-class continuations. The purpose of these programs
is to evaluate the impact on function calls of supporting first-class
continuations. The program oddeven performs only tail calls.

The programs in the second group use call/cc in various
ways. The programs ctak and contfib30 have non-tail-recursive
functions of moderate recursion depth: ctak reifies each continua-
tion of its recursion, and contfib30 reifies only the continuations
at the leaves of the recursion. The remaining programs have a shal-
low call graph (i.e. the current continuation is only a few frames
deep when call/cc is called). The program btsearch2000 per-
forms a backtracking search, and threads10 is a thread scheduler
that interleaves the execution of 10 threads.

Program Gambit-JS Scheme2JS Spock
fib35 .80 1.54 1.9⇥ 2.40 3.0⇥
nqueens12 .72 .76 1.1⇥ 2.33 3.3⇥
oddeven .83 1.92 2.3⇥ 5.62 6.8⇥
ctak .18 17.64 95.9⇥ .59 3.2⇥
contfib30 1.17 106.01 90.9⇥ 3.38 2.9⇥
btsearch2000 1.35 25.40 18.8⇥ 7.93 5.9⇥
threads10 1.34 24.68 18.5⇥ 4.40 3.3⇥

Table 1. Execution times using V8 (Chrome 21.0.1180.89)

Program Gambit-JS Scheme2JS Spock
fib35 1.07 7.66 7.2⇥ 20.73 19.4⇥
nqueens12 1.49 2.62 1.8⇥ 12.97 8.7⇥
oddeven 1.09 1.93 1.8⇥ 33.91 31.1⇥
ctak 1.25 30.38 24.3⇥ 1.86 1.5⇥
contfib30 5.88 156.79 26.7⇥ 10.61 1.8⇥
btsearch2000 11.19 27.16 2.4⇥ 16.54 1.5⇥
threads10 6.97 34.36 4.9⇥ 22.11 3.2⇥

Table 2. Execution times using JägerMonkey (Firefox 15.0.1)

Program Gambit-JS Scheme2JS Spock
fib35 1.32 6.53 4.9⇥ 84.69 64.2⇥
nqueens12 1.31 1.89 1.4⇥ 45.15 34.4⇥
oddeven 2.52 1.55 .6⇥ 143.97 57.1⇥
ctak .30 52.88 177.4⇥ 4.18 14.0⇥
contfib30 1.60 2311.69 1443.0⇥ 25.98 16.2⇥
btsearch2000 3.46 102.98 29.7⇥ 92.02 26.6⇥
threads10 3.03 74.21 24.5⇥ 74.88 24.7⇥

Table 3. Execution times using Nitro (Safari 6.0)

The source code of the benchmark programs is given in Ap-
pendix A.

5.3 Setting
An OS X 10.8.1 computer with a 2.2 GHz Intel Core i7 processor
and 16 GB RAM is used in all the experiments. The latest versions
of three popular JavaScript VMs are used to see how performance
varies between VMs. Chrome 21.0.1180.89, Firefox 15.0.1, and
Safari 6.0 are used (V8, JägerMonkey and Nitro JavaScript VMs
respectively). The Scheme systems used are:

• Gambit-JS version v4.6.6 20120908010706 with the decla-
rations (declare (standard-bindings) (fixnum) (not

safe) (inlining-limit 0)),
• Scheme2JS version 20110717 with command-line options:
--max-inline-size 0 --call/cc --trampoline,

• Spock version 4.7.0 with no special command-line options.

5.4 Results
The execution times of the benchmark programs using V8, Jäger-
Monkey and Nitro are given in Tables 1, 2 and 3. The times in
seconds is given, and for Scheme2JS and Spock, the ratio with the
Gambit-JS time is also given.

For each JavaScript VM, Gambit-JS is consistently faster than
the other systems. The only anomaly occurs on Nitro where
Scheme2JS runs oddeven faster than Gambit-JS.

For each Scheme system, the best times are obtained when using
V8. The only anomaly is that Scheme2JS runs the oddeven on
Nitro slightly faster than on V8.

If we focus on Table 1, which gives the times on V8, we see that
Gambit-JS is 1.1 to 95.9 times faster than Scheme2JS, and 2.9 to
6.8 times faster than Spock.

Program JägerMonkey Nitro
fib35 1.3⇥ 1.7⇥
nqueens12 2.1⇥ 1.8⇥
oddeven 1.3⇥ 3.0⇥
ctak 6.8⇥ 1.6⇥
contfib30 5.0⇥ 1.4⇥
btsearch2000 8.3⇥ 2.6⇥
threads10 5.2⇥ 2.3⇥

Table 4. Effect of different JavaScript VMs on execution times
(baseline is V8)

Scheme2JS has its best relative times when call/cc is not
used (1.1 to 2.3 times slower). When call/cc is used, the per-
formance depends greatly on the depth of the continuation where
the call/cc is called (18.5 to 95.9 times slower). The largest slow-
downs are for ctak and contfib30. These programs call call/cc
in moderately deep recursions and there is repetitive capturing of
(parts of) the continuations. The large slowdown is explained by
the fact that the Replay-C algorithm copies and restores the com-
plete continuation on the JavaScript VM stack every time a con-
tinuation is captured and invoked. Our approach only copies the
frames that have not yet been captured and restores continuations
incrementally, one frame at a time, so the cost does not depend
on the depth of the continuation. When using Nitro, the slowdown
increases dramatically to 1443 times slower on contfib30. This
is probably due to a higher hidden constant on that VM for copy-
ing/restoring the stack (such as the cost of throwing and catching
exceptions to iterate over the stack frames).

The CPS conversion used by Spock makes it trivial to reify con-
tinuations because all functions are passed an explicit continuation
parameter. Unsurprisingly, Spock has its best relative times when
call/cc is used. This is most apparent when using JägerMonkey
and Nitro. If we focus on Table 1 (V8), we see that when call/cc

is not used the relative times for Spock range from 3 to 3.3 times
slower when non-tail calls are performed. This is an indication that
the creation of closures for the continuation frames of non-tail calls
is more expensive than using an explicit representation on a stack
as in Gambit-JS. It is surprising that for oddeven, which only per-
forms tail calls (i.e. no continuation frames are created), the relative
time goes up to 6.8. This is probably due to the cost of unwinding
the JavaScript VM’s stack at regular intervals to avoid overflowing
it. Spock does this through a check at every function entry, similar
to Gambit-JS’s interrupt checks on branch instructions, but not in-
termittently. When a counter is added to check intermittently, the
time is roughly halved, which is still slower than Gambit-JS. It is
likely that this high cost is accounted for by a bad interaction be-
tween the structure of the generated code and the V8 optimizer (in
particular the Spock stack checks use the JavaScript arguments
form, which is known to disable some optimizations).

We will now examine how the performance of the Scheme
systems varies across JavaScript VMs. This is an important issue
because a web developer has no control over the web browser used
by the clients. The code must run reasonably fast on all the popular
JavaScript VMs.

For Gambit-JS, the relative execution times of the benchmarks
on JägerMonkey and Nitro (using V8 as a baseline) are given in
Table 4. The benchmarks run 1.4 to 3 times slower on Nitro than
they do on V8. The compactness of this range means that it is
feasible to use the performance of a program on V8 to predict its
performance on Nitro. Performance is much less predictable on
Nitro for the other systems (Scheme2JS has slowdowns ranging
from 0.8 to 22, and Spock has slowdowns ranging from 7 to 35).

For JägerMonkey the range of the slowdowns for Gambit-JS
is 1.3 to 2.1 for the benchmarks in the first group, and is 5 to

8.3 for the second group. One might think that the cause of the
higher slowdowns in the second group is the use of call/cc, but
further investigation reveals that the issue is the implementation of
closures. All programs in the second group create and call closures
frequently, and especially so in the btsearch2000 benchmark,
which has the highest slowdown. Our implementation of closures
appears to be handled by JägerMonkey less efficiently than by V8
and Nitro. This has been verified with a test program which creates
and calls closures in a tight loop.

Because of this issue, the range of the slowdowns for Gambit-JS
on JägerMonkey (1.3 to 8.3) is wide enough that it is hard to use
the performance of a program on V8 to predict the performance on
JägerMonkey. Nevertheless, the range of slowdowns is similar to
those of Scheme2JS (1 to 5), and of Spock (2.1 to 8.6). Unfortu-
nately, we have yet to find an implementation of closures compati-
ble with the GVM that is as efficient on JägerMonkey as the other
VMs. This would narrow the range of slowdowns for Gambit-JS
and improve the quality of performance prediction.

6. Conclusion
We have proposed a VM-based approach for implementing tail
calls without stack growth and first-class continuations in JavaScript.
Our approach compiles Scheme source programs into an interme-
diate language, the Gambit Virtual Machine (GVM), which is then
translated to the target language using a trampoline and an explicit
representation of the GVM runtime stack. This allows continua-
tions to be implemented with most of the algorithms used by native
code. We use the incremental stack/heap strategy [5] which allows
the GVM code to use a standard function call protocol, with a zero
overhead for code which doesn’t manipulate first-class continua-
tions, and which has a cost for invoking a continuation which is
proportional to the size of the topmost continuation frame.

Our experiments on specially selected benchmark programs on
three popular JavaScript VMs show that the approach compares fa-
vorably to the Replay-C algorithm used in the Scheme2JS compiler
and to the CPS conversion used in the Spock compiler. The execu-
tion time is consistently faster for our approach. When comparing
Gambit-JS to Scheme2JS, Gambit-JS is 1.1 to 96 times faster on
V8, 1.8 to 27 times faster on JägerMonkey, and 0.6 to 1443 times
faster on Nitro. When comparing Gambit-JS to Spock, Gambit-JS
is 3 to 7 times faster on V8, 1.5 to 31 times faster on JägerMonkey,
and 14 to 64 times faster on Nitro.

Although this paper has focused on compiling the GVM to
JavaScript, the approach has the advantage that it relies on few lan-
guage constructs, so it is easy to adapt to other dynamic languages.
In fact, the GVM to JavaScript translator presented in this paper is
part of a universal back-end which also targets Python and Ruby.
A large part of the back-end is common to all the target languages.

Acknowledgments
We wish to thank Florian Loitsch and Felix Winkelmann for help-
ing us understand their systems. This work was supported by the
Natural Sciences and Engineering Research Council of Canada and
Mozilla Corporation.

References
[1] Chicken Scheme. URL http://www.call-cc.org/.
[2] List of languages compiling to JavaScript. URL https:

//github.com/jashkenas/coffee-script/wiki/

List-of-languages-that-compile-to-JS/.
[3] Chicken-Spock. URL http://wiki.call-cc.org/eggref/4/

spock.
[4] H. G. Baker. Cons should not cons its arguments, part II: Cheney on

the M.T.A. SIGPLAN Notices, 30(9):17–20, 1995.

[5] W. D. Clinger, A. H. Hartheimer, and E. M. Ost. Implementation
strategies for first-class continuations. Higher Order Symbol. Comput.,
12(1):7–45, 1999.

[6] M. Feeley. Polling efficiently on stock hardware. In Proceedings of the
Conference on Functional Programming Languages and Computer
Architecture, FPCA ’93, pages 179–187, New York, NY, USA, 1993.
ACM.

[7] M. Feeley. A better API for first-class continuations. In Scheme and
Functional Programming Workshop, SFPW ’01, pages 1–3, 2001.

[8] M. Feeley and J. S. Miller. A parallel virtual machine for efficient
Scheme compilation. In Proceedings of the 1990 ACM Conference
on LISP and Functional Programming, LFP ’90, pages 119–130, New
York, NY, USA, 1990. ACM.

[9] G. Germain, M. Feeley, and S. Monnier. Concurrency oriented pro-
gramming in Termite Scheme. In Scheme and Functional Program-
ming Workshop, SFPW’06, pages 125–135, 2006.

[10] R. Hieb, R. K. Dybvig, and C. Bruggeman. Representing control in
the presence of first-class continuations. In Proceedings of the ACM
SIGPLAN 1990 Conference on Programming Language Design and
Implementation, volume 25, pages 66–77, New York, NY, USA, 1990.
ACM.

[11] F. Loitsch. JavaScript to Scheme compilation. In Proceedings of the
Sixth Workshop on Scheme and Functional Programming, pages 101–
116, 2005.

[12] F. Loitsch. Exceptional continuations in JavaScript. In 2007 Workshop
on Scheme and Functional Programming, 2007.

[13] F. Loitsch. Scheme to JavaScript Compilation. PhD thesis, Université
de Nice Sophia Antipolis, 2009.

[14] M. Serrano and P. Weis. Bigloo: A portable and optimizing compiler
for strict functional languages. In Proceedings of the Second Interna-
tional Symposium on Static Analysis, SAS ’95, pages 366–381, Lon-
don, UK, 1995. Springer-Verlag.

[15] D. Yoo. Building Web Based Programming Environments for Func-
tional Programming. PhD thesis, Worcester Polytechnic Insti-
tute, 2012. URL http://www.wpi.edu/Pubs/ETD/Available/

etd-042612-104736/.

A. Source Code of Benchmark Programs

1. (define (fib n)

2. (if (< n 2)

3. 1

4. (+ (fib (- n 1))

5. (fib (- n 2)))))

6.

7. (run-benchmark

8. "fib35"

9. (lambda () (fib 35)))

Figure 9. Source code of fib35

1. (define (odd n)

2. (if (= n 0) #f (even (- n 1))))

3.

4. (define (even n)

5. (if (= n 0) #t (odd (- n 1))))

6.

7. (run-benchmark

8. "oddeven"

9. (lambda () (odd 100000000)))

Figure 10. Source code of oddeven

1. (define (app lst1 lst2)

2. (if (pair? lst1)

3. (cons (car lst1) (app (cdr lst1) lst2))

4. lst2))

5.

6. (define (one-up-to n)

7. (let loop ((i n) (lst ’()))

8. (if (= i 0)

9. lst

10. (loop (- i 1) (cons i lst)))))

11.

12. (define (explore x y placed)

13. (if (pair? x)

14. (+ (if (ok? (car x) 1 placed)

15. (explore (app (cdr x) y)

16. ’()

17. (cons (car x) placed))

18. 0)

19. (explore (cdr x)

20. (cons (car x) y)

21. placed))

22. (if (pair? y) 0 1)))

23.

24. (define (ok? row dist placed)

25. (if (pair? placed)

26. (and (not (= (car placed) (+ row dist)))

27. (not (= (car placed) (- row dist)))

28. (ok? row (+ dist 1) (cdr placed)))

29. #t))

30.

31. (define (nqueens n)

32. (explore (one-up-to n)

33. ’()

34. ’()))

35.

36. (run-benchmark

37. "nqueens12"

38. (lambda () (nqueens 12)))

Figure 11. Source code of nqueens12

1. (define (ctak x y z)

2. (call/cc

3. (lambda (k) (ctak-aux k x y z))))

4.

5. (define (ctak-aux k x y z)

6. (if (not (< y x))

7. (k z)

8. (ctak-aux

9. k

10. (call/cc

11. (lambda (k) (ctak-aux k (- x 1) y z)))

12. (call/cc

13. (lambda (k) (ctak-aux k (- y 1) z x)))

14. (call/cc

15. (lambda (k) (ctak-aux k (- z 1) x y))))))

16.

17. (run-benchmark

18. "ctak"

19. (lambda () (ctak 22 12 6)))

Figure 12. Source code of ctak

1. (define (contfib n)

2. (if (< n 2)

3.

4. (call/cc

5. (lambda (k)

6. (k 1)))

7.

8. (+ (contfib (- n 1))

9. (contfib (- n 2)))))

10.

11. (run-benchmark

12. "contfib30"

13. (lambda () (contfib 30)))

Figure 13. Source code of contfib30

1. (define fail (lambda () #f))

2.

3. (define (in-range a b)

4. (call/cc

5. (lambda (cont)

6. (enumerate a b cont))))

7.

8. (define (enumerate a b cont)

9. (if (> a b)

10. (fail)

11. (let ((save fail))

12. (set! fail

13. (lambda ()

14. (set! fail save)

15. (enumerate (+ a 1) b cont)))

16. (cont a))))

17.

18. (define (btsearch n)

19. (let* ((n*2 (* n 2))

20. (x (in-range 0 n))

21. (y (in-range 0 n)))

22. (if (< (+ x y) n*2)

23. (fail) ;; backtrack

24. (cons x y))))

25.

26. (run-benchmark

27. "btsearch2000"

28. (lambda () (btsearch 2000)))

Figure 14. Source code of btsearch2000

1. ;; Queues.

2.

3. (define (next q) (vector-ref q 0))

4. (define (prev q) (vector-ref q 1))

5. (define (next-set! q x) (vector-set! q 0 x))

6. (define (prev-set! q x) (vector-set! q 1 x))

7.

8. (define (empty? q) (eq? q (next q)))

9.

10. (define (queue) (init (vector #f #f)))

11.

12. (define (init q)

13. (next-set! q q)

14. (prev-set! q q)

15. q)

16.

17. (define (deq x)

18. (let ((n (next x)) (p (prev x)))

19. (next-set! p n)

20. (prev-set! n p)

21. (init x)))

22.

23. (define (enq q x)

24. (let ((p (prev q)))

25. (next-set! p x)

26. (next-set! x q)

27. (prev-set! q x)

28. (prev-set! x p)

29. x))

30.

31. ;; Process scheduler.

32.

33. (define (boot)

34. ((call/cc

35. (lambda (k)

36. (set! graft k)

37. (schedule)))))

38.

39. (define graft #f)

40. (define current #f)

41. (define readyq (queue))

42.

43. (define (process cont)

44. (init (vector #f #f cont)))

44. (define (cont p) (vector-ref p 2))

45. (define (cont-set! p x) (vector-set! p 2 x))

46.

47. (define (spawn thunk)

48. (enq readyq

49. (process (lambda (r)

50. (graft (lambda ()

51. (end (thunk))))))))

52.

53. (define (schedule)

54. (if (empty? readyq)

55. (graft (lambda () #f))

56. (let ((p (deq (next readyq))))

57. (set! current p)

58. ((cont p) #f))))

59.

60. (define (end result) (schedule))

61.

62. (define (yield)

63. (call/cc

64. (lambda (k)

65. (cont-set! current k)

66. (enq readyq current)

67. (schedule))))

68.

69. (define (wait x)

70. (if (> x 0)

71. (begin

72. (yield)

73. (wait (- x 1)))))

74.

75. (define (threads n)

76.

77. (let loop ((n n))

78. (if (> n 0)

79. (begin

80. (spawn (lambda () (wait 100000)))

81. (loop (- n 1)))))

82.

83. (boot))

84.

85. (run-benchmark

86. "threads10"

87. (lambda () (threads 10)))

88.

Figure 15. Source code of threads10

