ATPase 155750 224624099 2008-07-09T18:28:34Z DENker 6671702 added iwiki [[Image:ATP chemical structure.png|thumb|[[Adenosine triphosphate]]]] [[Image:ADP structure.svg|thumb|[[Adenosine diphosphate]]]] '''ATPases''' are a class of [[enzyme]]s that [[catalysis|catalyze]] the [[decomposition]] of [[adenosine triphosphate]] (ATP) into [[adenosine diphosphate]] (ADP) and a free [[phosphate]] [[ion]]. This [[dephosphorylation]] reaction releases [[energy]], which the enzyme (in most cases) harnesses to drive other [[chemical reaction]]s that would not otherwise occur. This process is widely used in all known forms of [[life]]. Some such enzymes are [[integral membrane protein]]s (anchored within [[biological membrane]]s), and move [[solute]]s across the membrane. (These are called ''transmembrane ATPases''). ==Functions== [[Image:Scheme_sodium-potassium_pump-en.svg|thumb|250px|[[NaKATPase|Na<sup>+</sup>/K<sup>+</sup>ATPase]] ]] Transmembrane ATPases import many of the metabolites necessary for [[cell (biology)|cell]] [[metabolism]] and export toxins, wastes, and solutes that can hinder cellular processes. An important example is the sodium-potassium exchanger (or [[NaKATPase|Na<sup>+</sup>/K<sup>+</sup>ATPase]]), which establishes the ionic concentration balance that maintains the [[cell potential]]. Another example is the [[hydrogen potassium ATPase]] (H<sup>+</sup>/K<sup>+</sup>ATPase or gastric proton pump) that acidifies the contents of the stomach. Besides exchangers, other categories of transmembrane ATPase include [[co-transport]]ers and pumps (however, some exchangers are also pumps). Some of these, like the Na<sup>+</sup>/K<sup>+</sup>ATPase, cause a net flow of charge, but others do not. These are called "electrogenic" and "nonelectrogenic" transporters, respectively. ==Mechanism== The coupling between ATP hydrolysis and transport is more or less a strict chemical reaction, in which a fixed number of solute molecules are transported for each ATP molecule that is hydrolyzed; for example, 3 Na<sup>+</sup> ions out of the cell and 2 K<sup>+</sup> ions inward per ATP hydrolyzed, for the Na<sup>+</sup>/K<sup>+</sup> exchanger. Transmembrane ATPases harness the chemical potential energy of ATP, because they perform [[mechanical work]]: they transport solutes in a direction opposite to their [[thermodynamic]]ally preferred direction of movement—that is, from the side of the membrane where they are in low concentration to the side where they are in high concentration. This process is considered [[active transport]]. For example, the blocking of the vesicular H+-ATPAses would increase the pH inside vesicles and decrease the pH of the cytoplasm. ==Transmembrane ATP synthases== {{main|ATP synthase}} The [[ATP synthase]] of [[mitochondria]] and [[chloroplast]]s is an [[Anabolism|anabolic]] enzyme that harnesses the energy of a transmembrane [[proton]] gradient as an energy source for adding an [[inorganic phosphate]] group to a molecule of [[adenosine diphosphate]] (ADP) to form a molecule of adenosine triphosphate (ATP). This enzyme works when a proton moves down the concentration gradient, giving the enzyme a spinning motion. This unique spinning motion bonds ADP and P together to create ATP. ATP synthase can also function in reverse, that is, use energy released by ATP hydrolysis to pump protons against their thermodynamic gradient. ===Classification=== There are different types of ATPases, which can differ in function (ATP synthesis and/or hydrolysis), structure (F-, V- and A-ATPases contain rotary motors) and in the type of ions they transport. *[[F-ATPase]]s (F1F0-ATPases) in [[mitochondria]], [[chloroplast]]s and [[bacteria]]l [[plasma membrane]]s are the prime producers of ATP, using the proton gradient generated by [[oxidative phosphorylation]] (mitochondria) or [[photosynthesis]] (chloroplasts). *[[V-ATPase]]s (V1V0-ATPases) are primarily found in eukaryotic vacuoles, catalysing ATP hydrolysis to transport solutes and lower pH in organelles. *'''A-ATPases''' (A1A0-ATPases) are found in [[Archaea]] and function like F-ATPases. *[[P-ATPase]]s (E1E2-ATPases) are found in bacteria, fungi and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes. *'''E-ATPases''' are [[cell-surface]] [[enzyme]]s that hydrolyse a range of NTPs, including extracellular ATP. ===P-ATPase=== {{main|P-ATPase}} [[P-ATPase]]s (sometime known as E1-E2 ATPases) are found in bacteria and in a number of eukaryotic plasma membranes and organelles. P-ATPases function to transport a variety of different compounds, including ions and phospholipids, across a membrane using ATP hydrolysis for energy. There are many different classes of P-ATPases, each of which transports a specific type of ion: H+, Na+, K+, Mg2+, [[Calcium ATPase|Ca2+]], Ag+ and Ag2+, Zn2+, Co2+, Pb2+, Ni2+, Cd2+, Cu+ and Cu2+. P-ATPases can be composed of one or two polypeptides, and can usually assume two main conformations called E1 and E2. ===Human genes=== * [[Na+/K+-ATPase|Na+/K+ transporting]]: {{Gene|ATP1A1}}, {{Gene|ATP1A2}}, {{Gene|ATP1A3}}, {{Gene|ATP1A4}}, {{Gene|ATP1B1}}, {{Gene|ATP1B2}}, {{Gene|ATP1B3}}, {{Gene|ATP1B4}} * [[Calcium ATPase|Ca++ transporting]]: {{Gene|ATP2A1}}, {{Gene|ATP2A2}}, {{Gene|ATP2A3}}, {{Gene|ATP2B1}}, {{Gene|ATP2B2}}, {{Gene|ATP2B3}}, {{Gene|ATP2B4}}, {{Gene|ATP2C1}} * [[Mg++ transporting]]: {{Gene|ATP3}} * [[Hydrogen potassium ATPase|H+/K+ exchanging]]: {{Gene|ATP4A}}, {{Gene|ATP4B}} * H+ transporting, mitochondrial: {{Gene|ATP5A1}}, {{Gene|ATP5B}}, {{Gene|ATP5C1}}, {{Gene|ATP5C2}}, {{Gene|ATP5D}}, {{Gene|ATP5E}}, {{Gene|ATP5F1}}, {{Gene|ATP5G1}}, {{Gene|ATP5G2}}, {{Gene|ATP5G3}}, {{Gene|ATP5H}}, {{Gene|ATP5I}}, {{Gene|ATP5J}}, {{Gene|ATP5J2}}, {{Gene|ATP5L}}, {{Gene|ATP5L2}}, {{Gene|ATP5O}}, {{Gene|ATP5S}} * [[V-ATPase|H+ transporting, lysosomal]]: {{Gene|ATP6AP1}}, {{Gene|ATP6AP2}}, {{Gene|ATP6V1A}}, {{Gene|ATP6V1B1}}, {{Gene|ATP6V1B2}}, {{Gene|ATP6V1C1}}, {{Gene|ATP6V1C2}}, {{Gene|ATP6V1D}}, {{Gene|ATP6V1E1}}, {{Gene|ATP6V1E2}}, {{Gene|ATP6V1F}}, {{Gene|ATP6V1G1}}, {{Gene|ATP6V1G2}}, {{Gene|ATP6V1G3}}, {{Gene|ATP6V1H}}, {{Gene|ATP6V0A1}}, {{Gene|ATP6V0A2}}, {{Gene|ATP6V0A4}}, {{Gene|ATP6V0B}}, {{Gene|ATP6V0C}}, {{Gene|ATP6V0D1}}, {{Gene|ATP6V0D2}}, {{Gene|ATP6V0E}} * Cu++ transporting: {{Gene|ATP7A}} (see also [[ATP7A]]), {{Gene|ATP7B}} (see also [[Wilson disease protein|ATP7B]]) * Class I, type 8: {{Gene|ATP8A1}}, {{Gene|ATP8B1}}, {{Gene|ATP8B2}}, {{Gene|ATP8B3}}, {{Gene|ATP8B4}} * Class II, type 9: {{Gene|ATP9A}}, {{Gene|ATP9B}} * Class V, type 10: {{Gene|ATP10A}}, {{Gene|ATP10B}}, {{Gene|ATP10D}} * Class VI, type 11: {{Gene|ATP11A}}, {{Gene|ATP11B}}, {{Gene|ATP11C}} * H+/K+ transporting, nongastric: {{Gene|ATP12A}} * type 13: {{Gene|ATP13A1}}, {{Gene|ATP13A2}}, {{Gene|ATP13A3}}, {{Gene|ATP13A4}}, {{Gene|ATP13A5}} ==See also== *[[ATP synthase]] *[[ATP synthase alpha/beta subunits]] *[[AAA proteins]] *[[P-ATPase]] ==Additional images== <gallery> Image:AAA+ ATPases (three examples).png|AAA+ ATPases (three examples) </gallery> ==External links== *[http://www.biologie.uni-osnabrueck.de/biophysik/Feniouk/Home.html "ATP synthase - a splendid molecular machine"] * {{MeshName|ATPase}} * {{UMichOPM|families|superfamily|5}} - Proton or sodium translocating F- and V-type ATPases * {{UMichOPM|families|superfamily|22}} - Different conformations of P-type ATPase {{Ion pumps}} {{Acid anhydride hydrolases}} {{ATPases}} [[Category:EC 3.6.3]] [[Category:Integral membrane proteins]] [[de:ATPasen]] [[es:ATPasa]] [[fr:ATPase]] [[lt:ATFazė]] [[nl:ATPase]] [[ja:ATPアーゼ]] [[pt:ATPase]] [[ru:Аденозинтрифосфатазы]] [[vi:ATPase]] [[zh:ATP酶]] [[ru:Аденозинтрифосфатазы]]