Anaesthetic machine 630668 219495972 2008-06-15T14:33:27Z 122.168.61.57 corrected the nomenclature from 'anaesthetists' to 'anaesthesiologists' [[Image:Latex-free project 111.jpg|right|thumb|An anaesthetic machine]] The '''anaesthetic machine''' (or '''anesthesia machine''' in America) is used by [[anaesthesiologists]] to support the administration of [[anaesthesia]]. The most common type of anaesthetic machine in use in the developed world is the '''continuous-flow anaesthetic machine''', which is designed to provide an accurate and continuous supply of medical gases (such as [[oxygen]] and [[nitrous oxide]]), mixed with an accurate concentration of anaesthetic vapour (such as [[isoflurane]]), and deliver this to the patient at a safe [[pressure]] and flow. Modern machines incorporate a ventilator, suction unit, and patient-monitoring devices. The original concept was invented by the British anaesthetist H.E.G. Boyle in 1917. Prior to this time, anaesthetists often carried all their equipment with them, but the development of heavy, bulky cylinder storage and increasingly elaborate airway equipment meant that this was no longer practical for most circumstances. The anaesthetic machine is usually mounted on wheels for convenient transportation. Simpler anaesthetic apparatus may be used in special circumstances, such as the [[TriService Apparatus]], a simplified anaesthesia delivery system invented for the British [[armed forces]], which is light and portable and may be used effectively even when no medical gases are available. Many of the early innovations in U.S. anaesthetic equipment, including the closed circuit carbon-dioxide absorber (aka: the Guedel-Foregger Midget) and diffusion of such equipment to anaesthetists within the United States can be attributed to [[Dr. Richard von Foregger]] and [[The Foregger Company]]. ==Components of a typical machine== [[Image:anesthesia machine simple schm.png|left|thumb|250px|Simple schematic of an anaesthesia machine]] A modern machine typically includes the following components: * connections to piped hospital [[oxygen]], medical [[air]], and [[nitrous oxide]]. Pipeline pressure from the hospital medical gas system (wall outlet) should be around 400 kPa (60 psi; 4 atmospheres). * reserve [[gas cylinder]]s of oxygen, air, and nitrous oxide attached via a specific yoke with a [[Bodok seal]]. Older machines may have cylinder yokes and flow meters for [[carbon dioxide]] and [[cyclopropane]]. Many newer machines only have oxygen reserve cylinders. The regulators for the cylinders are set at 300 kPa (45 psi; 3 atmospheres). If the cylinders are left on and the machine is plugged into the wall outlet, gas from the wall supply will be used preferentially, since it is at a higher pressure. In situations where pipeline gases are not available, machines may safely be used from cylinders alone, provided fresh cylinders are available. * a high-flow oxygen flush which provides pure oxygen at 30 litres/minute * pressure gauges and regulators to protect the machine components and patient from high-pressure gases * flow meters ([[rotameter]]s) for oxygen, air, and nitrous oxide, which are used by the anaesthetist to provide accurate mixtures of medical gases to the patient. Flow meters are typically pneumatic, but increasingly electromagnetic digital flow meters are being used. * one or more [[anaesthetic vaporiser]]s to accurately add [[volatile anaesthetic]]s to the [[fresh gas flow]] * a [[Medical ventilator|ventilator]] * [[Anaesthetic monitoring|physiological monitors]] to monitor the patient's [[heart rate]], [[ECG]], [[blood pressure]] and [[oxygen saturation]] (additional monitors are generally available to monitor [[temperature]], [[arterial blood pressure]] [[central venous pressure]], etc.). In addition, the composition of the gases delivered to the patient (and breathed out) is monitored continuously. * [[breathing circuits]], most commonly a '''circle attachment''' ..breathing hoses connected to a [[oxygen mask|anaesthesia face mask]] * a heat and moisture exchanger (HME) * scavenging system to remove expired anaesthetic gases from the operating room. Scavenged gases are usually vented to the [[atmosphere]]. * suction apparatus There is generally a small work bench built into the machine where airway management equipment is kept within ready reach of the anaesthetist. ==Safety features of modern machines== Based on experience gained from analysis of mishaps, the modern anaesthetic machine incorporates several safety devices, including: * an oxygen failure alarm. In older machines this was a pneumatic device called a [[Ritchie whistle]]. Newer machines have an electronic sensor. * [[Hypoxia (medical)|hypoxic]]-mixture alarms to prevent gas mixtures which contain less than 21% oxygen being delivered to the patient. In modern machines it is impossible to deliver 100% nitrous oxide (or any hypoxic mixture) to the patient to breathe. Oxygen is automatically added to the fresh gas flow even if the anaesthetist should attempt to deliver 100% nitrous oxide. * ventilator alarms, which warn of disconnection or high airway pressures * interlocks between the vaporisers preventing inadvertent administration of more than one volatile agent concurrently * alarms on all the above physiological monitors * the [[Pin Index Safety System]] prevents cylinders being accidentally connected to the wrong yoke * the NIST (Non-Interchangeable Screw Thread) system for pipeline gases, which prevents piped gases from the wall being accidentally connected to the wrong inlet on the machine * pipeline gas hoses have non-interchangeable [[Schrader valve]] connectors, which prevents hoses being accidentally plugged into the wrong wall socket The functions of the machine should be checked at the beginning of every operating list in a "cockpit-drill". Machines and associated equipment must be maintained and serviced regularly. Older machines may lack some of the safety features and refinements present on newer machines. However, they were designed to be operated without [[mains electricity]], using compressed gas power for the ventilator and suction apparatus. Modern machines often have [[battery (electricity)|battery]] backup, but may fail when this becomes depleted. The modern anaesthetic machine still retains all the key working principles of the Boyle's machine (a [[The BOC Group|British Oxygen Company]] trade name in honour of the British anaesthetist H.E.G. Boyle ([[1875]]-[[1941]]). A two-person (Operating Theatre Practitioner and anaesthetist) pre-use check of the anaesthetic machine is recommended before every single case and has been shown to decrease the risk of 24-hour severe postoperative morbidity and mortality (Arbous et al Anesthesiology 2005). Various regulatory and professional bodies have formulated checklists for different countries - see http://vam.anest.ufl.edu/guidelines.html. A free transparent reality simulation of the checklist recommended by the United States Food & Drug Administration is available from the Virtual Anesthesia Machine web site ( see below) after registration which is also free. ==External links== *[http://vam.anest.ufl.edu/wip.html Virtual Anesthesia Machine (VAM)] — a free transparent reality simulation of a generic anesthesia machine from the [[University of Florida]] *[http://www.simanest.org/ Various anesthesia-related simulations] *[http://www.virtual-anaesthesia-textbook.com/vat/machine.htm Virtual Anaesthesia Textbook] *[http://www.frca.co.uk/ FRCA UK] — resources for UK anaesthetist in training *[http://www.lifelongcompany.com/ History of Dr. Richard von Foregger and the Foregger Company] — written by his son, Dr. R. Foregger, this website chronicles one of the leading manufacturers and developers of anesthesiology equipment in the early 20th century. [[Category:Anesthetic equipment]] [[Category:Machines]] [[de:Narkosegerät]]