Biomedical engineering 4827 224138054 2008-07-07T14:12:46Z 198.169.189.226 /* Founding figures */ [[Image:JARVIK 7 artificial heart.jpg|right|thumb|250px|A JARVIK-7 [[artificial heart]], an example of a biomedical engineering application of [[mechanical engineering]] with [[biocompatible material]]s for [[cardiothoracic surgery]] using an [[artificial organ]].]] {{Portal|Engineering}} '''Biomedical engineering''' ('''BME''') is the application of engineering principles and techniques to the medical field. It combines the design and problem solving skills of [[engineering]] with medical and biological sciences to help improve patient health care and the quality of life of individuals. As a relatively new discipline, much of the work in biomedical engineering consists of [[research and development]], covering an array of fields: [[bioinformatics]], medical imaging, [[image processing]], physiological signal processing, [[biomechanics]], [[biomaterials]] and [[bioengineering]], systems analysis, [[3-D modeling]], ''etc.'' Examples of concrete applications of biomedical engineering are the development and manufacture of biocompatible [[prosthesis|prostheses]], [[medical device]]s, diagnostic devices and imaging equipment such as [[MRI]]s and [[EEG]]s, and pharmaceutical [[medication|drugs]]. ==Disciplines in biomedical engineering== [[Image:Opampinstrumentation.svg|250px|right|thumb|Biomedical [[instrumentation amplifier]] schematic used in monitoring low voltage biological signals, an example of a biomedical engineering application of [[electronic engineering]] to [[electrophysiology]].]] Biomedical engineering is widely considered an interdisciplinary field, resulting in a broad spectrum of disciplines that draw influence from various fields and sources. Due to the extreme diversity, it is not atypical for a biomedical engineer to focus on a particular aspect. There are many different taxonomic breakdowns of BME, one such listing defines the aspects of the field as such:<ref>[http://www.bmes.org/pdf/vol30_1.pdf BMES Bulletin], Vol. 30, November 2006</ref> *[[bioelectricity|Bioelectrical]] and [[neural engineering]] *Biomedical imaging and biomedical optics *[[Biomaterials]] *[[Biomechanics]] and [[transport phenomena|biotransport]] *[[medical device|Biomedical devices]] and instrumentation *[[molecular engineering|Molecular]], cellular and [[tissue engineering]] *[[Systems biology|Systems and integrative engineering]] In other cases, disciplines within BME are broken down based on the closest association to another, more established engineering field, which typically include: *[[Chemical engineering]] - often associated with [[biochemical engineering|biochemical]], cellular, [[molecular engineering|molecular]] and [[tissue engineering]], [[biomaterials]], and [[transport phenomena|biotransport]]. *[[Electrical engineering]] - often associated with [[bioelectricity|bioelectrical]] and [[neural engineering]], bioinstrumentation, biomedical imaging, and [[medical devices]]. *[[Mechanical engineering]] - often associated with [[biomechanics]], [[transport phenomena|biotransport]], [[medical devices]], and modeling of [[systems biology|biological systems]]. *[[Optics]] and [[Optical engineering]] - biomedical optics, imaging and [[medical devices]]. ===Clinical engineering=== {{main|Clinical engineering}} [[Image:Silicone gel-filled breast implants.jpeg|left|thumb|200px| [[Breast implants]], an example of a biomedical engineering application of [[biocompatible material]]s to [[cosmetic surgery]].]] [[Clinical engineering]] is a branch of biomedical engineering for professionals responsible for the management of [[medical equipment]] in a hospital. The tasks of a clinical engineer are typically the acquisition and management of medical device inventory, supervising [[Biomedical Equipment Technician|biomedical engineering technicians (BMETs)]], ensuring that safety and regulatory issues are taken into consideration and serving as a technological consultant for any issues in a hospital where medical devices are concerned. Clinical engineers work closely with the IT department and medical physicists. [[Image:SinusRhythmLabels.svg|200px|right|thumb|Schematic representation of normal ECG trace showing ''[[sinus rhythm]],'' an example of a biomedical engineering application of [[electronic engineering]] to [[electrophysiology]] and [[medical diagnosis]].]] A typical biomedical engineering department does the corrective and preventive maintenance on the medical devices used by the hospital, except for those covered by a warranty or maintenance agreement with an external company. All newly acquired equipment is also fully tested. That is, every line of [[Computer software|software]] is executed, or every possible setting is exercised and [[verification|verified]]. Most devices are intentionally simplified in some way to make the testing process less expensive, yet accurate. Many biomedical devices need to be [[Sterilization (microbiology)|sterilized]]. This creates a unique set of problems, since most sterilization techniques can cause damage to machinery and materials. Most medical devices are either inherently safe, or have added devices and systems so that they can sense their failure and shut down into an unusable, thus very safe state. A typical, basic requirement is that no single failure should cause the therapy to become unsafe at any point during its life-cycle. See [[safety engineering]] for a discussion of the procedures used to design safe systems. ===Medical devices=== {{main|Medical devices|medical equipment}} A medical device is intended for use in: * the diagnosis of disease or other conditions, or * in the cure, mitigation, treatment, or prevention of disease, * intended to affect the structure or any function of the body of man or other animals, and which does not achieve any of its primary intended purposes through chemical action and which is not dependent upon being metabolized for the achievement of any of its primary intended purposes. [[Image:insulin_pump_with_infusion_set.jpg|200px|right|thumb|A [[insulin_pump|pump]] for continuous subcutaneous insulin infusion, an example of a biomedical engineering application of [[electrical engineering]] to [[medical equipment]].]] Some examples include [[artificial pacemaker|pacemaker]]s, [[infusion pump]]s, the [[heart-lung machine]], [[dialysis]] machines, [[tissue engineering|artificial organs]], [[implant (medicine)|implants]], [[artificial limb]]s, [[corrective lenses]], [[cochlear implant]]s, [[ocular prosthetics]], [[facial prosthetics]], somato prosthetics, and [[dental implant]]s. [[Stereolithography]] is a practical example on how medical modeling can be used to create physical objects. Beyond modeling organs and the human body, emerging engineering techniques are also currently used in the research and development of new devices for innovative [http://www.cancerjournal.net/article.asp?issn=0973-1482;year=2006;volume=2;issue=4;spage=186;epage=195;aulast=Hede therapies], [http://www.ingentaconnect.com/content/klu/pham/2006/00000023/00000007/00010284;jsessionid=8tqn6da8a03l0.alice treatments], [http://www.ncd.gov/newsroom/publications/2006/emerging_trends.htm patient monitoring], and early [http://www.futuremedicine.com/doi/abs/10.2217/17435889.1.1.67 diagnosis] of complex diseases. Medical devices can be regulated and classified (in the US) as shown below: #Class I devices present minimal potential for harm to the user and are often simpler in design than Class II or Class III devices. Devices in this category include tongue depressors, bedpans, elastic bandages, examination gloves, and hand-held surgical instruments and other similar types of common equipment. #Class II devices are subject to special controls in addition to the general controls of Class I devices. Special controls may include special labeling requirements, mandatory performance standards, and postmarket surveillance. Devices in this class are typically non-invasive and include x-ray machines, PACS, powered wheelchairs, infusion pumps, and surgical drapes. #Class III devices require premarket approval, a scientific review to ensure the device's safety and effectiveness, in addition to the general controls of Class I. Examples include replacement heart valves, silicone gel-filled breast implants, implanted cerebellar stimulators, implantable pacemaker pulse generators and endosseous (intra-bone) implants. ===Medical imaging=== {{main|Medical imaging}} [[Image:brain_chrischan.jpg|thumb|200px|right|An [[MRI]] scan of a human head, an example of a biomedical engineering application of [[electrical engineering]] to [[diagnostic imaging]]. [[:Image:brain chrischan 300.gif|Click here]] to view an animated sequence of slices.]]Imaging technologies are often essential to medical diagnosis, and are typically the most complex equipment found in a hospital including: *[[Fluoroscopy]] *[[Magnetic resonance imaging]] (MRI) *[[Nuclear Medicine]] *[[Positron Emission Tomography]] (PET) [[Positron emission tomography|PET scans]][[PET-CT scanning|PET-CT scans]] *Projection Radiography such as [[X-ray]]s and [[Computed tomography|CT scans]] *[[Tomography]] *[[Ultrasound]] *[[Electron Microscopy]] ===Tissue engineering=== {{main|Tissue engineering}} One of the goals of tissue engineering is to create artificial organs for patients that need organ transplants. Biomedical engineers are currently researching methods of creating such organs. In one case bladders have been grown in lab and transplanted successfully into patients.<ref name="cnngrow">[http://www.cnn.com/2006/HEALTH/conditions/04/03/engineered.organs/index.html Doctors grow organs from patients' own cells], ''[[CNN]]'', April 3, 2006</ref> Bioartificial organs, which utilize both synthetic and biological components, are also a focus area in research, such as with hepatic assist devices that utilize liver cells within an artificial bioreactor construct.<ref name="chicagoliver">[http://www.uchospitals.edu/news/1999/19990225-elad.html Trial begins for first artificial liver device using human cells], [[University of Chicago]], February 25, 1999</ref> ==Regulatory issues== [[Image:Army_prosthetic.jpg|right|thumb|160px|[[Artificial limb]]s: The right arm is an example of a [[prosthesis]], and the left arm is an example of [[Transradial prosthesis|myoelectric control]].]] Regulatory issues are never far from the mind of a biomedical engineer. To satisfy safety regulations, most biomedical systems must have documentation to show that they were managed, designed, built, tested, delivered, and used according to a planned, approved process. This is thought to increase the quality and safety of diagnostics and therapies by reducing the likelihood that needed steps can be accidentally omitted again. In the United States, biomedical engineers may operate under two different regulatory frameworks. Clinical devices and technologies are generally governed by the [[Food and Drug Administration]] (FDA) in a similar fashion to pharmaceuticals. Biomedical engineers may also develop devices and technologies for consumer use, such as physical therapy devices, which may be governed by the [[Consumer Product Safety Commission]]. See [http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=807 US FDA 510(k) documentation process] for the [[United States|US]] government registry of biomedical devices. [[Image:746px-Hip replacement Image 3684-PH.jpg|thumb|left|200px|Implants, such as [[artificial hip]] joints, are generally extensively regulated due to the invasive nature of such devices.]] Other countries typically have their own mechanisms for regulation. In Europe, for example, the actual decision about whether a device is suitable is made by the prescribing doctor, and the regulations are to assure that the device operates as expected. Thus in Europe, the governments license certifying agencies, which are for-profit. Technical committees of leading engineers write recommendations which incorporate public comments and are adopted as regulations by the [[European Union]]. These recommendations vary by the type of device, and specify tests for safety and efficacy. Once a prototype has passed the tests at a certification lab, and that model is being constructed under the control of a certified quality system, the device is entitled to bear a [[CE mark]], indicating that the device is believed to be safe and reliable when used as directed. The different regulatory arrangements sometimes result in technologies being developed first for either the U.S. or in Europe depending on the more favorable form of regulation. Most safety-certification systems give equivalent results when applied diligently. Frequently, once one such system is satisfied, satisfying the other requires only paperwork. == Biomedical engineering training== === Education === [[Image:Prosthetic eye.png|thumb|200px|A [[prosthetic eye]], an example of a biomedical engineering application of [[mechanical engineering]] and [[biocompatible material]]s to [[ophthalmology]].]] Biomedical engineers combine sound knowledge of engineering and biological science, and therefore tend to have a bachelors of science and advanced degrees from major universities, who are now improving their biomedical engineering curriculum because interest in the field is increasing. Many colleges of engineering now have a biomedical engineering program or department from the undergraduate to the doctoral level. Traditionally, biomedical engineering has been an interdisciplinary field to specialize in after completing an undergraduate degree in a more traditional discipline of engineering or science, the reason for this being the requirement for biomedical engineers to be equally knowledgeable in engineering and the biological sciences. However, undergraduate programs of study combining these two fields of knowledge are becoming more widespread, including programs for a [[Bachelor of Science in Biomedical Engineering]]. As such, many students also pursue an undergraduate degree in biomedical engineering as a foundation for a continuing education in [[medical school]]. Though the number of biomedical engineers is currently low (as of 2004, under 10,000 in the U.S.), the number is expected to rise as modern medicine and technology improves.<ref>[http://www.bls.gov/oco/ocos027.htm U.S. Bureau of Labor Statistics] - Profile for Engineers</ref> In the U.S., an increasing number of [[undergraduate]] programs are also becoming recognized by [[ABET]] as accredited bioengineering/biomedical engineering programs. Over 40 programs are currently accredited by ABET.<ref>[http://www.bmes.org/accreditation/accredited_eng_pgms.asp Accredited Biomedical Engineering Programs]</ref><ref>[http://www.abet.org/schoolalleac.asp ABET List of Accredited Engineering Programs]</ref> As with many degrees, the reputation and ranking of a program may factor into the desirability of a degree holder for either employment or graduate admission. The reputation of many undergraduate degrees are also linked to the institution's graduate or research programs, which have some tangible factors for rating, such as research funding and volume, publications and citations. [[Graduate school|Graduate education]] is also an important aspect in BME. Although many engineering professions do not require graduate level training, BME professions often recommend or require them.<ref>[http://www.bls.gov/oco/ocos027.htm#outlook U.S. Bureau of Labor Statistics] - Job Outlook for Engineers</ref> Since many BME professions often involve scientific research, such as in the [[pharmaceutical]] and [[medical device]] industries, graduate education may be highly desirable as undergraduate degrees typically do not provide substantial research training and experience. Graduate programs in BME, like in other scientific fields, are highly varied and particular programs may emphasize certain aspects within the field. They may also feature extensive collaborative efforts with programs in other fields, owing again to the interdisciplinary nature of BME. Education in BME also varies greatly around the world. By virtue of its extensive biotechnology sector, numerous major universities, and few internal barriers, the U.S. has progressed a great deal in the development of BME education and training. Europe, which also has a large biotechnology sector and an impressive education system, has encountered trouble in creating uniform standards as the European community attempts to bring down some of the national barriers that exist. Recently, initiatives such as BIOMEDEA have sprung up to develop BME-related education and professional standards.<ref>[http://www.bmt.uni-stuttgart.de/biomedea/biomedea.htm BIOMEDEA]</ref> Other countries, such as Australia, are recognizing and moving to correct deficiencies in their BME education.<ref>[http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA410442 Biomedical Engineering Curriculum:] A Comparison Between the USA, Europe and Australia</ref> Also, as high technology endeavors are usually marks of developed nations, some areas of the world are prone to slower development in education, including in BME. === Professional certification === {{see also|Professional engineer}} Engineers typically require a type of professional certification, such as satisfying certain education requirements and passing an examination to become a [[professional engineer]]. These certifications are usually nationally regulated and registered, but there are also cases of self-governing bodies, such as the Canadian Association of Professional Engineers. In many cases, carrying the title of "Professional Engineer" is legally protected. As BME is an emerging field, professional certifications are not as standard and uniform as they are for other engineering fields. For example, the [[Fundamentals of Engineering exam]] in the U.S. does not include a biomedical engineering section, though it does cover biology. Biomedical engineers often simply possess a university degree as their qualification. However, some countries, such as Australia, do regulate biomedical engineers, however registration is typically only recommended and not required.<ref>[http://www.nerb.org.au/aop/nper_areas_biomedical.cfm National Engineering Registration Board - Areas Of Practice - NPER Areas<!-- Bot generated title -->]</ref> ==Founding figures== * [[Leslie Geddes]] - [[Professor Emeritus]] at [[Purdue University]], electrical engineer, inventor and educator of over 2000 biomedical engineers, received a [[National Medal of Technology]] in 2006 from President George Bush<ref>[http://www.youtube.com/watch?v=2pZJVE51Vao YouTube - Leslie Geddes - 2006 National Medal of Technology<!-- Bot generated title -->]</ref> for his more than 50 years of contributions that have spawned innovations ranging from burn treatments to miniature defibrillators, ligament repair to tiny blood pressure monitors for premature infants, as well as a new method for performing [[cardiopulmonary resuscitation]] (CPR). * [[Yuan-Cheng Fung|Y. C. Fung]] - [[professor emeritus]] at the [[University of California, San Diego]], considered by many to be the founder of modern [[Biomechanics]]<ref>[http://www.techscience.com/mcb_pdf/v1n1/pdf/184288277842.pdf YC “Bert” Fung: The Father of Modern Biomechanics (pdf)]</ref> * [[Robert Langer]] - [[Institute Professor]] at [[MIT]], runs the largest BME laboratory in the world, pioneer in [[drug delivery]] and [[tissue engineering]]<ref>[http://web.mit.edu/newsoffice/2006/langer.html Colleagues honor Langer for 30 years of innovation], MIT News Office</ref> * [[Otto Schmitt]] (deceased) - biophysicist with significant contributions to BME, working with [[biomimetics]] * [[Ascher Shapiro]] (deceased) - [[Institute Professor]] at [[MIT]], contributed to the development of the BME field, medical devices (e.g. intra-aortic balloons) * [[John G. Webster]] - [[Professor Emeritus]] at the [[University of Wisconsin-Madison]], a pioneer in the field of [[instrumentation amplifier]]s for the recording of [[electrophysiology|electrophysiological signals]] * [[U. A. Whitaker]] (deceased) - provider of The [[Whitaker Foundation]], which supported research and education in BME by providing over $700 million to various universities, helping to create 30 BME programs and helping finance the construction of 13 buildings<ref>[http://www.whitaker.org/ The Whitaker Foundation]</ref> * [[Alfred E. Mann]] - Physicist, entrepreneur and philanthropist.<ref> http://en.wikipedia.org/wiki/Alfred_E._Mann</ref> A pioneer in the field of Biomedical Engineering. <ref>http://www.aemf.org/The Alfred E. Mann Foundation for Scientific Research (AMF)</ref> ==See also== * [[List of biomedical engineering topics]] * [[Bioengineering]] ==Notes== <div class="references-small"> <references/> </div> ==Further reading== *Bronzino, Joseph D. (2000). ''The Biomedical Engineering Handbook - Second Edition''. [[CRC Press]]. **''Volume 1''. ISBN 0-8493-0461-X. **''Volume 2''. ISBN 0-8493-0462-8. ==External links== {{WVD}} <!--===========================({{NoMoreLinks}})===============================--> <!--| DO NOT ADD MORE LINKS TO THIS ARTICLE. WIKIPEDIA IS NOT A COLLECTION OF |--> <!--| LINKS. If you think that your link might be useful, do not add it here, |--> <!--| but put it on this article's discussion page first or submit your link |--> <!--| to the appropriate category at the Open Directory Project (www.dmoz.org)|--> <!--| and link back to that category using the {{dmoz}} template. |--> <!--| |--> <!--| Links that have not been verified WILL BE DELETED. |--> <!--| See [[Wikipedia:External links]] and [[Wikipedia:Spam]] for details |--> <!--===========================({{NoMoreLinks}})===============================--> '''Organizations''' *[http://www.accenet.org/ American College of Clinical Engineering (ACCE)] *[http://www.aime.org.uk/ Association of Institutions concerned with Medical Engineering (UK)] *[http://www.embs.org/ IEEE Engineering in Medicine and Biology Society ] *[http://www.bmecareer.org/ Biomedical Engineering Career Alliance] *[http://www.becon.nih.gov/becon.htm Biomedical engineering at the NIH] *[http://www.medicalengineer.co.uk/ Biomedical Engineering website] *[http://www.dmts.dk/ Danish Society for Biomedical Engineering] *[http://www.ebme.co.uk/ EBME - Biomedical and Clinical Engineering] *[http://www.whitaker.org/home.html The Whitaker Foundation] *[http://www.bmenet.org/BMEnet/ The Biomedical Engineering Network] *[http://www.bmes.org The Biomedical Engineering Society (US)] *[http://www.cmbes.ca/ The Canadian Medical and Biological Engineering Society] *[http://www.thaibme.org/ Thai Biomedical Engineering Research Society (ThaiBME)] *[http://www.medikalteknoloji.com/ The Turkey Biomedical Engineering (Turkey)] *[http://www.ar-bme.com the Arabic biomedical engineering source (arabic BME)] *[http://biomed.um.edu.my/msmbe/ Malaysian Society of Medical and Biological Engineering (MSMBE)] *[http://bme.asn.au/wiki/index.php/Main_Page Australian Biomedical Engineering Community] *[http://www.imperial.ac.uk/biomedeng Imperial College London, Institute of Biomedical Engineering (IBE)] '''Job finders''' *[http://www.bmejobs.com Biomedical Engineering Jobs] *[http://www.ebme.co.uk Biomedical and Clinical Engineering Jobs] *[http://www.bmecareer.org Biomedical Engineering Internships, Co-op's and entry level positions] '''Other sites''' *[http://dmoz.org/Science/Technology/Biomedical_Engineering/ List of Biomedical Engineering Companies and Organizations] at the [[Open Directory Project]] {{Technology}} [[Category:Biomedical engineering|*]] [[Category:Bioengineering]] [[ar:هندسة طبية حيوية]] [[de:Medizintechnik]] [[es:Ingeniería biomédica]] [[fa:مهندسی پزشکی]] [[fr:Génie biomédical]] [[id:Teknik biomedis]] [[it:Ingegneria biomedica]] [[he:הנדסה ביו רפואית]] [[ms:Kejuruteraan bioperubatan]] [[ja:医用生体工学]] [[pl:Inżynieria biomedyczna]] [[pt:Engenharia biomédica]] [[simple:Biomedical engineering]] [[th:วิศวกรรมชีวเวช]] [[tr:Biyomedikal mühendisliği]] [[zh:生物医学工程]]