Canadarm
739891
222102490
2008-06-27T15:53:12Z
ASJ7077
7383996
/* Development */
[[Image:Canada arm.jpg|thumb|250px|right|View of the Canadarm during a Space Shuttle mission.]]
:''For the robotic arm on the [[International Space Station]], see the related [[Canadarm2]]''
The '''Shuttle Remote Manipulator System''' ('''SRMS'''), or '''Canadarm''' (Canadarm 1), is a [[mechanical arm]] used on the [[Space Shuttle]] to maneuver a [[Payload (air and space craft)|payload]] from the payload bay of the orbiter to its deployment position and then release it. It can also grapple a free-flying payload, maneuver it to the payload bay of the orbiter and berth it in the orbiter. It was first used on the second [[Space Shuttle]] mission [[STS-2]], launched [[November 13]], [[1981]]. Since the [[Space Shuttle Columbia disaster|destruction]] of [[Space Shuttle Columbia]] during [[STS-107]], [[NASA]] has outfitted the SRMS with the [[Orbiter Boom Sensor System]], a boom containing instruments to inspect the exterior of the shuttle for damage to the [[Space shuttle thermal protection system| thermal protection system]]. It is expected the SRMS will play this role in all future shuttle missions.
==Specifications==
The SRMS arm is 15.2 [[metre]]s (50 [[foot (unit of length)|ft]] 3 [[inch|in]]) long and 38 [[centimetre]]s (15 inches) in diameter and has six [[Degrees of freedom (engineering)|degrees of freedom]]. It [[weight|weighs]] 410 [[kilogram|kg]] (905 [[pound (mass)|pound]]s), and the total system weighs 450 kg (994 lb). The SRMS has six joints that correspond roughly to the joints of the human arm, with shoulder yaw and pitch joints; an elbow pitch joint; and wrist pitch, yaw, and roll joints. The end effector is the unit at the end of the wrist that actually grabs, or grapples, the payload. The two lightweight boom segments are called the upper and lower arms. The upper boom connects the shoulder and elbow joints, and the lower boom connects the elbow and wrist joints. The SRMS arm attaches to the orbiter payload bay longeron at the shoulder manipulator positioning mechanism. Power and data connections are located at the shoulder MPM.
==Capabilities==
[[Image:STS-115 Truss Handoff.jpg|thumb|right|200px|The SRMS on [[Space Shuttle Atlantis|''Atlantis'']] hands the P3/P4 Truss segment to the [[Canadarm2]] on the [[International Space Station]] during [[STS-115]].]]
The SRMS is capable of deploying or retrieving payloads [[mass|weighing]] up to 29 [[ton]]s (65,000 pounds) in space, though the arm motors are unable to lift the arm's own weight when on the ground. The SRMS can also retrieve, repair and deploy satellites; provide a mobile extension ladder for extravehicular activity crew members for work stations or foot restraints; and be used as an inspection aid to allow the flight crew members to view the orbiter's or payload's surfaces through a television camera on the SRMS.
The basic SRMS configuration consists of a manipulator arm; an SRMS display and control panel, including rotational and translational hand controllers at the orbiter aft flight deck flight crew station; and a manipulator controller interface unit that interfaces with the orbiter computer. Most of the time the arm operators see what they are doing by looking at the [[Advanced Space Vision System]] screen next to the controllers.
One flight crew member operates the SRMS from the aft flight deck control station, and a second flight crew member usually assists with television camera operations. This allows the SRMS operator to view SRMS operations through the aft flight deck payload and overhead windows and through the closed-circuit television monitors at the aft flight deck station.
==Development==
[[SPAR Aerospace]] Ltd., a [[Canada|Canadian]] company, designed, developed, tested and built the SRMS. (SPAR was later indirectly acquired by Richmond, [[British Columbia|B.C.]] based [[MacDonald Dettwiler | MacDonald Dettwiler and Associates (MDA)]], after going through the hands of American company Orbital Sciences Corp. and becoming a part of MD Robotics in Ontario, Canada.) Three systems were constructed within the Design, Development, Test and Evaluation contract, an Engineering Model to assist in the design and testing of the Canadarm, a Qualification Model that was subjected to environmental testing to "qualify" the design for flight and a Flight Unit. The main controls algorithms were developed by SPAR and by subcontractor [[Dynacon]] Inc. of [[Toronto]]. [[CAE (company)|CAE Electronics]] Ltd. in [[Montreal]] provided the display and control Panel and the hand controllers located in the Shuttle aft flight deck, other electronic interfaces, servoamplifiers and power conditioners located on the SRMS were designed and built by SPAR at its Montreal factory. The graphite composite boom that provides the structural connection between the shoulder and the elbow joint and the similar boom that connects the elbow to the wrist were produced by General Dynamics in the U.S. [[Dilworth, Secord, Meagher and Associates]] Ltd. in Toronto was contracted to produce the Engineering model end effector then SPAR evolved the design and produced the Qualification and Flight units. [[Rockwell International]]'s Space Transportation Systems Division designed, developed, tested and built the systems used to attach the SRMS to the payload bay of the orbiter.
In all, five arms (arm 201, 202, 301, 302, and 303) were built and delivered to NASA. Three arms are currently in operation, with arm 302 lost in the Challenger accident.<ref>[http://www.space.gc.ca/asc/eng/exploration/canadarm/flight.asp CSA - Flight History of Canadarm]</ref> <!-- More sources are needed because there is some doubt about the accuracy of the canada space agency on this particular fact of the amount of arms (See talk page) -->
==Usage==
[[Image:STS-116 Payload (NASA S116-E-05364).jpg|thumb|The SRMS in action on the [[Space Shuttle Discovery]] during [[STS-116]].]]
The SRMS was first used on [[STS-2]] in [[1981]], on board the [[Space Shuttle Columbia|''Columbia'']], and has subsequently been used on over 50 shuttle missions. SRMS arms were installed on the 4 other shuttles - it was first flown on board the [[Space Shuttle Challenger|''Challenger'']] during [[STS-7]] in [[1983]], and then in [[1984]] on [[Space Shuttle Discovery|''Discovery'']] during [[STS-41-D]], which was Discovery's first flight. It was used on [[Space Shuttle Atlantis|''Atlantis'']] first during [[STS-61-B]]. The SRMS onboard [[Space Shuttle Challenger|''Challenger'']] was lost during the [[Space Shuttle Challenger disaster|''Challenger'' disaster]] in [[1986]]. An SRMS was next used on [[Space Shuttle Endeavour|''Endeavour'']] during [[STS-49]], the vessel's first flight.
Only [[Space Shuttle Pathfinder]] and [[Space Shuttle Enterprise]] do not have the SRMS, as they both are not fully functional orbiters and lack a payload bay.
Since the installation of the [[Canadarm2]] on the [[International Space Station]], the two arms have been used to hand over segments of the station for assembly from the SRMS to the Canadarm2; the use of both elements in tandem has earned the nickname of 'Canadian Handshake' in the media.
Following the [[Space Shuttle Columbia disaster|''Columbia'' disaster]], the SRMS has been used on every space shuttle flight to inspect the heat shield for damage that may have been caused during launch. It is likely that the arm will be a part of all future shuttle missions.
==See also==
{{portalpar|Robotics|Animation2.gif}}
*[[Canadarm2]], a robotic arm that is part of the [[International Space Station]]'s [[Mobile Servicing System]]
*[[MacDonald Dettwiler|MacDonald Dettwiler and Associates (MDA)]], the makers of Canadarm
*[[European Robotic Arm]], a second robotic arm to be installed on the ISS
*[[Space Shuttle program]]
==References==
{{reflist}}
==External links==
* http://science.ksc.nasa.gov/shuttle/technology/sts-newsref/sts-caws.html#sts-deploy
* http://www.space.gc.ca/asc/eng/exploration/canadarm/default.asp
* [http://archives.cbc.ca/IDD-1-75-1090/science_technology/canadarm/ CBC Digital Archives - Canadarm - A Technology Star]
[[Category:Spacecraft components]]
[[Category:Canadian space program]]
[[Category:Space Shuttle program]]
[[Category:Canadian inventions]]
[[cs:Remote Manipulator System]]
[[de:Remote Manipulator System]]
[[fr:Shuttle Remote Manipulator System]]
[[it:Remote Manipulator System]]
[[ja:シャトル・リモート・マニピュレータ・システム]]
[[sk:Remote Manipulator System]]