Chimney
238377
224700595
2008-07-10T00:57:18Z
Meldshal42
3783630
/* Drawbacks */ moved image
{{wiktionary}}
{{dablink|For the place in [[Oxfordshire]], England, see [[Chimney, Oxfordshire]].}}
{{dablink|For the climbing technique '''chimneying''', see [[Climbing technique]].}}
{{dablink|For the [[Chimneys novels]] of [[Agatha Christie]], see [[The Secret of Chimneys]] and [[The Seven Dials Mystery]].}}
[[Image:Chimney_big_photo.jpg|thumb|70px|right|Factory chimney]]
A '''chimney''' is a system for venting hot [[flue gas|flue gases]] or [[smoke]] from a [[boiler]], [[stove]], [[furnace]] or [[fireplace]] to the outside [[Earth's atmosphere|atmosphere]]. They are typically almost vertical to ensure that the hot gases flow smoothly, drawing air into the [[combustion]] through the chimney effect (also known as the [[stack effect]]). The space inside a chimney is called a ''[[flue]]''. Chimneys may be found in buildings, steam locomotives and ships. In the US, the term '''smokestack''' (colloquially, '''stack''') is also used when referring to locomotive chimneys. The term '''funnel''' is generally used for ship chimneys and sometimes used to refer to locomotive chimneys.<ref>[http://angeles.sierraclub.org/hps/signatures/24h.htm C.F. Saunders (1923), ''The Southern Sierras of California'']</ref><ref>[http://www.literature.org/authors/verne-jules/eighty/chapter-26.html Jules Verne (1872), ''Around the World in Eighty Days'']</ref>. Chimneys are tall to increase their draw of air for combustion and to disperse pollutants in the flue gases over a greater area so as to reduce the pollutant concentrations in compliance with regulatory or other limits.
The term '''chimney''' may also be applied to natural features, particularly in [[rock formation]]s.
==History==
[[Ancient Rome|Romans]] used tubes inside the walls to draw smoke out of bakeries but real chimneys appeared only in northern Europe in the 12th century. Industrial chimneys became common in the late 18th century.
{| align=right
|[[Image:Chimney stacks - Newcastle-Upon-Tyne - England - 140804.jpg|thumbnail|right|Chimney stacks on a building in [[Newcastle upon Tyne]], England]]
|-
|[[image:chimney.stack.london.arp.jpg|thumb|right|Chimney pots in London, England, seen from the tower of Westminster Roman Catholic cathedral]]
|}
Chimneys have traditionally been built of brick, both in small and large buildings. Early chimneys were of a simple brick construction. Later chimneys were constructed by placing the bricks around tile liners. To control downdrafts venting caps (often called ''chimney pots'') with a variety of designs are sometimes placed on the top of chimneys.
[[Image:Seagul sits on top of the chimney cone at The World of Glass.jpg|thumb|right|Seagull sits on top of a hot gas cooling chimney at The World of Glass [[St Helens, Merseyside|St. Helens]] UK.]]In the eighteenth and nineteenth centuries, the methods used to extract [[lead]] from its ore produced large amounts of toxic fumes. In the north of [[England]], long near-horizontal chimneys were built, often more than 3 km (2 mi) long, which typically terminated in a short vertical chimney in a remote location where the fumes would cause less harm. Lead and silver deposits formed on the inside of these long chimneys, and periodically workers would be sent along the chimneys to scrape off these valuable deposits.
==Construction==
Due to brick's limited ability to handle transverse loads, chimneys in houses were often built in a "stack", with a fireplace on each floor of the house sharing a single chimney, often with such a stack at the front and back of the house. Today's [[central heating]] systems have made chimney placement less critical, and the use of non-structural gas vent pipe allows a flue gas conduit to be installed around obstructions and through walls.
In fact, many modern high-efficiency heating appliances do not require a chimney. Such appliances are typically installed near an outside wall, and a noncombustible wall thimble allows [[vent pipe]] to be run directly through the outside wall.
[[Image:Thornbury.chimney.detail.arp.750pix.jpg|thumb|left|Carved brick chimneys characteristic of late Gothic Tudor buildings, at [[Thornbury, South Gloucestershire|Thornbury Castle]], 1514]]
[[Industrial chimney]]s are commonly referred to as [[flue gas stacks]] and are typically external structures, as opposed to being built into the wall of a building. They are generally located adjacent to a steam-generating boiler or industrial furnace and the gases are carried to it with ductwork. Today the use of reinforced [[concrete]] has almost entirely replaced brick as a [[structural]] component in the construction of industrial chimneys. [[Refractory]] bricks are often used as a lining, particularly if the type of fuel being burned generates flue gases containing acids. Modern industrial chimneys sometimes consist of a concrete [[windshield]] with a number of flues on the inside.[[Image:PowerPlantEkibastus.jpg|thumb|right|Flue gas stack at GRES-2 Power Plant in Ekibastus, Kazakhstan is 420 metres tall<ref>[http://www.skyscraperpage.com/diagrams/?20374745 Diagram of 25 tallest flue gas stacks worldwide]</ref>]] The 300 metre chimney at [[Sasol|Sasol Three]] consists of a 26 metre diameter windshield with four 4.6 metre diameter concrete flues which are lined with refractory bricks built on rings of [[corbel]]s spaced at 10 metre intervals. The reinforced concrete can be cast by conventional formwork or sliding formwork. The height is to ensure the pollutants are dispersed over a wider area to meet legislative or safety requirements.
==Chimney Tops==
A chimney pot is placed on top of the chimney to inexpensively extend the length of the chimney, and to improve the chimney's draft. A chimney with more than one pot on it indicates that there is more than one fireplace on different floors sharing the chimney.
A chimney cap is placed on top of the chimney to keep birds and squirrels from nesting in the chimney. They often feature a rain guard to keep rain from going down the chimney. A metal wire mesh is often used as a [[spark arrestor]] to minimize burning debris from rising out of the chimney and making it onto the roof. Although the masonry inside the chimney can absorb a large amount of moisture which later evaporates, rain water can collect at the base of the chimney. Sometimes weep holes are placed at the bottom of the chimney to drain out collected water.
[[Image:Common_wind_chimney_cap_found_on_homes_along_the_Oregon_coast.JPG|thumb|left|Spanish Conquistador style wind directional cap found on many homes along the windy Oregon coast.]]
A [[cowl (chimney)|chimney cowl]] or wind directional cap is helmet shaped chimney cap that rotates to align with the wind and prevent a back draft of smoke and wind back down the chimney.
A chimney damper is a metal spring door placed at the top of the chimney with a long metal chain that allows you to open and close the chimney from the fireplace.
In the late [[Middle Ages]] in [[Western Europe]] the design of [[crow-step]]ped [[gable]]s arose to allow maintenance access to the chimney top, especially for tall structures such as [[castle]]s and great [[manor house]]s.
==Chimney draught or draft==
[[Image:Chimney effect.svg|thumb|right|The stack effect in chimneys: the gauges represent absolute air pressure and the airflow is indicated with light grey arrows. The gauge dials move clockwise with increasing pressure.]]
::(See the [[Flue gas stack]]s article for more details)
When coal, oil, natural gas, wood or any other fuel is combusted in a stove, oven, fireplace, hot water boiler or industrial furnace, the hot combustion product gases that are formed are called flue gases. Those gases are generally exhausted to the ambient outside air through chimneys or industrial flue gas stacks (sometimes referred to as smokestacks).
The combustion flue gases inside the chimneys or stacks are much hotter than the ambient outside air and therefore less [[density|dense]] than the ambient air. That causes the bottom of the vertical column of hot flue gas to have a lower [[pressure]] than the pressure at the bottom of a corresponding column of outside air. That higher pressure outside the chimney is the driving force that moves the required combustion air into the combustion zone and also moves the flue gas up and out of the chimney. That movement or flow of combustion air and flue gas is called "natural draught/draft", [[HVAC#Natural ventilation|"natural ventilation"]], "chimney effect", or [[Stack effect|"stack effect"]]. The taller the stack, the more draught or draft is created.
Designing chimneys and stacks to provide the correct amount of natural draught or draft involves a number design factors, many of which require trial-and-error reiterative methods.
As a "first guess" approximation, the following equation can be used to estimate the natural draught/draft flow rate by assuming that the [[molecular mass]] (i.e., molecular weight) of the flue gas and the external air are equal and that the frictional pressure and heat losses are negligible:<ref>[http://www.arch.hku.hk/teaching/lectures/airvent/sect03.htm Natural Ventilation Lecture]</ref> <br><br>
:<math>Q = C\; A\; \sqrt {2\;g\;H\;\frac{T_i - T_e}{T_i}}</math>
{| border="0" cellpadding="2"
|-
|align=right|where:
|
|-
!align=right| ''Q''
|align=left|= chimney draught/draft flow rate, [[cubic metre|m³]]/s
|-
!align=right| ''A''
|align=left|= cross-sectional area of chimney, [[square metre|m²]] (assuming it has a constant cross-section)
|-
!align=right| ''C''
|align=left|= discharge coefficient (usually taken to be from 0.65 to 0.70)
|-
!align=right| ''g''
|align=left|= [[standard gravity|gravitational acceleration]], 9.807 m/s²
|-
!align=right| ''H''
|align=left|= height of chimney, m
|-
!align=right| ''T<sub>i</sub>''
|align=left|= average temperature inside the chimney, [[kelvin|K]]
|-
!align=right| ''T<sub>e</sub>''
|align=left|= external air temperature, K
|}
==Drawbacks==
A characteristic problem of chimneys is they develop deposits of [[creosote]] on the walls of the structure when used with wood as a [[fuel]]. Some types of wood, such as pine, generate more creosote than others. Deposits of this substance can interfere with the airflow and more importantly, they are [[flammable]] and can cause dangerous [[chimney fire]]s if the deposits ignite in the chimney. Thus, it is recommended — and in some countries even mandatory — that chimneys be inspected annually and cleaned on a regular basis to prevent these problems. The workers who perform this task professionally are called [[chimney sweep]]s. In the [[middle ages]] in some parts of Europe, a [[crow-stepped gable]] design was developed, partially to provide access to chimneys without use of ladders.
[[Image:Ppsmoke.jpg|thumb|left|Smoke billows out of a chimney.]]
Masonry (brick) chimneys have also proved particularly susceptible to crumbling during [[earthquake]]s. Government housing authorities in quake-prone cities like [[San Francisco]] and [[Los Angeles, California|Los Angeles]] now recommend building new homes with stud-framed chimneys around a metal flue. Bracing or strapping old masonry chimneys has not proved to be very effective in preventing damage or injury from earthquakes. Perhaps predictably, a new industry provides "faux-brick" facades to cover these modern chimney structures.
Other problems include "[[spall]]ing" brick, in which moisture seeps into the brick and then freezes, cracking and flaking the brick and loosening mortar seals.
[[Image:LaPedrera-Chimeneas.jpg|thumb|[[Modernisme|Modernist]] chimneys on the [[Casa Milà]] ([[Barcelona]], [[Spain]]), by [[Antonio Gaudí]].]]
==Dual-use chimneys==
Some very high chimneys are used for carrying antennas of [[mobile phone]] services and low power [[FM]]/[[TV]]-transmitters. Special attention must be paid to possible [[corrosion]] problems if these antennas are near the exhaust of the chimney.
In some cases the chimneys of power stations are used also as [[pylon]]s. However this type of construction is not very common, because of corrosion problems of conductor cables.
The [[Dům Dětí a Mládeže v Modřanech]] in [[Prague]], [[Czech Republic]] is equipped with an observation deck.
===Cooling tower used as an industrial chimney===
At some power stations, which are equipped with plants for the removal of [[sulfur dioxide]] and [[nitrogen oxides]], it is possible to use the [[cooling tower]] as a chimney. Such cooling towers can be seen in Germany at the [[Power Station Staudinger Grosskrotzenburg]] and at the [[Power Station Rostock]]. At power stations that are not equipped for removing sulfur dioxide, such usage of cooling towers could result in serious corrosion problems.
==Notable chimneys==
{| cellpadding="2" cellspacing="0" style="border:3px solid #cccccc;"
|- bgcolor="#cccccc"
!Chimney ||width="8%"|Year || Country || Town ||colspan="2" width="16%" |Pinnacle height || width="20%"|Remarks
|-
| [[GRES-2 Power Station]]||1987|| [[Kazakhstan]] || Ekibastusz || 420 m ||1378 ft|| Tallest chimney in the [[World]]
|-
| [[Inco Superstack]]||[[1971]]|| [[Canada]] || Copper Cliff || 385 m || 1263 ft || Tallest chimney in the [[Americas]]
|-
| [[Trbovlje Chimney]]||[[1976]]|| [[Slovenia]] || Trbovlje || 360 m || 1181 ft || Tallest chimney in [[Europe]]
|-
| [[Anaconda Smelter Stack]] ||[[1919]] ||[[USA]] ||Anaconda,<br>Montana ||178 m || 585 ft || Tallest freestanding [[brick]] chimney
|-
| [[Windscale_Pile#The_Windscale_Piles|The Windscale Pile Chimneys]] ||[[1957]] ||[[UK]] ||Windscale,<br>Cumbria ||124m || 406ft || Tallest [[nuclear plant]] chimney and site of world's first reactor accident
|}
==See also==
*[[List of chimneys]]
*[[Cooling tower]]
*[[Flue gas stack]]
*[[Stack effect]]
*[[Chimney fire]]
*[[Count Rumford]]
==References==
<references/>
==External links==
{{commons|Chimney}}
*[http://www.csia.org Chimney Safety Institute of America]
*[http://www.kongres.elektra.ru/FOTO/10.jpg Power Station Konakovskaya GRES,] at which chimneys serve as electricity pylons
*[http://home.clara.net/steve.thackery/stoves/history.htm The Fireplace through History]
*[http://www.myworkman.co.uk/articles/chimney_breast_removal.php Article about chimney breast removal]
*[http://www.eca-europe.org European Chimney Association ECA; to find further information on chimneys]
{{Supertall chimneys}}
[[Category:Architectural elements]]
[[Category:Industrial processes]]
[[Category:Industrial furnaces]]
[[Category:Smoke]]
[[ca:Xemeneia]]
[[cs:Komín]]
[[de:Schornstein]]
[[el:Καπνοδόχος]]
[[es:Chimenea]]
[[eo:Kamentubo]]
[[fr:Cheminée]]
[[gl:Cheminea]]
[[ko:굴뚝]]
[[it:Ciminiera]]
[[he:ארובה]]
[[lt:Kaminas]]
[[nl:Schoorsteen]]
[[ja:煙突]]
[[no:Skorstein]]
[[nrm:Cheunm'née]]
[[pl:Komin]]
[[pt:Chaminé]]
[[scn:Ciminìa]]
[[sl:Dimnik]]
[[sr:Димњак]]
[[fi:Savupiippu]]
[[sv:Skorsten]]
[[wa:Tchiminêye]]
[[vls:Koave]]