Computer security
7398
226013693
2008-07-16T13:11:56Z
Dr Roots
7480414
{{copyedit|date=July 2007}}
{{Citations missing|date=November 2007}}
: ''This article describes how security can be achieved through design and engineering. See the [[computer insecurity]] article for an alternative approach that describes computer security exploits and defenses.''
'''Computer security ''' is a branch of technology known as [[information security]] as applied to [[computer]]s. The objective of computer security varies and can include protection of information from theft or corruption, or the preservation of availability, as defined in the security policy.
Computer security imposes requirements on computers that are different from most system requirements because they often take the form of constraints on what computers are not supposed to do. This makes computer security particularly challenging because we find it hard enough just to make computer programs do everything they are designed to do correctly. Furthermore, negative requirements are deceptively complicated to satisfy and require exhaustive testing to verify, which is impractical for most computer programs. Computer security provides a technical strategy to convert negative requirements to positive enforceable rules. For this reason, computer security is often more technical and mathematical than some [[computer science]] fields. {{Fact|date=March 2008}}
Typical approaches to improving computer security (in approximate order of strength) can include the following:
*Physically limit access to computers to only those who will not compromise security.
*Hardware mechanisms that impose rules on computer programs, thus avoiding depending on computer programs for computer security.
*Operating system mechanisms that impose rules on programs to avoid trusting computer programs.
*Programming strategies to make computer programs dependable and resist subversion.
== Secure operating systems ==
One use of the term computer security refers to technology to implement a secure [[operating system]]. Much of this technology is based on science developed in the 1980s and used to produce what may be some of the most impenetrable operating systems ever. Though still valid, the technology is in limited use today, primarily because it imposes some changes to system management and also because it is not widely understood. Such ultra-strong secure operating systems are based on [[operating system kernel]] technology that can guarantee that certain security policies are absolutely enforced in an operating environment. An example of such a [[Computer security policy]] is the [[Bell-LaPadula model]]. The strategy is based on a coupling of special [[microprocessor]] hardware features, often involving the [[memory management unit]], to a special correctly implemented operating system kernel. This forms the foundation for a secure operating system which, if certain critical parts are designed and implemented correctly, can ensure the absolute impossibility of penetration by hostile elements. This capability is enabled because the configuration not only imposes a security policy, but in theory completely protects itself from corruption. Ordinary operating systems, on the other hand, lack the features that assure this maximal level of security. The design methodology to produce such secure systems is precise, deterministic and logical.
Systems designed with such methodology represent the state of the art of computer security although products using such security are not widely known. In sharp contrast to most kinds of software, they meet specifications with verifiable certainty comparable to specifications for size, weight and power. Secure operating systems designed this way are used primarily to protect national security information, military secrets, and the data of international financial institutions. These are very powerful security tools and very few secure operating systems have been certified at the highest level ([[Trusted Computer System Evaluation Criteria|Orange Book]] A-1) to operate over the range of "Top Secret" to "unclassified" (including Honeywell SCOMP, USAF SACDIN, NSA Blacker and Boeing MLS LAN.) The assurance of security depends not only on the soundness of the design strategy, but also on the assurance of correctness of the implementation, and therefore there are degrees of security strength defined for COMPUSEC. The [[Common Criteria]] quantifies security strength of products in terms of two components, security functionality and assurance level (such as EAL levels), and these are specified in a [[Protection Profile]] for requirements and a [[Security Target]] for product descriptions. None of these ultra-high assurance secure general purpose operating systems have been produced for decades or certified under the Common Criteria.
Secure operating systems designed to meet medium robustness levels of security functionality and assurance have seen wider use within both government and commercial markets. Medium robust systems typically provide nearly all of the security features of the most advanced secure operating systems but do so at a lower assurance level (such as EAL4 or EAL5). These systems are found in use on web servers, guards, database servers, and management hosts and are used not only to protect the data stored on these systems but also to provide a high level of protection for network connections and routing services.
== Security architecture ==
Security Architecture can be defined as the design artifacts that describe how the security controls (security countermeasures) are positioned, and how they relate to the overall information technology architecture. These controls serve the purpose to maintain the system's quality attributes, among them confidentiality, integrity, availability, accountability and assurance."<ref>[http://opensecurityarchitecture.com Definitions: IT Security Architecture]. SecurityArchitecture.org, Jan, 2008</ref>. In simpler words, a security architecture is the plan that shows where security measures need to be placed. If the plan describes a specific solution then, prior to building such a plan, one would make a risk analysis. If the plan describes a generic high level design then (reference architecture) then the plan should be based on a threat analysis.
== Security by design ==
The technologies of computer security are based on [[logic]]. There is no universal standard notion of what secure behavior is. "Security" is a concept that is unique to each situation. Security is extraneous to the function of a computer application, rather than ancillary to it, thus security necessarily imposes restrictions on the application's behavior.
There are several approaches to [[security]] in [[computing]], sometimes a combination of approaches is valid:
#Trust all the software to abide by a security policy but the software is not trustworthy (this is [[computer insecurity]]).
#Trust all the software to abide by a security policy and the software is validated as trustworthy (by tedious branch and path analysis for example).
#Trust no software but enforce a security policy with [[protection mechanism|mechanisms]] that are not trustworthy (again this is [[computer insecurity]]).
#Trust no software but enforce a security policy with trustworthy mechanisms.
Many systems have unintentionally resulted in the first possibility. Since approach two is expensive and non-deterministic, its use is very limited. Approaches one and three lead to failure. Because approach number four is often based on hardware mechanisms and avoids abstractions and a multiplicity of degrees of freedom, it is more practical. Combinations of approaches two and four are often used in a layered architecture with thin layers of two and thick layers of four.
There are myriad strategies and techniques used to design security systems. There are few, if any, effective strategies to enhance security after design.
One technique enforces the [[principle of least privilege]] to great extent, where an entity has only the privileges that are needed for its function. That way even if an [[attacker]] gains access to one part of the system, fine-grained security ensures that it is just as difficult for them to access the rest.
Furthermore, by breaking the system up into smaller components, the complexity of individual components is reduced, opening up the possibility of using techniques such as [[automated theorem proving]] to prove the correctness of crucial software subsystems. This enables a [[closed form solution]] to security that works well when only a single well-characterized property can be isolated as critical, and that property is also assessable to math. Not surprisingly, it is impractical for generalized correctness, which probably cannot even be defined, much less proven. Where formal correctness proofs are not possible, rigorous use of [[code review]] and [[unit testing]] represent a best-effort approach to make modules secure.
The design should use "[[Defense in depth (computing)|defense in depth]]", where more than one subsystem needs to be violated to compromise the integrity of the system and the information it holds. Defense in depth works when the breaching of one security measure does not provide a platform to facilitate subverting another. Also, the cascading principle acknowledges that several low hurdles does not make a high hurdle. So cascading several weak mechanisms does not provide the safety of a single stronger mechanism.
Subsystems should default to secure settings, and wherever possible should be designed to "fail secure" rather than "fail insecure" (see [[fail safe]] for the equivalent in safety engineering). Ideally, a secure system should require a deliberate, conscious, knowledgeable and free decision on the part of legitimate authorities in order to make it insecure.
In addition, security should not be an all or nothing issue. The designers and operators of systems should assume that security breaches are inevitable.
Full [[audit trail]]s should be kept of system activity, so that when a security breach occurs, the mechanism and extent of the breach can be determined. Storing audit trails remotely, where they can only be appended to, can keep intruders from covering their tracks. Finally, [[full disclosure]] helps to ensure that when bugs are found the "[[window of vulnerability]]" is kept as short as possible.
=== Early history of security by design ===
The early [[Multics]] operating system was notable for its early emphasis on computer security by design, and Multics was possibly the very first operating system to be designed as a secure system from the ground up. In spite of this, Multics' security was broken, not once, but repeatedly. The strategy was known as 'penetrate and test' and has become widely known as a non-terminating process that fails to produce computer security. This led to further work on computer security that prefigured modern [[security engineering]] techniques producing [[closed form]] processes that terminate.
== Secure coding ==
If the operating environment is not based on a secure operating system capable of maintaining a domain for its own execution, and capable of protecting application code from malicious subversion, and capable of protecting the system from subverted code, then high degrees of security are understandably not possible. While such secure operating systems are possible and have been implemented, most commercial systems fall in a 'low security' category because they rely on features not supported by secure operating systems (like portability, et al.). In low security operating environments, applications must be relied on to participate in their own protection. There are 'best effort' secure coding practices that can be followed to make an application more resistant to malicious subversion.
In commercial environments, the majority of software subversion [[vulnerability (computer science)|vulnerabilities]] result from a few known kinds of coding defects. Common software defects include [[buffer overflows]], [[format string vulnerabilities]], [[integer overflow]], and [[Code injection|code/command injection]].
Some common languages such as C and C++ are vulnerable to all of these defects (see [http://www.cert.org/books/secure-coding Seacord, ''"Secure Coding in C and C++"'']). Other languages, such as Java, are more resistant to some of these defects, but are still prone to code/command injection and other software defects which facilitate subversion.
Recently another bad coding practice has come under scrutiny; [[dangling pointer]]s. The first known exploit for this particular problem was presented in July 2007. Before this publication the problem was known but considered to be academic and not practically exploitable. <ref>[http://searchsecurity.techtarget.com/originalContent/0,289142,sid14_gci1265116,00.html New hacking technique exploits common programming error]. SearchSecurity.com, July 2007</ref>
In summary, 'secure coding' can provide significant payback in low security operating environments, and therefore worth the effort. Still there is no known way to provide a reliable degree of subversion resistance with any degree or combination of 'secure coding.'
== Capabilities vs. ACLs ==
Within computer systems, the two fundamental means of enforcing privilege separation are [[access control list]]s (ACLs) and [[Capability (computers)|capabilities]]. The semantics of ACLs have been proven to be insecure in many situations (e.g., [[Confused deputy problem]]). It has also been shown that ACL's promise of giving access to an object to only one person can never be guaranteed in practice. Both of these problems are resolved by capabilities. This does not mean practical flaws exist in all ACL-based systems, but only that the designers of certain utilities must take responsibility to ensure that they do not introduce flaws.
Unfortunately, for various historical reasons, capabilities have been mostly restricted to research [[operating system]]s and commercial OSs still use ACLs. Capabilities can, however, also be implemented at the language level, leading to a style of programming that is essentially a refinement of standard object-oriented design. An open source project in the area is the [[E programming language|E language]].
First the Plessey [[System 250]] and then Cambridge [[CAP computer]] demonstrated the use of capabilities, both in hardware and software, in the 1970s, so this technology is hardly new. A reason for the lack of adoption of capabilities may be that ACLs appeared to offer a 'quick fix' for security without pervasive redesign of the operating system and hardware.
The most secure computers are those not connected to the Internet and shielded from any interference. In the real world, the most security comes from [[operating system]]s where [[security]] is not an add-on, such as [[OS/400]] from [[IBM]]. This almost never shows up in lists of vulnerabilities for good reason. Years may elapse between one problem needing remediation and the next.
A good example of a secure system is [[Extremely Reliable Operating System|EROS]]. But see also the article on [[secure operating systems]]. [[FreeBSD#TrustedBSD|TrustedBSD]] is an example of an [[open source]] project with a goal, among other things, of building capability functionality into the [[FreeBSD]] operating system. Much of the work is already done.
== Applications ==
Computer security is critical in almost any technology-driven industry which operates on computer systems. The issues of computer based systems and addressing their countless vulnerabilities are an integral part of maintaining an operational industry. <ref name="FAA Computer Security">J. C. Willemssen, "FAA Computer Security". GAO/T-AIMD-00-330. Presented at Committee on Science, House of Representatives, 2000.</ref>
=== In aviation ===
The aviation industry is especially important when analyzing computer security because the involved risks include expensive equipment and cargo, transportation infrastructure, and human life. Security can be compromised by hardware and software malpractice, human error, and faulty operating environments. Threats that exploit computer vulnerabilities can stem from sabotage, espionage, industrial competition, terrorist attack, mechanical malfunction, and human error. <ref name "Computer Security in Aviation">P. G. Neumann, "Computer Security in Aviation," presented at International Conference on Aviation Safety and Security in the 21st Century, White House Commission on Safety and Security, 1997.</ref>
The consequences of a successful deliberate or inadvertent misuse of a computer system in the aviation industry range from loss of confidentiality to loss of system integrity, which may lead to more serious concerns such as data theft or loss, network and [[air traffic control]] outages, which in turn can lead to airport closures, loss of aircraft, loss of passenger life. [[Military]] systems that control munitions can pose an even greater risk.
A proper attack does not need to be very high tech or well funded for a power outage at an airport alone can cause repercussions worldwide. <ref>J. Zellan, Aviation Security. Hauppauge, NY: Nova Science, 2003, pp. 65-70.</ref>. One of the easiest and, arguably, the most difficult to trace security vulnerabilities is achievable by transmitting unauthorized communications over specific radio frequencies. These transmissions may spoof air traffic controllers or simply disrupt communications altogether. These incidents are very common, having altered flight courses of commercial aircraft and caused panic and confusion in the past. Controlling aircraft over oceans is especially dangerous because radar surveillance only extends 175 to 225 miles offshore. Beyond the radar's sight controllers must rely on periodic radio communications with a third party.
Lightning, power fluctuations, surges, [[brown-out]]s, blown fuses, and various other power outages instantly disable all computer systems, since they are dependent on electrical source. Other accidental and intentional faults have caused significant disruption of safety critical systems throughout the last few decades and dependence on reliable communication and electrical power only
jeopardizes computer safety.
====Notable system accidents====
In 1983, Korean Airlines [[Flight 007]], a [[Boeing 747]] was shot down by Soviet [[SU-15]] jets after a navigation computer malfunction caused the aircraft to steer 185 miles off course into Soviet Union airspace. All 269 passengers were killed. <ref>[http://www.check-six.com/lib/Famous_Missing/KAL_Flight_007.htm KAL Flight 007]. Check-six.com, Mar 2008</ref>
In 1994, over a hundred intrusions were made by unidentified hackers into the Rome Laboratory, the US Air Force's main command and research facility. Using [[trojan horse]] viruses, hackers were able to obtain unrestricted access to Rome's networking systems and remove traces of their activities. The intruders were able to obtain classified files, such as air tasking order systems data and furthermore able to penetrate connected networks of [[National Aeronautics and Space Administration]]'s Goddard Space Flight Center, Wright-Patterson Air Force Base, some Defense contractors, and other private sector organizations, by posing as
a trusted Rome center user. <ref>[http://www.fas.org/irp/gao/aim96084.htm Information Security]. United States Department of Defense, 1986</ref>
[[Electromagnetic interference]] is another threat to computer safety and in 1989, a United States Air Force [[F-16]] jet accidentally dropped a 230 kg bomb in West [[Georgia (country)|Georgia]] after unspecified interference caused the jet's computers to release it.
<ref>[http://catless.ncl.ac.uk/Risks/8.72.html Air Force Bombs Georgia]. The Risks Digest, vol. 8, no. 72, May 1989</ref>
A similar telecommunications accident also happened in 1994, when two [[UH-60 Blackhawk]] helicopters were destroyed by [[F-15]] aircraft in Iraq because the [[IFF]] system's encryption system malfunctioned.
== Terminology ==
The following terms used in engineering secure systems are explained below.
* [[Firewall]]s can either be hardware devices or software programs. They provide some protection from online intrusion, but since they allow some applications (e.g. web browsers) to connect to the Internet, they don't protect against some unpatched vulnerabilities in these applications (e.g. lists of known unpatched holes from [[Secunia]] and [[SecurityFocus]]).
* [[Automated theorem proving]] and other verification tools can enable critical algorithms and code used in secure systems to be mathematically proven to meet their specifications.
* Thus simple [[Microkernel#Microkernels|microkernels]] can be written so that we can be sure they don't contain any bugs: eg [[Extremely Reliable Operating System|EROS]] and [[Coyotos]].
A bigger OS, capable of providing a standard [[Application programming interface|API]] like [[POSIX]], can be built on a secure microkernel using small API servers running as normal programs. If one of these API servers has a bug, the kernel and the other servers are not affected: e.g. [[GNU Hurd|Hurd]] or [[Minix 3]].
* [[Cryptography|Cryptographic]] techniques can be used to defend data in transit between systems, reducing the probability that data exchanged between systems can be intercepted or modified.
* Strong [[authentication]] techniques can be used to ensure that communication end-points are who they say they are.
[[Secure cryptoprocessor]]s can be used to leverage [[physical security]] techniques into protecting the security of the computer system.
* [[Chain of trust]] techniques can be used to attempt to ensure that all software loaded has been certified as authentic by the system's designers.
* [[Mandatory access control]] can be used to ensure that privileged access is withdrawn when privileges are revoked. For example, deleting a user account should also stop any processes that are running with that user's privileges.
* [[Capability (computers)|Capability]] and [[access control list]] techniques can be used to ensure privilege separation and mandatory access control. The next sections discuss their use.
''Some of the following items may belong to the [[computer insecurity]] article:''
<div id="unpatched"></div> <!-- the previous div tag is needed by some articles that link to that part of the article -->
* [[Application software|application]] with known security flaws should not be run. Either leave it turned off until it can be patched or otherwise fixed, or delete it and replace it with some other application. Publicly known flaws are the main entry used by [[Computer worm|worms]] to automatically break into a system and then spread to other systems connected to it. The security website [[Secunia]] provides a search tool for unpatched known flaws in popular products.
[[Image:Encryption - decryption.svg|thumb|300px|[[Cryptography|Cryptographic]] techniques involve transforming information, scrambling it so it becomes unreadable during transmission. The intended recipient can unscramble the message, but eavesdroppers cannot.]]
* [[Backup]]s are a way of securing information; they are another copy of all the important computer files kept in another location. These files are kept on hard disks, [[CD-R]]s, [[CD-RW]]s, and [[tape]]s. Suggested locations for backups are a fireproof, waterproof, and heat proof safe, or in a separate, offsite location than that in which the original files are contained. Some individuals and companies also keep their backups in [[safe deposit box]]es inside [[bank vault]]s. There is also a fourth option, which involves using one of the [[file hosting service]]s that backs up files over the [[Internet]] for both business and individuals.
** Backups are also important for reasons other than security. Natural disasters, such as earthquakes, hurricanes, or tornadoes, may strike the building where the computer is located. The building can be on fire, or an explosion may occur. There needs to be a recent backup at an alternate secure location, in case of such kind of disaster. Further, it is recommended that the alternate location be placed where the same disaster would not affect both locations. Examples of alternate disaster recovery sites being compromised by the same disaster that affects the primary site include having had a primary site in [[World Trade Center]] I and the recovery site in [[7 World Trade Center]], both of which were destroyed in the [[9/11]] attack, and having one's primary site and recovery site in the same coastal region, which leads to both being vulnerable to hurricane damage (e.g. primary site in New Orleans and recovery site in [[Jefferson Parish]], both of which were hit by [[Hurricane Katrina]] in 2005). The backup media should be moved between the geographic sites in a secure manner, in order to prevent them from being stolen.
* [[Anti-virus software]] consists of computer programs that attempt to identify, thwart and eliminate [[computer viruses]] and other malicious software ([[malware]]).
* [[Firewall (networking)|Firewalls]] are systems which help protect computers and computer networks from attack and subsequent intrusion by restricting the network traffic which can pass through them, based on a set of system administrator defined rules.
* Access [[authorization]] restricts access to a computer to group of users through the use of [[authentication]] systems. These systems can protect either the whole computer - such as through an interactive [[logon]] screen - or individual services, such as an [[File Transfer Protocol|FTP]] server. There are many methods for identifying and authenticating users, such as [[password]]s, [[identification card]]s, and, more recently, [[smart card]]s and [[biometric]] systems.
* [[Encryption]] is used to protect the message from the eyes of others. It can be done in several ways by switching the characters around, replacing characters with others, and even removing characters from the message. These have to be used in combination to make the encryption secure enough, that is to say, sufficiently difficult to [[Cryptanalysis|crack]]. [[Public key encryption]] is a refined and practical way of doing encryption. It allows for example anyone to write a message for a list of recipients, and only those recipients will be able to read that message.
* [[Intrusion-detection system]]s can scan a network for people that are on the network but who should not be there or are doing things that they should not be doing, for example trying a lot of passwords to gain access to the network.
* [[Ping]]ing The ping application can be used by potential crackers to find if an IP address is reachable. If a cracker finds a computer they can try a port scan to detect and attack services on that computer.
* [[Social engineering (computer security)|Social engineering]] awareness keeps employees aware of the dangers of social engineering and/or having a policy in place to prevent social engineering can reduce successful breaches of the network and servers.
* [[Honeypot (computing)|Honey pots]] are computers that are either intentionally or unintentionally left vulnerable to attack by crackers. They can be used to catch crackers or fix vulnerabilities.
==Notes==
<div style="font-size:90%;">
<references />
</div>
==References==
<div class="references-small">
* [[Ross Anderson|Ross J. Anderson]]: <cite>[http://www.cl.cam.ac.uk/~rja14/book.html Security Engineering: A Guide to Building Dependable Distributed Systems]</cite>, ISBN 0-471-38922-6
* [[Bruce Schneier]]: <cite>Secrets & Lies: Digital Security in a Networked World</cite>, ISBN 0-471-25311-1
* [[Robert C. Seacord]]: <cite>Secure Coding in C and C++</cite>. Addison Wesley, September, 2005. ISBN 0-321-33572-4
* [[Paul A. Karger]], [[Roger R. Schell]]: [http://www.acsac.org/2002/papers/classic-multics.pdf<cite>Thirty Years Later: Lessons from the Multics Security Evaluation</cite>], IBM white paper.
* [[Clifford Stoll]]: <cite>Cuckoo's Egg: Tracking a Spy Through the Maze of Computer Espionage</cite>, Pocket Books, ISBN 0-7434-1146-3
* [[Stephen Haag]], [[Maeve Cummings]], [[Donald McCubbrey]], [[Alain Pinsonneault]], [[Richard Donovan]]: <cite>Management Information Systems for the information age</cite>, ISBN 0-07-091120-7
* [[Peter G. Neumann]]: [http://www.csl.sri.com/neumann/chats4.pdf <cite>Principled Assuredly Trustworthy Composable Architectures</cite>] 2004
* [[Morrie Gasser]]: [http://cs.unomaha.edu/~stanw/gasserbook.pdf <cite>Building a secure computer system</cite>] ISBN 0-442-23022-2 1988
* [[E. Stewart Lee]]: [http://www.cl.cam.ac.uk/~mgk25/lee-essays.pdf <cite>Essays about Computer Security</cite>] Cambridge, 1999
</div>
== Further reading ==
{{wikibooks|The Information Age}}
* [http://www.wikibooks.org/wiki/The_Information_Age The Information Age] - an e-primer providing a comprehensive review of the digital and information and communications technology revolutions and how they are changing the economy and society. The primer also addresses the challenges arising from the widening digital divide.
* [http://www.theregister.co.uk/2008/03/19/pwn2own_contest_returns/ pwn2own] - a $25,000 computer security competition in which competitors are challenged to create a previously unknown [[security exploit]] and fully penetrate security on a correctly [[patch]]ed Windows, Mac or Linux computer. The 2007 winner took 12 hours to [[cracker|crack]] [[Mac OS X]] security via a vulnerability later classified as "highly critical" by [[Secunia]] [http://www.theregister.co.uk/2007/04/25/quicktime_vuln_fells_mac/].
* [http://www.aviationtoday.com/av/categories/commercial/932.html/ Boeing 787 Integration] - Avionics Magazine provides an overview of computer systems and their security and integration upon [[Boeing]]'s latest and largest long-range airliner, including [[networking]] and fly-by-wire concerns.
* [http://elfguy.net/security.html Security presentations] for how to secure yourself and stay safe online.
{{Portal|Computer security}}
== See also ==
{{col-begin}}
{{col-2}}
* [[Attack tree]]
* [[Authentication]]
* [[Authorization]]
* [[CERT Coordination Center|CERT]]
* [[Chaos Computer Club]]
* [[Computer security model]]
* [[Cryptography]]
* [[Cyber security standards]]
* [[Data security]]
* [[Differentiated security]]
* [[Fault tolerance]]
* [[Firewall (networking)|Firewalls]]
* [[Formal methods]]
* [[Human-computer interaction (security)]]
{{col-2}}
* [[Identity management]]
* [[ISO/IEC 15408]]
* [[Internet privacy]]
* [[Information Leak Prevention]]
* [[Network security]]
* [[Proactive Cyber Defence]]
* [[Penetration test]]
* [[Physical information security]]
* [[Physical security]]
* [[OWASP]]
* [[Security Architecture]]
* [[Separation of protection and security]]
* [[Timeline of hacker history]]
* [[Wireless LAN Security]]
{{col-end}}
[[Category:Computer security|*]]
[[Category:Electronic commerce]]
[[Category:Secure communication|Secure communication]]
[[Category:Computer network security]]
{{Link FA|pl}}
[[ar:أمن الحاسوب]]
[[bs:Sigurnost računara]]
[[ca:Seguretat informàtica]]
[[es:Seguridad informática]]
[[eo:Komputika Sekureco]]
[[eu:Segurtasun informatiko]]
[[fr:Sécurité du système d'information]]
[[ko:컴퓨터 보안]]
[[hr:Računalna sigurnost]]
[[it:Sicurezza informatica]]
[[he:אבטחת מחשב אישי ברשת]]
[[nl:Computerbeveiliging]]
[[ja:コンピュータセキュリティ]]
[[pl:Bezpieczeństwo teleinformatyczne]]
[[pt:Segurança de computadores]]
[[sk:Počítačová bezpečnosť]]
[[sv:Datasäkerhet]]
[[uk:Безпека мережі]]