Dentin
865922
225433040
2008-07-13T17:49:30Z
Thijs!bot
1392310
robot Adding: [[sk:Dentín]]
[[Image:Tooth Section.svg|thumb|250px|Parts of a tooth, including dentin]]
'''Dentin''' ([[British English|BE]]: '''dentine''') is a calcified [[tissue (biology)|tissue]] of the body, and along with [[tooth enamel|enamel]], [[cementum]], and [[pulp (tooth)|pulp]] is one of the four major components of [[teeth]]. Usually, it is covered by enamel on the crown and cementum on the root and surrounds the entire pulp. By weight, seventy percent of dentin consists of the mineral [[hydroxylapatite]], twenty percent is organic material and ten percent is water.<ref name="Cate150">Cate, A.R. Ten. ''Oral Histology: development, structure, and function.'' 5th ed. 1998. Page 150. ISBN 0-8151-2952-1.</ref> Yellow in appearance, it greatly affects the color of a tooth due to the [[translucency]] of enamel. Dentin, which is less mineralized and less brittle than enamel, is necessary for the support of enamel.<ref>Johnson, Clarke. "[http://www.uic.edu/classes/orla/orla312/BHDTwo.html Biology of the Human Dentition]." Page accessed July 18, 2007.</ref>
Dentin consists of microscopic channels, called dentinal tubules, which radiate outward through the dentin from the pulp to the exterior cementum or enamel border.<ref name="ross450">Ross, Michael H., Gordon I. Kaye, and Wojciech Pawlina, 2003. ''Histology: a text and atlas.'' 4th edition. Page 450. ISBN 0-683-30242-6.</ref> These tubules contain fluid and [[cell (biology)|cellular]] structures. As a result, dentin has a degree of permeability which can increase the sensation of pain and the rate of [[dental caries|tooth decay]].
The formation of dentin, known as [[dentinogenesis]], begins prior to the formation of enamel and is initiated by the [[odontoblast]]s of the pulp. Unlike enamel, dentin continues to form throughout life and can be initiated in response to stimuli, such as tooth decay or [[attrition (dental)|attrition]].
There are different types of dentin, differentiated by appearance and stage of development. Primary dentin forms most of the tooth. Secondary dentin develops after root formation is complete and forms much slower than primary dentin. Tertiary dentin forms as a biological response to stimuli.
==Structure==
Dentinal tubules are structures that span the entire thickness of dentin and form as a result of the mechanism of dentin formation. From the outer surface of the dentin to the area nearest the pulp, these tubules follow an S-shaped path. The diameter and density of the tubules are greatest near the pulp.<ref name="Cate152">Cate, A.R. Ten. ''Oral Histology: development, structure, and function.'' 5th ed. 1998. Page 152. ISBN 0-8151-2952-1.</ref> Tapering from the inner to the outermost surface, they have a diameter of 2.5 μm near the pulp, 1.2 μm in the middle of the dentin, and 900 nm at the [[dental-enamel junction|dentino-enamel junction]]. Their density is 59,000 to 76,000 per square millimeter near the pulp, whereas the density is only half as much near the enamel.
Within the tubules, there is an [[odontoblast process]], which is an extension of an odontoblast, and dentinal fluid, which contains a mixture of [[albumin]], [[transferrin]], [[tenascin]] and [[proteoglycan]]s.<ref name="Palosaari2">Palosaari, Heidi. [http://herkules.oulu.fi/isbn9514270789/html/x280.html Matrix metalloproteinases (MMPs) and their specific tissue inhibitors (TIMPs) in mature human odontoblasts and pulp tissue]. Institute of Dentistry, University of Oulu. Page accessed July 18, 2007.</ref> In addition, there are branching canalicular systems that connect to each other. These branches have been categorized by size, with major being 500-1000 μm in diameter, fine being 300-700 μm, and micro being less than 300 μm.<ref name="Cate155">Cate, A.R. Ten. ''Oral Histology: development, structure, and function.'' 5th ed. 1998. Page 155. ISBN 0-8151-2952-1.</ref> The major branches are the terminal ends of the tubules. About every 1-2 μm, there are fine branches diverging from dentinal tubules at 45 degree angles. The microtubules diverge at 90 degree angles.
The porous, yellow-hued material is made up of 70% inorganic materials (mainly [[hydroxylapatite]] and some non-crystalline amorphous [[calcium phosphate]]), 20% organic materials (90% of which is [[collagen]] type 1 and the remaining 10% ground substance, which includes dentine-specific [[protein]]s), and 10% water (which is absorbed on the surface of the minerals or between the crystals). Because it is softer than enamel, it decays more rapidly and is subject to severe cavities if not properly treated, but due to its elastic properties it is a good support for enamel. Its flexibility prevents the brittle enamel fracturing.
The three dimensional configuration of the dentinal tubules is under genetic control and is therefore a characteristic unique to the order, although in many mammalian species the tubules follow a gentle [[helical]] course through the solid matrix.
==Types==
There are three types of dentin, primary, secondary and tertiary.<ref name="zilber42">U. Zilberman, P. Smith. ''Sex- and Age-related Differences in Primary and Secondary Dentin Formation'' Advances in Dental Research, Vol 15, Issue 1, pp.42-45, August, 2001. Retrieved from [http://adr.iadrjournals.org/cgi/reprint/15/1/42.pdf iadrjournals.org]</ref><ref name="Phinney97">Donna J. Phinney, Judy Helen Halstead ''Delmar's Dental Assisting: A Comprehensive Approach'', p.97, Thomson Delmar Learning, ISBN 0766807312</ref> Primary dentin is the outermost layer of dentin and borders the enamel. Secondary dentin is a layer of dentin produced after the root of the tooth is completely formed. Tertiary dentin is created in response to a stimulus, such as a carious attack.
=== Primary dentin ===
Primary dentin, the most prominent dentin in the tooth, lies between the enamel and the pulp chamber. The outer layer closest to enamel is known as mantle dentin. This layer is unique to the rest of primary dentin. Mantle dentin is formed by newly differentiated odontoblasts and forms a layer approximately 150 micrometers wide. Unlike primary dentin, mantle dentin lacks phosphoryn, has loosely packed collagen fibrils and is less mineralized.
Newly secreted dentin is unmineralised and is called predentin. It is easily identified in haematoxylin and eosin stained section since it stains less intensely then dentin. It is usually 10-47 micrometer and lines the innermost region of the dentin. It is unmineralized and consists of collagen, glycoproteins and proteoglycans. It is similar to osteoid in bone and is thickest when dentinogenesis is occurring.
=== Secondary dentin ===
Secondary dentin is formed after root formation is complete, normally after the tooth has erupted and is functional. It grows much slower than primary dentin, but maintains its incremental aspect of growth. It has a similar structure to primary dentin, although its deposition is not always even around the pulp chamber. It is the growth of this dentin that causes the decrease in the size of the pulp chamber with age; cavity preparation in young patients therefore carries a greater risk of exposing the pulp. If this occurs, the pulp will usually undergo necrosis and root canal treatment or extraction usually follow.
=== Tertiary dentin ===
Tertiary dentin is dentin formed as a reaction to external insult such as caries. It is of two types, either reactionary, where dentin is formed from a pre-existing odontoblast or is it reparative, where newly differented odontoblast-like cells are formed due to the death of the original odontoblasts, from a pulpal progenitor cell. Tertiary dentin is only formed by an odontoblast directly affected by stimulus, therefore the architecture and structure depends on the intensity and duration of the stimulus e.g. if the stimulus is a carious lesion, there would be extensive destruction of dentin and damage to the pulp, due to the differentiation of bacterial metabolites and toxins. Thus tertiary dentin is deposited rapidly, with a sparse and irregular tubular pattern and some cellular inclusions known as osteodentin. However if the stimulus is less active, it would be laid down less rapidly with a more regular tubular pattern and hardly any cellular inclusions.
[[Elephant]] [[ivory]] is solid dentin. The structure of the dentinal tubules contributes both to its [[porosity]] (useful for [[piano]] keys) and its [[Elasticity (physics)|elasticity]] (useful for [[billiard balls]].) Elephant tusks are formed with a thin cap of enamel, which soon wears away, leaving the dentin exposed. Exposed dentin in humans causes the symptom of [[dentine hypersensitivity|sensitive teeth]].
Because dentin is softer than enamel, it wears away more quickly than enamel. Some mammalian teeth exploit this phenomenon, especially [[herbivores]] such as [[horses]], [[deer]] or [[elephants]]. In many herbivores, the ''occlusal'' (biting) surface of the tooth is composed of alternating areas of dentin and enamel. Differential wearing causes sharp ridges of enamel to be formed on the surface of the tooth (typically a [[Molar (tooth)|molar]]), and to remain during the working life of the tooth. Herbivores grind their molars together as they chew (''masticate''), and the ridges help to shred tough plant material.
Unlike enamel, dentin may be demineralized and stained for [[histological]] study. Dentin rates approximately 3 on the [[Mohs scale]] of mineral hardness.
A material similar to dentin forms the hard material that makes up [[dermal denticle]]s in [[shark]]s and other cartilaginous fish.
==References==
{{reflist}}
[[Category:Dentistry]]
[[Category:Teeth]]
[[zh-min-nan:Khí-pún-chit]]
[[bs:Dentin]]
[[bg:Дентин]]
[[da:Dentin]]
[[de:Dentin]]
[[es:Dentina]]
[[eo:Dentino]]
[[fr:Dentine]]
[[id:Dentin]]
[[it:Dentina]]
[[he:דנטין]]
[[hu:Dentin]]
[[nl:Dentine]]
[[ja:象牙質]]
[[no:Tannbein]]
[[pl:Zębina]]
[[pt:Dentina]]
[[sk:Dentín]]
[[sr:Дентин]]
[[tr:Dentin]]
[[zh:牙本質]]