Electron configuration 67211 224982564 2008-07-11T08:43:37Z Broadbot 3410049 robot Adding: [[da:Elektronkonfiguration]] [[Image:Electron orbitals.svg|right|thumb|350px|Electron atomic and molecular orbitals]] In [[atomic physics]] and [[quantum chemistry]], '''electron configuration''' is the arrangement of [[electron]]s in an [[atom]], [[molecule]], or other physical structure. Like other [[elementary particle]]s, the electron is subject to the laws of [[quantum mechanics]], and exhibits both particle-like and wave-like nature. Formally, the [[quantum state]] of a particular electron is defined by its [[wave function]], a [[Complex number|complex-valued]] function of space and time. According to the [[Copenhagen interpretation]] of quantum mechanics, the position of a particular electron is not well defined until an act of measurement causes it to be detected. The probability that the act of measurement will detect the electron at a particular point in space is proportional to the square of the absolute value of the wavefunction at that point. Electrons are able to move from one [[energy level]] to another by emission or absorption of a [[quantum]] of energy, in the form of a [[photon]]. Because of the [[Pauli exclusion principle]], no more than two electrons may exist in a given [[atomic orbital]]; therefore an electron may only leap to another orbital if there is a vacancy there. Knowledge of the electron configuration of different atoms is useful in understanding the structure of the [[periodic table]] of elements. The concept is also useful for describing the chemical bonds that hold atoms together. In bulk materials this same idea helps explain the peculiar properties of [[lasers]] and [[semiconductors]]. ==Electron configuration in atoms== ''The discussion below presumes knowledge of material contained at [[Atomic orbital]].'' === Summary of the quantum numbers === The state of an electron in an atom is given by four [[quantum number]]s. Three of these are integers and are properties of the [[atomic orbital]] in which it sits (a more thorough explanation is given in that article). {| cellspacing="0" class="wikitable" border="1" bgcolor="white" |- ! number !! denoted !! allowed range !! represents |- |[[principal quantum number]]||''n''||integer, 1 or more||Partly the overall energy of the orbital, and by extension its general distance from the nucleus. In short, the energy level it is in. (1+) |- |[[azimuthal quantum number]]||''l''||integer, 0 to ''n''-1||The orbital's [[angular momentum]], also seen as the number of [[node (physics)|nodes]] in the [[density plot]] Otherwise known as its orbital. (s=0, p=1...) |- |[[magnetic quantum number]]||''m''||integer, -''l'' to +''l'', including zero.||Determines energy shift of an [[atomic orbital]] due to external [[magnetic field]] ([[Zeeman effect]]). Indicates spatial [[Orientation (geometry)|orientation]]. |- |[[spin quantum number]]||''s''||+½ or -½ (sometimes called "up" and "down")||Spin is an intrinsic property of the electron and independent of the other numbers. ''s'' and ''l'' in part determine the electron's [[magnetic dipole moment]]. |} No two electrons in one atom can have the same set of these four quantum numbers ([[Pauli exclusion principle]]). ===Shells and subshells=== Shells and subshells (also called energy levels and sublevels) are defined by the quantum numbers, not by the distance of its electrons from the nucleus, or even their overall energy. In large atoms, shells above the second shell overlap (see [[Electron configuration#Aufbau principle|Aufbau principle]]). States with the same value of ''n'' are related, and said to lie within the same ''[[electron shell]]''. <br>States with the same value of ''n'' and also ''l'' are said to lie within the same ''[[electron subshell]]'', and those electrons having the same ''n'' and ''l'' are called [[equivalent electrons]]. <br>If the states also share the same value of ''m'', they are said to lie in the same [[atomic orbital]]. <br>Because electrons have only two possible spin states, an atomic orbital cannot contain more than two electrons ([[Pauli exclusion principle]]). A subshell can contain up to 4''l''&nbsp;+&nbsp;2 electrons; a shell can contain up to 2''n''<sup>2</sup> electrons; where ''n'' equals the shell number. ==== Worked example ==== Here is the electron configuration for a filled fifth shell: {| cellspacing="0" border="1" class="wikitable" bgcolor="white" |'''Shell''' || '''Subshell''' || '''Orbitals''' ||&nbsp;|| '''Electrons''' |- |n = 5 || l = 0 || m = 0 || → 1 type s orbital || → max 2 electrons |- |&nbsp;|| l = 1 || m = -1, 0, +1 || → 3 type p orbitals || → max 6 electrons |- |&nbsp;|| l = 2 || m = -2, -1, 0, +1, +2 || → 5 type d orbitals || → max 10 electrons |- |&nbsp;|| l = 3 || m = -3, -2, -1, 0, +1, +2, +3 || → 7 type f orbitals || → max 14 electrons |- |&nbsp;|| l = 4 || m = -4, -3 -2, -1, 0, +1, +2, +3, +4 || → 9 type g orbitals || → max 18 electrons |- |&nbsp;||&nbsp;||&nbsp;||&nbsp;|| '''Total: max 50 electrons''' |- |} This information can be written as 5s<sup>2</sup> 5p<sup>6</sup> 5d<sup>10</sup> 5f<sup>14</sup> 5g<sup>18</sup> (see below for more details on notation). ===Notation=== Physicists and chemists use a standard notation to describe atomic electron configurations. In this notation, a [[subshell]] is written in the form nx<sup>y</sup>, where n is the shell number, ''x'' is the subshell label and y is the number of electrons in the subshell. An atom's subshells are written in order of increasing energy – in other words, the sequence in which they are filled (see [[Aufbau principle]] below). For instance, ground-state [[hydrogen]] has one electron in the s orbital of the first shell, so its configuration is written 1s<sup>1</sup>. [[Lithium]] has two electrons in the 1s subshell and one in the (higher-energy) 2''s'' subshell, so its ground-state configuration is written 1''s''<sup>2</sup> 2''s''<sup>1</sup>. [[Phosphorus]] (atomic number 15), is as follows: 1''s''<sup>2</sup> 2''s''<sup>2</sup> 2''p''<sup>6</sup> 3''s''<sup>2</sup> 3''p''<sup>3</sup>. For atoms with many electrons, this notation can become lengthy and so the [[Noble gas#Noble gas notation|noble gas notation]] is used. It is often abbreviated by noting that the first few subshells are identical to those of one or another [[noble gas]]. Phosphorus, for instance, differs from [[neon]] (1''s''<sup>2</sup> 2''s''<sup>2</sup> 2''p''<sup>6</sup>) only by the presence of a third shell. Thus, the electron configuration of neon is pulled out, and phosphorus is written as follows: [Ne]3''s''<sup>2</sup> 3''p''<sup>3</sup>. An even simpler version is simply to quote the number of electrons in each shell, e.g. (again for phosphorus): 2-8-5. The orbital labels '''s''', '''p''', '''d''', and '''f''' originate from a now-discredited system of categorizing [[spectral lines]] as ''sharp'', ''principal'', ''diffuse'', and ''fundamental'', based on their observed [[fine structure]]. When the first four types of orbitals were described, they were associated with these spectral line types, but there were no other names. The designation '''g''' was derived by following alphabetical order. Shells with more than five subshells are theoretically permissible, but this covers all discovered elements. For [[mnemonic]] reasons, some call the s and p orbitals ''spherical'' and ''peripheral''. ===Aufbau principle===<!-- This section is linked from [[Electron configuration]] --> In the [[ground state]] of an atom (the condition in which it is ordinarily found), the electron configuration generally follows the [[Aufbau principle]]. According to this principle, electrons enter into states in order of the states' increasing energy; i.e., the first electron goes into the lowest-energy state, the second into the next lowest, and so on. The order in which the states are filled is as follows {| cellspacing="0" border="1" class="wikitable" bgcolor="white" |- ! ! <math>s</math> ! <math>p</math> ! <math>d</math> ! <math>f</math> ! <math>g</math> |- ! 1&nbsp;&nbsp; | 1 || || || || |- ! 2&nbsp;&nbsp; | 2 || 3 || || || |- ! 3&nbsp;&nbsp; | 4 || 5 || 7 || || |- ! 4&nbsp;&nbsp; | 6 || 8 || 10 || 13 || |- ! 5&nbsp;&nbsp; | 9 || 11 || 14 || 17 || 21 |- ! 6&nbsp;&nbsp; | 12 || 15 || 18 || 22 || |- ! 7&nbsp;&nbsp; | 16 || 19 || 23 || || |- ! 8&nbsp;&nbsp; | 20 || 24 || || || |} The order of increasing energy of the subshells can be constructed by going through downward-leftward diagonals of the table above (also see the diagram at the top of the page), going from the topmost diagonals to the bottom. The first (topmost) diagonal goes through 1s; the second diagonal goes through 2s; the third goes through 2p and 3s; the fourth goes through 3p and 4s; the fifth goes through 3d, 4p, and 5s; and so on. In general, a subshell that is not "s" is always followed by a "lower" subshell of the next shell; e.g. 2p is followed by 3s; 3d is followed by 4p, which is followed by 5s, 4f is followed by 5d, which is followed by 6p, and then 7s. This explains the ordering of the blocks in the periodic table. A pair of electrons with identical spins has slightly less energy than a pair of electrons with opposite spins. Since two electrons in the same orbital must have opposite spins, this causes electrons to prefer to occupy different orbitals. This preference manifests itself if a subshell with <math>l>0</math> (one that contains more than one orbital) is less than full. For instance, if a ''p'' subshell contains four electrons, two electrons will be forced to occupy one orbital, but the other two electrons will occupy ''both'' of the other orbitals, and their spins will be equal. This phenomenon is called ''[[Hund's rule]]''. The Aufbau principle can be applied, in a modified form, to the [[proton]]s and [[neutron]]s in the [[atomic nucleus]] (see the [[shell model]] of [[nuclear physics]]). ====Orbitals table==== This table shows all orbital configurations up to 7''s'', therefore it covers the simple electronic configuration for all elements from the [[periodic table]] up to [[Ununbium]] (element 112) with the exception of [[Lawrencium]] (element 103), which would require a 7''p'' orbital. {| class="wikitable" |- ! ! ''s'' (l=0) ! ''p'' (l=1) ! ''d'' (l=2) ! ''f'' (l=3) |- !n=1 | [[Image:AtomicOrbital n1 l0.png|50px]] | | | |- !n=2 | [[Image:AtomicOrbital n2 l0.png|50px]] | [[Image:AtomicOrbital n2 l1.png|137px]] | | |- !n=3 | [[Image:AtomicOrbital n3 l0.png|50px]] | [[Image:AtomicOrbital n3 l1.png|137px]] | [[Image:AtomicOrbital n3 l2.png|225px]] | |- !n=4 | [[Image:AtomicOrbital n4 l0.png|50px]] | [[Image:AtomicOrbital n4 l1.png|137px]] | [[Image:AtomicOrbital n4 l2.png|225px]] | [[Image:AtomicOrbital n4 l3.png|313px]] |- !n=5 | [[Image:AtomicOrbital n5 l0.png|50px]] | [[Image:AtomicOrbital n5 l1.png|137px]] | [[Image:AtomicOrbital n5 l2.png|225px]] | |- !n=6 | [[Image:AtomicOrbital n6 l0.png|50px]] | [[Image:AtomicOrbital n6 l1.png|137px]] | | |- !n=7 | [[Image:AtomicOrbital n7 l0.png|50px]] | | | |} ====Exceptions in 3d, 4d, 5d==== A ''d'' subshell that is half-filled or full (ie 5 or 10 electrons) is more stable than the ''s'' subshell of the next shell. This is the case because it takes less energy to maintain an electron in a half-filled ''d'' subshell than a filled ''s'' subshell. For instance, [[copper]] (atomic number 29) has a configuration of [Ar]4s<sup>1</sup> 3d<sup>10</sup>, not [Ar]4s<sup>2</sup> 3d<sup>9</sup> as one would expect by the [[Aufbau principle]]. Likewise, [[chromium]] (atomic number 24) has a configuration of [Ar]4s<sup>1</sup> 3d<sup>5</sup>, not [Ar]4s<sup>2</sup> 3d<sup>4</sup> where [Ar] represents the configuration for argon. Two factors to consider in determining the lowest energy electron configuration for atoms and ions are electron pairing energy and electron exchange energy. Electrons occupying the same orbital will repel slightly and raise the energy of the atom. Removing one electron, for instance from an "s" subshell, will alleviate this unfavorable pairing energy. This is why many of the exceptions to the Aufbau Principle have a ns<sup>1</sup> configuration. Electron exchange is favorable (lowers the energy of the atom) and occurs when electrons can exchange between orbitals. This occurs when there are degenerate electron configurations and electrons of the same spin may exchange from one orbital to the next. Electron exchange energy is maximized when a subshell is either exactly half-filled or filled. Exceptions in Period 4: {| cellspacing="0" border="1" class="wikitable" bgcolor="white" | '''Element''' || '''Z''' || '''Electron Configuration''' || '''Noble Gas Configuration''' |- | [[Scandium]] || 21 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>1</sup> || &#91;[[argon|Ar]]&#93; 4s<sup>2</sup> 3d<sup>1</sup> |- | [[Titanium]] || 22 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>2</sup> || &#91;[[argon|Ar]]&#93; 4s<sup>2</sup> 3d<sup>2</sup> |- | [[Vanadium]] || 23 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>3</sup> || &#91;[[argon|Ar]]&#93; 4s<sup>2</sup> 3d<sup>3</sup> |- | [[Chromium]] || 24 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> <font color = "#FF0000"> 4s<sup>1</sup> 3d<sup>5</sup> </font> || &#91;[[argon|Ar]]&#93; <font color = "#FF0000"> 4s<sup>1</sup> 3d<sup>5</sup> </font> |- | [[Manganese]] || 25 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>5</sup> || &#91;[[argon|Ar]]&#93; 4s<sup>2</sup> 3d<sup>5</sup> |- | [[Iron]] || 26 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>6</sup> || &#91;[[argon|Ar]]&#93; 4s<sup>2</sup> 3d<sup>6</sup> |- | [[Cobalt]] || 27 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>7</sup> || &#91;[[argon|Ar]]&#93; 4s<sup>2</sup> 3d<sup>7</sup> |- | [[Nickel]] || 28 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>8</sup> || &#91;[[argon|Ar]]&#93; 4s<sup>2</sup> 3d<sup>8</sup> |- | [[Copper]] || 29 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> <font color = "#FF0000">4s<sup>1</sup> 3d<sup>10</sup></font> || &#91;[[argon|Ar]]&#93; <font color = "#FF0000">4s<sup>1</sup> 3d<sup>10</sup></font> |- | [[Zinc]] || 30 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> || &#91;[[argon|Ar]]&#93; 4s<sup>2</sup> 3d<sup>10</sup> |- | [[Gallium]] || 31 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>1</sup> || &#91;[[argon|Ar]]&#93; 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup> |- |} Exceptions in Period 5: {| cellspacing="0" border="1" class="wikitable" bgcolor="white" | '''Element''' || '''Z''' || '''Electron Configuration''' || '''Noble Gas Configuration''' |- | [[Yttrium]] || 39 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> 5s<sup>2</sup> 4d<sup>1</sup> || &#91;[[krypton|Kr]]&#93; 5s<sup>2</sup> 4d<sup>1</sup> |- | [[Zirconium]] || 40 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> 5s<sup>2</sup> 4d<sup>2</sup> || &#91;[[krypton|Kr]]&#93; 5s<sup>2</sup> 4d<sup>2</sup> |- | [[Niobium]] || 41 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> <font color = "#FF0000">5s<sup>1</sup> 4d<sup>4</sup></font> || &#91;[[krypton|Kr]]&#93; <font color = "#FF0000">5s<sup>1</sup> 4d<sup>4</sup></font> |- | [[Molybdenum]] || 42 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> <font color = "#FF0000">5s<sup>1</sup> 4d<sup>5</sup></font> || &#91;[[krypton|Kr]]&#93; <font color = "#FF0000">5s<sup>1</sup> 4d<sup>5</sup></font> |- | [[Technetium]] || 43 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> 5s<sup>2</sup> 4d<sup>5</sup></font> || &#91;[[krypton|Kr]]&#93; 5s<sup>2</sup> 4d<sup>5</sup> |- | [[Ruthenium]] || 44 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> <font color = "#FF0000">5s<sup>1</sup> 4d<sup>7</sup></font> || &#91;[[krypton|Kr]]&#93; <font color = "#FF0000">5s<sup>1</sup> 4d<sup>7</sup> </font> |- | [[Rhodium]] || 45 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> <font color = "#FF0000">5s<sup>1</sup> 4d<sup>8</sup></font> || &#91;[[krypton|Kr]]&#93; <font color = "#FF0000">5s<sup>1</sup> 4d<sup>8</sup></font> |- | [[Palladium]] || 46 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> <font color = "#FF0000">4d<sup>10</sup></font> || &#91;[[krypton|Kr]]&#93; <font color = "#FF0000">4d<sup>10</sup></font> |- | [[Silver]] || 47 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> <font color = "#FF0000">5s<sup>1</sup> 4d<sup>10</sup></font> || &#91;[[krypton|Kr]]&#93; <font color = "#FF0000">5s<sup>1</sup> 4d<sup>10</sup></font> |- | [[Cadmium]] || 48 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> 5s<sup>2</sup> 4d<sup>10</sup> || &#91;[[krypton|Kr]]&#93; 5s<sup>2</sup> 4d<sup>10</sup> |- | [[Indium]] || 49 || 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> 5s<sup>2</sup> 4d<sup>10</sup> 5p<sup>1</sup> || &#91;[[krypton|Kr]]&#93; 5s<sup>2</sup> 4d<sup>10</sup> 5p<sup>1</sup> |- |} Exceptions in Period 6: {| cellspacing="0" border="1" class="wikitable" bgcolor="white" | '''Element''' || '''Z''' || '''Noble Gas Configuration''' |- | [[Iridium]] || 77 || &#91;[[xenon|Xe]]&#93; 6s<sup>2</sup> 4f<sup>14</sup> 5d<sup>7</sup> |- | [[Platinum]] || 78 || &#91;[[xenon|Xe]]&#93; <font color = "#FF0000">6s<sup>1</sup></font> 4f<sup>14</sup> <font color = "#FF0000">5d<sup>9</sup></font> |- | [[Gold]] || 79 || &#91;[[xenon|Xe]]&#93; <font color = "#FF0000">6s<sup>1</sup></font> 4f<sup>14</sup> <font color = "#FF0000">5d<sup>10</sup></font> |- | [[Mercury (element)|Mercury]] || 80 || &#91;[[xenon|Xe]]&#93; 6s<sup>2</sup> 4f<sup>14</sup> 5d<sup>10</sup> |- | [[Thallium]] || 81 || &#91;[[xenon|Xe]]&#93; 6s<sup>2</sup> 4f<sup>14</sup> 5d<sup>10</sup> 6p<sup>1</sup> |- |} ===Relation to the structure of the periodic table=== {{main|Periodic_table#Structure_of_the_periodic_table|l1=Periodic table – Structure of the periodic table}} Electron configuration is intimately related to the structure of the [[periodic table]]. The chemical properties of an atom are largely determined by the arrangement of the electrons in its outermost [[valence shell|"valence" shell]] (although other factors, such as [[atomic radius]], [[atomic mass]], and increased accessibility of additional electronic states also contribute to the chemistry of the elements as atomic size increases) therefore elements in the same [[Periodic_table_group|table group]] are chemically similar because they contain the same number of "valence" electrons. ==Electron configuration in molecules== In molecules, the situation becomes more complex, as each molecule has a different orbital structure. See the [[molecular orbital]] article and the [[linear combination of atomic orbitals]] method for an introduction and the [[computational chemistry]] article for more advanced discussions. ==Electron configuration in solids== In a [[solid]], the electron states become very numerous. They cease to be discrete, and effectively blend together into continuous ranges of possible states (an [[electron band]]). The notion of electron configuration ceases to be relevant, and yields to [[band theory]]. ==See also== * [[Atomic electron configuration table]] * [[Periodic table (electron configurations)]] * [[Atomic orbital]] * [[Energy level]] * [[Molecular term symbol]] * [[HOMO/LUMO]] * [[Pwpaw]] Software package for electron configuration calculations * [[Group (periodic table)|Periodic Table Group]] * [http://www.perfectperiodictable.com/userguide Simplified procedure for deriving electron configurations] ==Notes== {{Unreferenced|date=December 2007}} {{reflist}} [[Category:Chemical properties]] [[Category:Atomic physics]] [[Category:Molecular physics]] [[Category:Quantum chemistry]] [[Category:Theoretical chemistry]] [[af:Elektronkonfigurasie]] [[ar:توزيع إلكتروني]] [[bn:ইলেকট্রন বিন্যাস]] [[bs:Elektronska konfiguracija]] [[ca:Configuració electrònica]] [[cs:Elektronová konfigurace]] [[da:Elektronkonfiguration]] [[de:Elektronenkonfiguration]] [[es:Configuración electrónica]] [[eu:Konfigurazio elektroniko]] [[fr:Configuration électronique]] [[gl:Configuración electrónica]] [[ko:전자 배열]] [[hr:Elektronski omotač atoma]] [[is:Rafeindahýsing]] [[it:Configurazione elettronica]] [[lt:Elektronų konfigūracija]] [[hu:Elektronszerkezet]] [[mk:Електронска конфигурација]] [[ms:Konfigurasi elektron]] [[nl:Elektronenconfiguratie]] [[ja:電子配置]] [[no:Elektronkonfigurasjon]] [[uz:Elektron konfiguratsiyasi]] [[pl:Konfiguracja elektronowa]] [[pt:Configuração electrónica]] [[ro:Configuraţie electronică]] [[ru:Электронная конфигурация]] [[sk:Elektrónová konfigurácia]] [[sl:Elektronska konfiguracija]] [[sr:Електронска конфигурација]] [[sh:Elektronska konfiguracija]] [[fi:Elektronikonfiguraatio]] [[sv:Elektronkonfiguration]] [[vi:Cấu hình electron]] [[tr:Elektron dizilimi]] [[uk:Електронна конфігурація]] [[zh:电子排布]]