Golgi apparatus 12584 225293300 2008-07-12T22:49:45Z DHN-bot 575307 robot Modifying: [[th:กอลจิ คอมเพล็กซ์]] <!-- PLEASE NOTE THAT THIS ARTICLE IS WRITTEN IN BRITISH ENGLISH. PLEASE KEEP THIS CONSISTENT. --> [[Image:Human_leukocyte,_showing_golgi_-_TEM.jpg|thumb|315px|Micrograph of Golgi apparatus, visible as a stack of semicircular black rings near the bottom. Numerous circular vesicles can be seen in proximity to the organelle]] [[Image:Nucleus_ER_golgi.jpg|thumb|315px|Diagram of secretory process from endoplasmic reticulum (orange) to Golgi apparatus (pink). Please click for full labels.]] <!-- pictures above, article starts below --> The '''Golgi apparatus''' (also called the '''Golgi body''', '''Golgi complex''', or '''dictyosome''') is an [[organelle]] found in most [[eukaryote|eukaryotic]] [[Cell_%28biology%29|cells]]. It was identified in [[1898]] by the Italian physician [[Camillo Golgi]] and was named after him. The primary function of the Golgi apparatus is to process and package the [[macromolecule]]s such as [[protein]]s and [[lipid]]s that are synthesized by the cell. It is particularly important in the processing of proteins for [[secretion]]. The Golgi apparatus forms a part of the [[endomembrane system]] of eukaryotic cells. ==Structure== The Golgi is composed of membrane-bound stacks known as [[cisternae]]. Between five and eight are usually present; however, as many as sixty have been observed.<ref name="molexpress">{{Cite web|url=http://micro.magnet.fsu.edu/cells/golgi/golgiapparatus.html|title=Molecular Expressions Cell Biology: The Golgi Apparatus|accessdate=2006-11-08}}</ref> The cisternae stack has five functional regions: the cis-Golgi network, cis-Golgi, medial-Golgi, trans-Golgi, and trans-Golgi network. Vesicles from the endoplasmic reticulum (via the [[vesicular-tubular cluster]]) fuse with the cis-Golgi network and subsequently progress through the stack to the trans-Golgi network, where they are packaged and sent to the required destination. Each region contains different enzymes which selectively modify the contents depending on where they are destined to reside.<ref name="lodish">{{cite book | title=Molecular Cell Biology| edition=5th edn |last=Lodish| coauthors=et al.| date=2004| publisher=W.H. Freeman and Company| id=P0-7167-4366-3}}</ref> The trans face of the trans-Golgi network is the face from which vesicles leave the Golgi. These vesicles then proceed to later compartments such as the [[cell surface]] (or [[plasma membrane]]), [[secretory vesicles]] or [[late endosomes]]. A '''cisterna''' (plural '''cisternae''') comprises a flattened membrane disk that makes up the [[Golgi apparatus]]. A typical Golgi has anywhere from 3 to 7 cisternae stacked upon each other like a stack of dinner plates, but there are usually around 6. The cisternae carry Golgi enzymes to help or to modify cargo proteins traveling through them destined for other parts of the cell. The cisternae also carry structural proteins important for its maintenance as a flattened membrane and its stacking upon each other. The earliest cisternae are called the cis-cisternae, followed by the medial cisternae, then the trans-cisternae (as they move away from the [[endoplasmic reticulum]]). The formation of new cisternae is often called the cis-Golgi network and at the end of the Golgi where transport to other parts of the cell occurs is called the trans-Golgi network. Both are thought to be specialized cisternae leading in and out of the Golgi apparatus. Cisternae may also refer to flattened regions of the [[rough endoplasmic reticulum]]. ==Function== Cells synthesize a large number of different macromolecules required for life. The Golgi apparatus is integral in modifying, sorting, and packaging these substances for cell secretion (exocytosis) or for use within the cell. It primarily modifies proteins delivered from the [[rough endoplasmic reticulum]] but is also involved in the transport of [[lipid]]s around the cell, and the creation of [[lysosome]]s. In this respect it can be thought of as similar to a post office; it packages and labels items and then sends them to different parts of the cell. Enzymes within the [[cisterna|cisternae]] are able to modify substances by the addition of carbohydrates ([[glycosylation]]) and phosphates ([[phosphorylation]]). In order to do so the Golgi transports substances such as nucleotide sugars into the organelle from the cytosol. Proteins are also labeled with a [[Protein targeting|signal sequence]] of molecules which determine their final destination. For example, the Golgi apparatus adds a [[Mannose|mannose-6-phosphate]] label to proteins destined for [[lysosome]]s. The Golgi also plays an important role in the synthesis of [[proteoglycans]], molecules present in the [[extracellular matrix]] of [[animal]]s, and it is a major site of [[carbohydrate]] synthesis.<ref name="alberts">{{cite book | title=Molecular Biology of the Cell| url=http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=cell.TOC| last=Alberts| first=Bruce| coauthors=''et al.''| publisher=Garland Publishing}}</ref> This includes the productions of [[glycosaminoglycan]]s or GAGs, long unbranched [[polysaccharide]]s which the Golgi then attaches to a protein synthesized in the endoplasmic reticulum to form the [[proteoglycan]].<ref> Pyrdz, K. and K.T. Dalan, Synthesis and Sorting of Proteoglycans. Journal of Cell Science, 2000. 113: p. 193-205.</ref>Enzymes in the Golgi will [[polymerize]] several of these GAGs via a [[xylose]] link onto the core protein. Another task of the Golgi involves the [[sulfation]] of certain molecules passing through its lumen via sulphotranferases that gain their sulphur molecule from a donor called PAPs. This process occurs on the GAGs of proteoglycans as well as on the core protein. The level of sulfation is very important to the proteoglycans' signalling abilities as well as giving the proteoglycan its overall negative charge.<ref name="alberts">{{cite book | title=Molecular Biology of the Cell| url=http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=cell.TOC| last=Alberts| first=Bruce| coauthors=''et al.''| publisher=Garland Publishing}}</ref> The Golgi is also capable of [[phosphorylating]] molecules. To do so it transports [[Adenosine triphosphate|ATP]] into the [[Lumen (anatomy)|lumen]].<ref> Capasso, J., et al., Mechanism of phosphorylation in the lumen of the Golgi apparatus. Translocation of adenosine 5'-triphosphate into Golgi vesicles from rat liver and mammary gland. Journal of Biological Chemistry, 1989. 264(9): p. 5233-5240.</ref> The Golgi itself contains resident [[kinase]]s, such as [[casein kinase 1]] and [[casein kinase 2]]. One molecule that is phosphorylated in the Golgi is [[Apolipoprotein]], which forms a molecule known as [[VLDL]] that is a constitute of [[blood serum]]. It is thought that the phosphorylation of these molecules is important to help aid in their sorting for [[secretion]] into the blood serum.<ref>Swift, L.L., Role of the Golgi Apparatus in the Phosphorylation of Apolipoprotein B. Journal of Biological Chemistry, 1996. 271(49): p. 31491-31495.</ref> The Golgi also has a putative role in [[apoptosis]], with several [[Bcl-2]] family members localised there, as well as to the mitochondria. In addition a newly characterised anti-apoptotic protein, GAAP (Golgi anti-apoptotic protein), which almost exclusively resides in the Golgi, protects cells from apoptosis by an as-yet undefined mechanism (Gubser et al., 2007). ==Vesicular transport== The vesicles that leave the rough endoplasmic reticulum are [[TRAPP complex|transported]] to the ''cis'' face of the Golgi apparatus, where they fuse with the Golgi membrane and empty their contents into the [[Lumen (anatomy)|lumen]]. Once inside they are modified, sorted, and shipped towards their final destination. As such, the Golgi apparatus tends to be more prominent and numerous in cells synthesising and secreting many substances: [[plasma B cell]]s, the [[antibody]]-secreting cells of the immune system, have prominent Golgi complexes. Those proteins destined for areas of the cell other than either the [[endoplasmic reticulum]] or Golgi apparatus are moved towards the ''trans'' face, to a complex network of membranes and associated vesicles known as the ''trans-Golgi network'' (TGN).<ref name="lodish">{{cite book | title=Molecular Cell Biology| edition=5th edn |last=Lodish| coauthors=et al.| date=2004| publisher=W.H. Freeman and Company| id=0-7167-4366-3}}</ref> This area of the Golgi is the point at which proteins are sorted and shipped to their intended destinations by their placement into one of at least three different types of vesicles, depending upon the molecular marker they carry:<ref name="lodish">{{cite book | title=Molecular Cell Biology| edition=5th edn |last=Lodish| coauthors=et al.| date=2004| publisher=W.H. Freeman and Company| id=0-7167-4366-3}}</ref> {| class="wikitable" | width="140" | '''Type''' || '''Description''' || '''Example''' |- | '''Exocytotic vesicles''' ''(continuous)|| Vesicle contains proteins destined for extracellular release. After packaging the vesicles bud off and immediately move towards the [[plasma membrane]], where they fuse and release the contents into the extracellular space in a process known as ''[[Secretory pathway|constitutive secretion]]''. || [[Antibody]] release by activated [[plasma B cell]]s |- | '''Secretory vesicles''' ''(regulated)''|| Vesicle contains proteins destined for extracellular release. After packaging the vesicles bud off and are stored in the cell until a signal is given for their release. When the appropriate signal is received they move towards the membrane and fuse to release their contents. This process is known as ''[[Secretory pathway|regulated secretion]]''. || [[Neurotransmitter]] release from [[neuron]]s |- | '''Lysosomal vesicles''' || Vesicle contains proteins destined for the [[lysosome]], an organelle of degradation containing many acid [[hydrolase]]s, or to lysosome-like storage organelles. These proteins include both digestive enzymes and membrane proteins. The vesicle first fuses with the [[endosome|late endosome]], and the contents are then transferred to the lysosome via unknown mechanisms. || Digestive [[protease]]s destined for the [[lysosome]] |} ==Transport mechanism== The [[TRAPP complex|transport mechanism]] which proteins use to progress through the Golgi apparatus is not yet clear; however a number of hypotheses currently exist. Until recently, the vesicular transport mechanism was favoured but now more evidence is coming to light to support cisternal maturation. The two proposed models may actually work in conjunction with each other, rather than being mutually exclusive. This is sometimes referred to as the ''combined'' model. <ref name="alberts">{{cite book | title=Molecular Biology of the Cell| url=http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=cell.TOC| last=Alberts| first=Bruce| coauthors=''et al.''| publisher=Garland Publishing}}</ref> * '''''Cisternal maturation model''''': the cisternae of the Golgi apparatus move by being built at the ''cis'' face and destroyed at the ''trans'' face. Vesicles from the endoplasmic reticulum fuse with each other to form a cisterna at the ''cis'' face, consequently this cisterna would appear to move through the Golgi stack when a new cisterna is formed at the ''cis'' face. This model is supported by the fact that structures larger than the transport vesicles, such as [[collagen]] rods, were observed microscopically to progress through the Golgi apparatus.<ref name="alberts">{{cite book | title=Molecular Biology of the Cell| url=http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=cell.TOC| last=Alberts| first=Bruce| coauthors=''et al.''| publisher=Garland Publishing}}</ref> This was initially a popular hypothesis, but lost favour in the 1980s. Recently it has made a comeback, as laboratories at the [[University of Chicago]] and the [[University of Tokyo]] have been able to use new technology to directly observe Golgi compartments maturing.<ref>{{cite journal | author=Glick, B.S. and Malhotra, V. | title=The curious status of the Golgi apparatus | journal=Cell | year=1998 | volume=95 | pages= 883–889 | doi=10.1016/S0092-8674(00)81713-4}}</ref> Additional evidence comes from the fact that [[COPI]] vesicles move in the retrograde direction, transporting ER proteins back to where they belong by recognizing a signal peptide.<ref>Pelham, H.R.B. and J.E. Rothman, The Debate about Transport in the Golgi - Two Sides of the Same Coin? Cell, 2000. 102: p. 713-719.</ref> *'''''Vesicular transport model''''': Vesicular transport views the Golgi as a very stable [[organelle]], divided into compartments is the cis to trans direction. Membrane bound carriers transported material between the ER and Golgi and the different compartments of the Golgi.<ref>Glick, B.S., Organisation of the Golgi apparatus. Current Opinion in Cell Biology, 2000. 12: p. 450-456.</ref> Experimental evidence includes the abundance of small vesicles (known technically as shuttle vesicles) in proximity to the Golgi apparatus. Directionality is achieved by packaging proteins are connected to a membrane via [[actin filament]]s to ensure that they fuse with the correct compartment.<ref name="alberts">{{cite book | title=Molecular Biology of the Cell| url=http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=cell.TOC| last=Alberts| first=Bruce| coauthors=''et al.''| publisher=Garland Publishing}}</ref> ==Links== *[http://www.ii.bham.ac.uk/clinicalimmunology/CISimagelibrary/Cytoplasmic.htm Golgi antibody] ==References== {{reflist|1}} <div class="references-small"> * [http://cellbio.utmb.edu/cellbio/golgi.htm Golgi Complex: Structure and Function] * [http://www.biologyreference.com/Fo-Gr/Golgi.html Golgi Complex] </div> {{organelles}} [[Category:Organelles]] [[af:Golgi-apparaat]] [[ar:جهاز جولجي]] [[bs:Golđijev aparat]] [[bg:Апарат на Голджи]] [[ca:Aparell de Golgi]] [[cs:Golgiho aparát]] [[da:Golgiapparat]] [[de:Golgi-Apparat]] [[el:Σωμάτιο Golgi]] [[es:Aparato de Golgi]] [[eo:Golĝi-aparato]] [[fr:Appareil de Golgi]] [[gl:Aparello de Golgi]] [[ko:골지체]] [[hr:Golgijev aparat]] [[id:Badan Golgi]] [[is:Golgiflétta]] [[it:Apparato del Golgi]] [[he:גולג'י]] [[lv:Goldži komplekss]] [[lb:Golgiapparat]] [[lt:Goldžio kompleksas]] [[mk:Голџиев систем]] [[ms:Jasad Golgi]] [[nl:Golgi-apparaat]] [[ja:ゴルジ体]] [[no:Golgiapparat]] [[oc:Aparelh de Golgi]] [[pl:Aparat Golgiego]] [[pt:Complexo de Golgi]] [[ro:Aparatul Golgi]] [[ru:Аппарат Гольджи]] [[simple:Golgi complex]] [[sk:Golgiho aparát]] [[sl:Golgijev aparat]] [[sr:Голџијев апарат]] [[sh:Golgijev aparat]] [[su:Awak Golgi]] [[fi:Golgin laite]] [[sv:Golgiapparaten]] [[th:กอลจิ คอมเพล็กซ์]] [[vi:Bộ máy Golgi]] [[tr:Golgi cisimciği]] [[uk:Комплекс Ґольджі]] [[zh:高尔基体]]