Guanine 12439 221489323 2008-06-24T18:54:09Z DOI bot 6652755 Citation maintenance. Removed redundant parameters. You can [[WP:DOI|use this bot]] yourself! Please [[User:DOI_bot/bugs|report any bugs]]. {{Chembox new | Name = Guanine | ImageFile = Guanine chemical structure.png | ImageSize = 200px | ImageName = Guanine | IUPACName = 2-amino-1''H''-purin-6(9''H'')-one | OtherNames = 2-amino-6-hydroxypurine,<br />2-aminohypoxanthine,<br />Guanine | Section1 = {{Chembox Identifiers | SMILES = NC1=Nc2[nH]cnc2C(=O)N1 | CASNo = 73-40-5 | RTECS = MF8260000 }} | Section2 = {{Chembox Properties | Formula = C<sub>5</sub>H<sub>5</sub>N<sub>5</sub>O | MolarMass = 151.1261 g/mol | Appearance = White amorphous solid. | Density = | Solubility = Insoluble. | MeltingPt = 360°C (633.15 K) ''deco.'' | BoilingPt = Sublimes. | Dipole = ? [[Debye|D]] }} | Section7 = {{Chembox Hazards | MainHazards = Irritant. | NFPA-H = 1 | NFPA-F = 1 | NFPA-R = | FlashPt = Non-flammable. }}| Section8 = {{Chembox Related | OtherAnions = | OtherCations = | OtherCpds = [[Cytosine]]; [[Adenine]]; [[Thymine]]; [[Uracil]] }} }} '''Guanine''' is one of the five main [[nucleobase]]s found in the [[nucleic acid]]s [[DNA]] and [[RNA]], the others being [[adenine]], [[cytosine]], [[thymine]], and [[uracil]]. With the formula C<sub>5</sub>H<sub>5</sub>N<sub>5</sub>O, guanine is a derivative of [[purine]], consisting of a fused pyrimidine-imidazole ring system with conjugated double bonds. Being unsaturated, the bicyclic molecule is planar. The guanine [[nucleoside]] is called [[guanosine]]. ==Basic principles== Guanine, along with adenine and cytosine, is present in both DNA and RNA, whereas thymine is usually seen only in DNA, and uracil only in RNA. Guanine has two tautomeric forms, the [[keto-enol tautomerism|keto form and enol form]]. It binds to cytosine through three [[hydrogen bond]]s. In cytosine, the amino group acts as the hydrogen donor and the C-2 carbonyl and the N-3 amine as the hydrogen-bond acceptors. Guanine has a group at C-6 that acts as the hydrogen acceptor, while the group at N-1 and the amino group at C-2 acts as the hydrogen donors. {| align="center" |- |width="325px"| [[Image:Cytonum2.png|200px]] |width="325px"| [[Image:Guannum2.png|250px]] |} The first isolation of guanine was reported in 1844 from the excreta of sea birds,<ref>{{cite journal | last = Hitchings | first = George H. | coauthors = Elvira A. Falco | title = The Identification of Guanine in Extracts of Girella Nigricans | journal = Proc Natl Acad Sci | volume = 30 | issue = 10 | pages = 294–297 | publisher = | date = 1944-10-15 | url = http://www.pnas.org/cgi/reprint/30/10/294.pdf | doi = | id = | accessdate = 2007-10-18 }}</ref> known as guano, which was used as a source of fertilizer. About fifty years later, Fischer determined the structure and also showed that uric acid can be converted to guanine. Guanine can be hydrolyzed with strong acid to [[glycine]], [[ammonia]], [[carbon dioxide]], and [[carbon monoxide]]. Guanine is first deaminated to [[Xanthine]]<ref name="purines and pyramidines">url=http://library.med.utah.edu/NetBiochem/pupyr/pp.htm|accessdate=2008-03-27</ref>Guanine oxidizes more readily than adenine, the other purine-derivative base in DNA. Its high melting point of 350°C reflects the intermolecular hydrogen bonding between the oxo and amino groups in the molecules in the crystal. Because of this intermolecular bonding, guanine is relatively insoluble in water, but it is soluble in dilute acids and bases. ==Syntheses== Trace amounts of guanine form by the polymerization of ammonium cyanide (NH<sub>4</sub>CN). Two experiments conducted by Levy et al. showed that heating 10&nbsp;mol&middot;L<sup>&minus;1</sup> NH<sub>4</sub>CN at 80&nbsp;°C for 24 hours gave a yield of 0.0007%, while using 0.1&nbsp;mol&middot;L<sup>&minus;1</sup> NH<sub>4</sub>CN frozen at -20&nbsp;°C for 25 years gave a 0.0035% yield. These results indicate guanine could arise in frozen regions of the primitive earth. In 1984, Yuasa reported a 0.00017% yield of guanine after the electrical discharge of NH<sub>3</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, and 50&nbsp;mL of water, followed by a subsequent acid hydrolysis. However, it is unknown whether the presence of guanine was not simply a resultant contaminant of the reaction.<ref>{{cite journal | last = Levy | first = Matthew | coauthors = Stanley L. Miller, John Oró| title = Production of Guanine from NH4CN Polymerizations | journal = Journal of Molecular Evolution | volume = 49 | issue = 2 | pages = 165–168 | publisher = | date = August 1999 | url = | doi = 10.1007/PL00006539 | id = | accessdate = }} - quotes the Yuasa paper and cites the possibility of there being a contaminant in the reaction.</ref> :5NH<sub>3</sub> + CH<sub>4</sub> + 2C<sub>2</sub>H<sub>6</sub> + H<sub>2</sub>O → C<sub>5</sub>H<sub>8</sub>N<sub>5</sub>O (guanine) + (25/2)H<sub>2</sub> A Fischer-Tropsch synthesis can also be used to form guanine, along with adenine, uracil, and thymine. Heating an equimolar gas mixture of CO, H<sub>2</sub>, and NH<sub>3</sub> to 700&nbsp;°C for 15 to 24 minutes, followed by quick cooling and then sustainted reheating to 100 to 200&nbsp;°C for 16 to 44 hours with an alumina catalyst, yielded guanine and uracil: :5CO + (1/2)H<sub>2</sub> + 5NH<sub>3</sub> → C<sub>5</sub>H<sub>8</sub>N<sub>5</sub>O (guanine) + 4H<sub>2</sub>O [[Traube purine synthesis|Traube's synthesis]] involves heating 2,4,5-triamino-1,6-dihydro-6-oxypyrimidine (as the sulfate) with formic acid for several hours. [[Image:Guaninesynth.png|600px]] ==Other uses== In 1656 in Paris, François Jaquin (a rosary maker) extracted from scales of some fishes the so-called pearl essence, crystalline guanine forming [[G-quadruplex]]es. In the cosmetics industry, crystalline guanine is used as an additive to various products (e.g., [[shampoo]]s), where it provides a pearly [[iridescence|iridescent]] effect. It is also used in metallic paints and simulated pearls and plastics. It provides shimmering luster to eye shadow and [[nail polish]]. Guanine crystals are rhombic platelets composed of multiple transparent layers, but they have a high index of refraction that partially reflects and transmits light from layer to layer, thus producing a pearly luster. It can be applied by spray, painting, or dipping. It may irritate the eyes. Its alternatives are [[mica]], synthetic [[pearl]], and [[aluminium]] and [[bronze]] particles. ==See also== * [[Guanine deaminase]] * [[cytosine]] ==References== {{Reflist}} {{Refbegin}} * Miyakawa, S., Murasawa, K., Kobayashi, K., Sawaoka, AB. "Abiotic synthesis of guanine with high-temperature plasma." Orig Life Evol Biosph. 30(6): 557-66, Dec. 2000. * Horton, H.R., Moran, L.A., Ochs, R.S., Rawn, J.D., Scrimgeour, K.G. "Principles of Biochemistry." Prentice Hall (New Jersey). 3rd Edition, 2002. * Lister, J.H. "Part II Purines." The Chemistry of Heterocyclic Compounds. Wiley-Interscience (New York). 1971. {{Refend}} ==External links== *[http://www.compchemwiki.org/index.php?title=Guanine Computational Chemistry Wiki] *[http://www.chemicalland21.com/lifescience/phar/GUANINE.htm Good Guanine reference] {{Nucleobases, nucleosides, and nucleotides}} [[Category:Purines]] [[Category:Cosmetic chemicals]] [[Category:Organic minerals]] [[ar:جوانين]] [[ca:Guanina]] [[cs:Guanin]] [[da:Guanin]] [[de:Guanin]] [[el:Γουανίνη]] [[es:Guanina]] [[eo:Guanino]] [[fr:Guanine]] [[gl:Guanina]] [[id:Guanin]] [[ia:Guanina]] [[it:Guanina]] [[he:גואנין]] [[lt:Guaninas]] [[hu:Guanin]] [[nl:Guanine]] [[ja:グアニン]] [[no:Guanin]] [[oc:Guanina]] [[pl:Guanina]] [[pt:Guanina]] [[ru:Гуанин]] [[simple:Guanine]] [[sk:Guanín]] [[sl:Gvanin]] [[sr:Гуанин]] [[sh:Guanin]] [[fi:Guaniini]] [[sv:Guanin]] [[vi:Guanine]] [[tr:Guanin]] [[uk:Гуанін]] [[zh:鳥嘌呤]]