History of science
14400
225406199
2008-07-13T14:46:17Z
Designquest10
2188316
/* Geology */ nineteenth to 19th
{{History of science}}
'''[[Science]]''' is a body of [[empirical knowledge|empirical]], [[theory|theoretical]], and [[Procedural knowledge|practical]] knowledge about the [[Nature|natural world]], produced by a global community of researchers making use of [[scientific method]]s, which emphasize the observation, [[experiment]]ation and [[scientific explanation|explanation]] of real world [[phenomenon|phenomena]]. Given the dual status of science as [[objectivity|objective]] knowledge and as a human construct, good [[historiography]] of science draws on the [[historical method]]s of both [[intellectual history]] and [[social history]].
Tracing the exact origins of modern science is possible through the many important texts which have survived from the classical world. However, the word ''scientist'' is relatively recent—first coined by [[William Whewell]] in the 19th century. Previously, people investigating nature called themselves [[natural philosophers]].
While [[empiricism|empirical]] investigations of the natural world have been described since [[Ancient history|antiquity]] (for example, by [[Aristotle]], [[Theophrastus]] and [[Pliny the Elder]]), and [[scientific method]]s have been employed since the [[Middle Ages]] (for example, by [[Ibn al-Haytham]], [[Abū Rayhān al-Bīrūnī]] and [[Roger Bacon]]), the dawn of [[modern science]] is generally traced back to the [[early modern period]], during what is known as the [[Scientific Revolution]] of the [[16th century|16th]] and [[17th century|17th centuries]].
Scientific methods are considered to be so fundamental to modern science that some — especially [[Philosophy of science|philosophers of science]] and practicing scientists — consider earlier inquiries into nature to be ''pre-scientific''. Traditionally, historians of science have defined science sufficiently broadly to include those inquiries.<ref>W. C. Dampier Wetham, Science, in ''Encyclopædia Britannica'', 11th ed. (New York: Encyclopedia Britannica, Inc, 1911); M. Clagett, ''Greek Science in Antiquity'' (New York: Collier Books, 1955); D. Pingree, Hellenophilia versus the History of Science, ''Isis'' '''83''', 559 (1982); [[Pat Munday]], entry "History of Science", ''New Dictionary of the History of Ideas'' (Charles Scribner's Sons, 2005).</ref>
==Early cultures==
{{main|History of science in early cultures}}
{{see also|Protoscience|Alchemy}}
[[Image:SumerianClayTablet,palm-sized422BCE.jpg|left|thumb|150px|[[Mesopotamian]] clay tablet, [[492 BC]]; writing allowed the recording of [[Astronomy|astronomical]] information.]]
In prehistoric times, advice and knowledge was passed from generation to generation in an [[oral tradition]]. The development of writing enabled knowledge to be stored and communicated across generations with much greater fidelity. Combined with the [[Origins of agriculture|development of agriculture]], which allowed for a surplus of food, it became possible for early civilizations to develop, because more time could be devoted to tasks other than survival.
Many ancient civilizations collected astronomical information in a systematic manner through simple observation. Though they had no knowledge of the real physical structure of the planets and stars, many theoretical explanations were proposed. Basic facts about human physiology were known in some places, and [[alchemy]] was practiced in several civilizations. Considerable observation of macrobiotic flora and fauna was also performed.
===Science in the Fertile Crescent===
{{see|Egyptian mathematics|Babylonian mathematics|Babylonian astronomy}}
From their beginnings in [[Sumer]] (now [[Iraq]]) around [[3500 BC]] the [[Mesopotamia]]n peoples began to attempt to record some [[observation]]s of the world with extremely thorough [[quantitative]] and [[numerical]] data. But their observations and measurements were seemingly taken for purposes other than for [[scientific law]]s. A concrete instance of [[Pythagorean theorem|Pythagoras' law]] was recorded, as early as the [[18th century BC]]: the Mesopotamian cuneiform tablet [[Plimpton 322]] records a number of Pythagorean triplets (3,4,5) (5,12,13). ..., dated 1900 BC, possibly millennia before Pythagoras, [http://www.angelfire.com/nt/Gilgamesh/achieve.html] but an abstract formulation of the Pythagorean theorem was not.<ref>[[Paul Hoffman]], ''The man who loved only numbers: the story of Paul Erdös and the search for mathematical truth'', (New York: Hyperion), 1998, p.187. ISBN 0-7868-6362-5</ref>
Significant advances in [[Ancient Egypt]] include astronomy, mathematics and medicine.<ref>Homer's Odyssey stated that ''"the [[Egyptians]] were skilled in medicine more than any other art".'' [http://www.christianwebsite.com/artman/publish/christian_articles_10.html]</ref> Their [[geometry]] was a necessary outgrowth of [[surveying]] to preserve the layout and ownership of farmland, which was flooded annually by the [[Nile river]]. The 3,4,5 [[right triangle]] and other rules of thumb served to represent rectilinear structures, and the post and lintel architecture of Egypt. Egypt was also a center of [[Alchemy#Alchemy in Ancient Egypt|alchemy]] research for much of the [[Mediterranean Basin|Mediterranean]].
===Science in the Greco-Roman world===
{{main|History of science in Classical Antiquity}}
[[Image:Sanzio 01 Plato Aristotle.jpg|thumb|right|200px|upright|[[Plato]] and [[Aristotle]]. ''[[The School of Athens]]'' (1509).]]
In [[Classical antiquity|Classical Antiquity]], the inquiry into the workings of the universe took place both in investigations aimed at such practical goals as establishing a reliable calendar or determining how to cure a variety of illnesses and in those abstract investigations known as [[natural philosophy]]. The ancient people who are considered the first ''[[scientists]]'' may have thought of themselves as ''natural philosophers'', as practitioners of a skilled profession (for example, physicians), or as followers of a religious tradition (for example, temple healers).
The earliest Greek philosophers, known as the [[pre-Socratics]], provided competing answers to the question found in the myths of their neighbors: "How did the ordered [[cosmos]] in which we live come to be?"<ref>[[F. M. Cornford]], ''Principium Sapientiae: The Origins of Greek Philosophical Thought'', (Gloucester, Mass., Peter Smith, 1971), p. 159.</ref> The pre-Socratic philosopher Thales, dubbed the "father of science", was the first to postulate non-supernatural explanations for natural phenomena such as lightning and earthquakes. [[Pythagoras]] of Samos founded the [[Pythagoreanism|Pythagorean school]], which investigated mathematics for its own sake, and was the first to postulate that the [[Earth]] is spherical in shape. Subsequently, [[Plato]] and [[Aristotle]] produced the first systematic discussions of natural philosophy, which did much to shape later investigations of nature. Their development of [[deductive reasoning]] was of particular importance and usefulness to later scientific inquiry.
The important legacy of this period included substantial advances in factual knowledge, especially in [[anatomy]], [[zoology]], [[botany]], [[mineralogy]], [[geography]], [[mathematics]] and [[astronomy]]; an awareness of the importance of certain scientific problems, especially those related to the problem of change and its causes; and a recognition of the methodological importance of applying mathematics to natural phenomena and of undertaking empirical research.<ref>[[G. E. R. Lloyd]], ''Early Greek Science: Thales to Aristotle'', (New York: W. W. Norton, 1970), pp. 144-6.</ref> In the [[Hellenistic age]] scholars frequently employed the principles developed in earlier Greek thought: the application of [[mathematics]] and deliberate empirical research, in their scientific investigations.<ref>Lloyd (1973), p. 177.</ref> Thus, clear unbroken lines of influence lead from ancient [[Ancient Greece|Greek]] and [[Hellenistic philosophy|Hellenistic philosophers]], to medieval [[Early Islamic philosophy|Muslim philosophers]] and [[Islamic science|scientists]], to the [[Europe]]an [[Renaissance]] and [[Age of Enlightenment|Enlightenment]], to the secular [[science]]s of the modern day.
Neither reason nor inquiry began with the Ancient Greeks, but the [[Socratic method]] did, along with the idea of [[Forms]], great advances in [[geometry]], [[logic]], and the natural sciences. [[Benjamin Farrington]], former Professor of [[Classics]] at [[Swansea University]] wrote:
:"Men were weighing for thousands of years before [[Archimedes]] worked out the laws of equilibrium; they must have had practical and intuitional knowledge of the principles involved. What Archimedes did was to sort out the theoretical implications of this practical knowledge and present the resulting body of knowledge as a logically coherent system."
and again:
:"With astonishment we find ourselves on the threshold of modern science. Nor should it be supposed that by some trick of translation the extracts have been given an air of modernity. Far from it. The vocabulary of these writings and their style are the source from which our own vocabulary and style have been derived."<ref>''Greek Science'', many editions, such as the paperback by Penguin Books. Copyrights in 1944, 1949, 1953, 1961, 1963. The first quote above comes from Part 1, Chapter 1; the second, from Part 2, Chapter 4.</ref>
[[Image:Meccanismo di Antikytera.jpg|frame|Schematic of the antikythera mechanism]]
The level of achievement in Hellenistic [[astronomy]] and [[engineering]] is impressively shown by the [[Antikythera mechanism]] (150-100 BC). The astronomer [[Aristarchus of Samos]] was the first known person to propose a heliocentric model of the solar system, while the geographer [[Eratosthenes]] accurately calculated the circumference of the Earth. [[Hipparchus]] (ca. 190 – ca. 120 BC) produced the first systematic [[Timeline of astronomical maps, catalogs, and surveys|star catalog]]. In [[medicine]], [[Herophilos]] (335 - 280 BC) was the first to base his conclusions on dissection of the human body and to describe the [[nervous system]]. [[Hippocrates]] (ca. 460 BC – ca. 370 BC) and his followers were first to describe many diseases and medical conditions. [[Galen]] (129 – ca. 200 AD) performed many audacious operations—including brain and eye [[surgery|surgeries]]— that were not tried again for almost two millennia. The mathematician [[Euclid]] laid down the foundations of [[mathematical rigor]] and introduced the concepts of definition, axiom, theorem and proof still in use today in his [[Euclid's elements|''Elements'']], considered the most influential textbook ever written.<ref name="Boyer Influence of the Elements">{{cite book|last=Boyer|authorlink=Carl Benjamin Boyer|title=|year=1991|chapter=Euclid of Alexandria|pages=119|quote=The ''Elements'' of Euclid not only was the earliest major Greek mathematical work to come down to us, but also the most influential textbook of all times. [...]The first printed versions of the ''Elements'' appeared at Venice in 1482, one of the very earliest of mathematical books to be set in type; it has been estimated that since then at least a thousand editions have been published. Perhaps no book other than the Bible can boast so many editions, and certainly no mathematical work has had an influence comparable with that of Euclid's ''Elements''.}}</ref> [[Archimedes]], considered one of the greatest mathematicians of all time,<ref>{{cite book |last=Calinger |first=Ronald |title=A Contextual History of Mathematics |year=1999 |publisher=Prentice-Hall |isbn=0-02-318285-7 |pages=150 |quote=Shortly after Euclid, compiler of the definitive textbook, came Archimedes of Syracuse (ca. 287–212 B.C.), the most original and profound mathematician of antiquity. }}</ref> is credited with using the [[method of exhaustion]] to calculate the [[area]] under the arc of a [[parabola]] with the [[Series (mathematics)|summation of an infinite series]], and gave a remarkably accurate approximation of [[Pi]].<ref>{{cite web | title = A history of calculus |author=O'Connor, J.J. and Robertson, E.F. | publisher = [[University of St Andrews]]| url = http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/The_rise_of_calculus.html |date= February 1996|accessdate= 2007-08-07}}</ref> He is also known in [[physics]] for laying the foundations of [[Fluid statics|hydrostatics]] and the explanation of the principle of the [[lever]].
[[Image:plinyelder.jpg|left|thumb|150px|Pliny the Elder: an imaginative 19th Century portrait]]
[[Theophrastus]] wrote some of the earliest descriptions of plants and animals, establishing the first [[taxonomy]] and looking at minerals in terms of their properties such as [[hardness]]. [[Pliny the Elder]] produced what is one of the largest [[encyclopedia]]s of the natural world in 77 AD, and must be regarded as the rightful successor to Theophrastus.
[[Image:Rough diamond.jpg|right|thumb|200px|octahedral shape of diamond.]]
For example, he accurately describes the [[octahedral]] shape of the [[diamond]], and proceeds to mention that diamond dust is used by [[engraver]]s to cut and polish other gems owing to its great hardness. His recognition of the importance of [[crystal]] shape is a precursor to modern [[crystallography]], while mention of numerous other minerals presages [[mineralogy]]. He also recognises that other minerals have characteristic crystal shapes, but in one example, confuses the [[crystal habit]] with the work of [[lapidaries]]. He was also the first to recognise that [[amber]] was a fossilized resin from pine trees because he had seen samples with trapped insects within them.
===Science in India===
{{Main|Science and technology in ancient India}} {{See|Indian mathematics|Indian astronomy|History of metallurgy in the Indian subcontinent}}
Indian philosophers in [[History of India|ancient India]] developed [[atomic theory|atomic theories]], which included formulating ideas about the [[atom]] in a systematic manner and propounding ideas about the atomic constitution of the material world. The [[principle of relativity]] was also available in an early embryonic form in the Indian philosophical concept of "''sapekshavad''". The literal translation of this [[Sanskrit]] word is "''theory of relativity''" (not to be confused with Einstein's [[theory of relativity]]). The [[wootz steel|wootz]], [[crucible steel|crucible]] and [[stainless steel|stainless]] [[steels]] were invented in India, and were widely exported, resulting in "[[Damascus steel]]" by the year 1000.<ref>C. S. Smith, A History of Metallography, University Press, Chicago (1960); Juleff 1996; Srinivasan, Sharda and Srinivasa Rangnathan 2004</ref>
<blockquote>
The Hindus excel in the manufacture of iron, and in the preparations of those ingredients along with which it is fused to obtain that kind of soft iron which is usually styled Indian steel (Hindiah). They also have workshops wherein are forged the most famous sabres in the world.<ref>[[Henry Yule]] quoted the 12th century Arab Edrizi.
*Srinivasan, Sharda and Srinivasa Rangnathan. 2004. India’s Legendry Wootz Steel. Bangalore: Tata Steel. 2004</ref></blockquote>
[[Image:Iron-pillar.jpg|thumb|upright|left|Ancient India was an early leader in [[metallurgy]], as evidenced by the [[wrought iron]] [[Iron pillar of Delhi|Pillar of Delhi]].]]
Indian astronomer and mathematician [[Aryabhata]] (476-550), in his ''[[Aryabhatiya]]'' (499) and ''Aryabhata Siddhanta'', worked out an accurate [[heliocentrism|heliocentric]] [[solar system|model]] of [[gravity|gravitation]], including [[ellipse|elliptical]] orbits, the [[circumference]] of the [[earth]], and the longitudes of planets around the Sun. He also introduced a number of [[trigonometric functions]] (including [[sine]], [[versine]], [[cosine]] and inverse sine), [[trigonometry|trigonometric]] tables, and techniques and [[algorithm]]s of [[algebra]]. In the 7th century, [[Brahmagupta]] recognized [[gravity]] as a force of attraction.<ref>Mainak Kumar Bose, ''Late Classical India'', A. Mukherjee & Co., 1988, p. 277.</ref> He also lucidly explained the use of [[0 (number)|zero]] as both a [[placeholder]] and a [[decimal digit]], along with the [[Hindu-Arabic numeral system]] now used universally throughout the world. [[Arabic]] translations of the two astronomers' texts were soon available in the [[Caliph|Islamic world]], introducing what would become [[Arabic numerals]] to the Islamic World by the 9th century.<ref name=ifrah>Ifrah, Georges. 1999. ''The Universal History of Numbers : From Prehistory to the Invention of the Computer'', Wiley. ISBN 0-471-37568-3.</ref><ref name=oconnor>O'Connor, J.J. and E.F. Robertson. 2000. [http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Indian_numerals.html 'Indian Numerals'], ''MacTutor History of Mathematics Archive'', School of Mathematics and Statistics, University of St. Andrews, Scotland.</ref>
The first 12 chapters of the ''Siddhanta Shiromani'', written by [[Bhāskara II|Bhāskara]] in the 12th century, cover topics such as: mean longitudes of the planets; true longitudes of the planets; the three problems of diurnal rotation; syzygies; lunar eclipses; solar eclipses; latitudes of the planets; risings and settings; the moon's crescent; conjunctions of the planets with each other; conjunctions of the planets with the fixed stars; and the patas of the sun and moon. The 13 chapters of the second part cover the nature of the sphere, as well as significant astronomical and trigometric calculations based on it.
During the 14th-16th centuries, the [[Kerala school of astronomy and mathematics]] made significant advances in astronomy and especially mathematics, including fields such as [[trigonometry]] and [[calculus]]. In particular, [[Madhava of Sangamagrama]] is considered the "founder of [[mathematical analysis]]".<ref>George G. Joseph (1991). ''The crest of the peacock''. [[London]].</ref>
===Science in China===
{{main|History of science and technology in China}} {{see|Chinese mathematics|List of Chinese inventions}}
[[Image:Mooko-Suenaga.jpg|thumb|Chinese gunpowder used during the [[Mongol Invasions of Japan]], 1281.]]
China has a long and rich history of technological contribution. The [[Four Great Inventions of ancient China]]' ([[Chinese language|Chinese]]: 四大發明; [[Pinyin]]: Sì dà fā míng) are the [[compass]], [[gunpowder]], [[papermaking]], and [[printing]]. These four discoveries had an enormous impact on the development of [[Chinese civilization]] and a far-ranging global impact. According to [[England|English]] [[philosophy|philosopher]] [[Francis Bacon]], writing in ''[[Novum Organum]]'',
<blockquote>
Printing, gunpowder and the compass: These three have changed the whole face and state of things throughout the world; the first in [[literature]], the second in warfare, the third in [[navigation]]; whence have followed innumerable changes, in so much that no empire, no sect, no star seems to have exerted greater power and influence in human affairs than these mechanical discoveries."<ref>([[:s:la:Novum Organum - Liber Primus|Novum Organum, Liber I, CXXIX]] - Adapted from the [[wikisource:Novum Organum|1863 translation]])</ref></blockquote>
There are many notable contributors to the field of Chinese science throughout the ages. One of the best examples would be [[Shen Kuo]] (1031–1095), a [[polymath]] scientist and statesman who was the first to describe the [[magnetic]]-needle [[compass]] used for [[navigation]], discovered the concept of [[true north]], improved the design of the astronomical [[gnomon]], [[armillary sphere]], [[sight tube]], and [[water clock|clepsydra]], and described the use of [[drydock]]s to repair boats. After observing the natural process of the inundation of [[silt]] and the find of [[Marine (ocean)|marine]] [[fossil]]s in the [[Taihang Mountains]] (hundreds of miles from the [[Pacific Ocean]]), Shen Kuo devised a theory of land formation, or [[geomorphology]]. He also adopted a theory of gradual [[climate change]] in regions over time, after observing [[petrified]] [[bamboo]] found underground at [[Yan'an]], [[Shaanxi]] province. If not for Shen Kuo's writing, the architectural works of [[Yu Hao]] would be little known, along with the inventor of [[movable type]] [[printing]], [[Bi Sheng]] (990-1051). Shen's contemporary [[Su Song]] (1020–1101) was also a brilliant polymath, an astronomer who created a celestial atlas of star maps, wrote a pharmaceutical treatise with related subjects of [[botany]], [[zoology]], [[mineralogy]], and [[metallurgy]], and had erected a large [[astronomical]] [[clocktower]] in [[Kaifeng]] city in 1088. To operate the crowning [[armillary sphere]], his clocktower featured an [[escapement]] mechanism and the world's oldest known use of an endless power-transmitting [[chain drive]].
[[Image:Su Song Star Map 1.JPG|thumb|right|One of the [[star map]]s from [[Su Song]]'s ''Xin Yi Xiang Fa Yao'' published in 1092, featuring a cylindrical projection similar to [[Mercator projection]] and the corrected position of the [[pole star]] thanks to [[Shen Kuo]]'s astronomical observations.<ref>Needham, Joseph (1986). ''Science and Civilization in China: Volume 3, Mathematics and the Sciences of the Heavens and the Earth''. Taipei: Caves Books Ltd. Page 208.</ref> Su Song's celestial atlas of 5 star maps is actually the oldest in [[printing|printed]] form.<ref name="sivin III 32">Sivin, Nathan (1995). ''Science in Ancient China''. Brookfield, Vermont: VARIORUM, Ashgate Publishing. III, page 32.</ref>]]
The [[Jesuit China missions]] of the 16th and 17th centuries "learned to appreciate the scientific achievements of this ancient culture and made them known in Europe. Through their correspondence European scientists first learned about the Chinese science and culture."<ref>Agustín Udías, ''Searching the Heavens and the Earth: The History of Jesuit Observatories''. (Dordrecht, The Netherlands: Kluwer Academic Publishers, 2003). p.53</ref> Western academic thought on the history of Chinese technology and science was galvanized by the work of [[Joseph Needham]] and the Needham Research Institute. Among the technological accomplishments of China were, according to the British scholar Needham, early [[seismometer|seismological]] detectors ([[Zhang Heng]] in the 2nd century), the [[hydraulics|water-powered]] [[celestial globe]] (Zhang Heng), [[match]]es, the independent invention of the [[decimal system]], [[dry dock#graving dry docks|dry dock]]s, sliding [[calipers]], the double-action [[piston pump]], [[cast iron]], the [[blast furnace]], the [[iron]] [[plough]], the multi-tube [[seed drill]], the [[wheelbarrow]], the [[suspension bridge]], the [[winnowing]] machine, the [[fan (mechanical)|rotary fan]], the [[parachute]], [[natural gas]] as fuel, the [[raised-relief map]], the [[propeller]], the [[crossbow]], and a solid fuel [[rocket]], the [[multistage rocket]], the [[horse collar]], along with contributions in [[logic]], [[astronomy]], [[medicine]], and other fields.
However, cultural factors prevented these Chinese achievements from developing into what could be called "science".<ref name="Woods">[[Thomas Woods]], ''How the Catholic Church Built Western Civilization'', (Washington, DC: Regenery, 2005), ISBN 0-89526-038-7</ref> According to Needham, it was the religious and philosophical framework of the Chinese intellectuals which made them unable to believe in the ideas of laws of nature:
{{cquote|It was not that there was no order in nature for the Chinese, but rather that it was not an order ordained by a rational personal being, and hence there was no conviction that rational personal beings would be able to spell out in their lesser earthly languages the divine code of laws which he had decreed aforetime. The [[Taoists]], indeed, would have scorned such an idea as being too naïve for the subtlety and complexity of the universe as they intuited it.<ref name="Needham">[[Joseph Needham]], ''Science and Civilization in China'', volume 1. Cambridge University Press, 1954. 581.</ref>}}
==Science in the Middle Ages==
{{main|History of science in the Middle Ages}}
With the division of the Empire, the [[Western Roman Empire]] lost contact with much of its past. The [[Library of Alexandria]], which had suffered since it fell under Roman rule,<ref name="Plutarch">[[Plutarch]], ''Life of Caesar'' 49.3.</ref> had been destroyed by 642, shortly after the [[Muslim conquest of Egypt|Arab conquest of Egypt]].<ref>[[Abd-el-latif]] (1203): "the library which [[Amr ibn al-A'as|'Amr ibn al-'As]] burnt with the permission of [[Umar|'Umar]]."</ref><ref>''Europe: A History'', p 139. Oxford: Oxford University Press 1996. ISBN 0-19-820171-0</ref> While the [[Byzantine Empire]] still held learning centers such as [[Constantinople]], Western Europe's knowledge was concentrated in [[Monastery|monasteries]] until the development of [[Medieval university|medieval universities]] in the [[12th century|12th]] and [[13th century|13th centuries]]. The curriculum of monastic schools included the study of the few available ancient texts and of new works on practical subjects like medicine<ref>Linda E. Voigts, "Anglo-Saxon Plant Remedies and the Anglo-Saxons", ''Isis,'' 70 (1979): 250-268; reprinted in Michael H. Shank, ''The Scientific Enterprise in Antiquity and the Middle Ages,'' Chicago: Univ. of Chicago Pr., 2000, pp. 163-181. ISBN 0-226-74951-7.</ref> and timekeeping.<ref>Faith Wallis, ''Bede: The Reckoning of Time,'' Liverpool: Liverpool Univ. Pr., 2004, pp. xviii-xxxiv. ISBN 0-85323-693-3.</ref>
Meanwhile, in the Middle East, [[Greek philosophy]] was able to find some support under the newly created [[Arab Empire]]. With the spread of [[Islam]] in the [[7th century|7th]] and [[8th century|8th centuries]], a period of [[Muslim]] scholarship, known as the [[Islamic Golden Age]], lasted until the 14th century. This scholarship was aided by several factors. The use of a single language, [[Arabic language|Arabic]], allowed communication without need of a translator. Access to [[Greek language|Greek]] and [[Latin]] texts from the [[Byzantine Empire]] along with [[History of India|Indian]] sources of learning provided Muslim scholars a knowledge base to build upon. In addition, there was the [[Hajj]], which facilitated scholarly collaboration by bringing together people and new ideas from all over the [[Muslim world]].
===Science in the Islamic world===
{{Unbalanced}}
{{main|Islamic science|Timeline of Muslim scientists and engineers}}
{{see also|Alchemy and chemistry in Islam|Islamic astronomy|Islamic mathematics|Islamic medicine|Islamic physics|Islamic psychological thought|Early Muslim sociology}}
[[Image:Islamic MedText c1500.jpg|thumb|150px|right|15th century manuscript of [[Avicenna]]'s ''[[The Canon of Medicine]]''.]]
Muslim scientists placed far greater emphasis on [[experiment]] than had the [[Greeks]].<ref name=Briffault/> This led to an early [[scientific method]] being developed in the Muslim world, where significant progress in methodology was made, beginning with the experiments of [[Ibn al-Haytham]] (Alhazen) on [[optics]] from ''circa'' 1000, in his ''[[Book of Optics]]''.<ref name=Agar>David Agar (2001). [http://users.jyu.fi/~daagar/index_files/arabs.html Arabic Studies in Physics and Astronomy During 800 - 1400 AD]. [[University of Jyväskylä]].</ref> The most important development of the scientific method was the use of experiments to distinguish between competing scientific theories set within a generally [[empiricism|empirical]] orientation, which began among Muslim scientists. Ibn al-Haytham is also regarded as the father of optics, especially for his empirical proof of the intromission theory of light. Some have also described Ibn al-Haytham as the "first scientist" for his development of the modern scientific method.<ref>Bradley Steffens (2006), ''Ibn al-Haytham: First Scientist'', Morgan Reynolds Publishing, ISBN 1599350246.</ref>
Rosanna Gorini writes:
{{cquote|"According to the majority of the historians al-Haytham was the pioneer of the modern scientific method. With his book he changed the meaning of the term optics and established experiments as the norm of proof in the field. His investigations are based not on abstract theories, but on experimental evidences and his experiments were systematic and repeatable."<ref name=Gorini>Rosanna Gorini (2003). "Al-Haytham the Man of Experience. First Steps in the Science of Vision", ''International Society for the History of Islamic Medicine''. Institute of Neurosciences, Laboratory of Psychobiology and Psychopharmacology, Rome, Italy.</ref>}}
Due to the development of the modern scientific method, [[Robert Briffault]] wrote in ''The Making of Humanity'':
{{cquote|"What we call science arose as a result of new methods of experiment, observation, and measurement, which were introduced into Europe by the [[Arab]]s. [...] Science is the most momentous contribution of [[Arab world|Arab civilization]] to the [[modern world]], but its fruits were slow in ripening. [...] The debt of our science to that of the Arabs does not consist in startling discoveries or revolutionary theories; science owes a great deal more to Arab culture, it owes its existence....The ancient world was, as we saw, pre-scientific. [...] The Greeks systematized, generalized and theorized, but the patient ways of investigations, the accumulation of positive knowledge, the minute methods of science, detailed and prolonged observation and experimental inquiry were altogether alien to the Greek temperament."<ref name=Briffault>[[Robert Briffault]] (1928). ''The Making of Humanity'', p. 190-202. G. Allen & Unwin Ltd.</ref>}}
In [[Islamic mathematics|mathematics]], the [[Persian people|Persian]] mathematician [[Muhammad ibn Musa al-Khwarizmi]] gave his name to the concept of the [[algorithm]], while the term [[algebra]] is derived from ''al-jabr'', the beginning of the title of one of his publications. What is now known as [[Arabic numerals]] originally came from India, but Muslim mathematicians did make several refinements to the number system, such as the introduction of [[Decimal separator|decimal point]] notation. [[Sabians|Sabian]] mathematician [[Al-Battani]] (850-929) contributed to astronomy and mathematics, while [[Persians|Persian]] scholar [[Al-Razi]] contributed to chemistry and medicine.
In [[Islamic astronomy|astronomy]], [[Al-Battani]] improved the measurements of [[Hipparchus]], preserved in the translation of [[Ptolemy]]'s ''Hè Megalè Syntaxis'' (''The great treatise'') translated as ''[[Almagest]]''. Al-Battani also improved the precision of the measurement of the precession of the earth's axis. The corrections made to the [[geocentric model]] by al-Battani, [[Ibn al-Haytham]],<ref>{{Harvard reference |last=Rosen |first=Edward |year=1985 |title=The Dissolution of the Solid Celestial Spheres|journal=Journal of the History of Ideas |volume=46 |issue=1 |pages=19-20 & 21}}</ref> [[Averroes]] and the [[Maragheh observatory|Maragha astronomers]] such as [[Nasir al-Din al-Tusi]], [[Mo'ayyeduddin Urdi]] and [[Ibn al-Shatir]] were later incorporated into the [[Copernican heliocentrism|Copernican heliocentric]] model.<ref>{{citation|url=http://setis.library.usyd.edu.au/stanford/entries/copernicus/index.html
|contribution=Nicolaus Copernicus|title=[[Stanford Encyclopedia of Philosophy]]|year=2004|accessdate=2008-01-22}}</ref><ref>{{Harvard reference |last=Saliba |first=George |authorlink=George Saliba |year=1994 |title=A History of Arabic Astronomy: Planetary Theories During the Golden Age of Islam |publisher=[[New York University Press]] |isbn=0814780237 |pages=254 & 256-257}}</ref> [[Heliocentrism|Heliocentric]] theories may have also been discussed by several other Muslim astronomers such as [[Ja'far ibn Muhammad Abu Ma'shar al-Balkhi]],<ref>[[Bartel Leendert van der Waerden]] (1987). "The Heliocentric System in Greek, Persian and Hindu Astronomy", ''Annals of the New York Academy of Sciences'' '''500''' (1), 525–545 [534-537].</ref> [[Abu-Rayhan Biruni]], Abu Said [[al-Sijzi]],<ref name=Nasr>{{Harvard reference |last=Nasr |first=Seyyed H. |authorlink=Hossein Nasr |year=1993 |date=1st edition in 1964, 2nd edition in 1993 |title=An Introduction to Islamic Cosmological Doctrines |edition=2nd |publisher=1st edition by [[Harvard University Press]], 2nd edition by [[State University of New York Press]] |isbn=0791415155 |pages=135-136}}</ref> [[Qutb al-Din al-Shirazi]], and 'Umar al-Katibi al-[[Qazwini]].<ref>{{Harvard reference |last1=Baker |first1=A. |last2=Chapter |first2=L. |year=2002 |chapter=Part 4: The Sciences}}, in {{Citation |last=Sharif |first=M. M. |title=Philosophia Islamica |chapter=A History of Muslim Philosophy}}</ref>
[[Alchemy (Islam)|Muslim chemists and alchemists]] played an important role in the foundation of modern [[chemistry]]. Scholars such as [[Will Durant]]<ref name=Durant>[[Will Durant]] (1980). ''The Age of Faith ([[The Story of Civilization]], Volume 4)'', p. 162-186. Simon & Schuster. ISBN 0671012002.</ref> and [[Fielding H. Garrison]]<ref>[[Fielding H. Garrison]], ''An Introduction to the History of Medicine with Medical Chronology,
Suggestions for Study and Biblographic Data'', p. 86</ref> considered Muslim chemists to be the founders of chemistry. In particular, [[Geber]] is "considered by many to be the father of chemistry".<ref>{{citation|first=Zygmunt S.|last=Derewenda|year=2007|title=On wine, chirality and crystallography|journal=Acta Crystallographica Section A: Foundations of Crystallography|volume=64|pages=246-258 [247]}}</ref><ref>John Warren (2005). "War and the Cultural Heritage of Iraq: a sadly mismanaged affair", ''Third World Quarterly'' '''26''' (4-5): 815-830</ref> The works of Arabic scientists influenced [[Roger Bacon]] (who introduced the empirical method to Europe, strongly influenced by his reading of Arabic writers),<ref>{{citation |last=Lindberg |first=David C. |year=1967 |title=Alhazen's Theory of Vision and Its Reception in the West |journal=[[Isis (journal)|Isis]] |volume=58 |issue=3 |pages=321–341}}</ref> and later [[Isaac Newton]].<ref>{{Citation |last=Faruqi |first=Yasmeen M. |year=2006 |title=Contributions of Islamic scholars to the scientific enterprise |journal=International Education Journal |volume=7 |issue=4 |pages=391–396}}</ref>
Some of the other famous scientists from the Islamic world include [[al-Farabi]] ([[polymath]]), [[Abu al-Qasim]] (pioneer of [[surgery]]),<ref>A. Martin-Araguz, C. Bustamante-Martinez, Ajo V. Fernandez-Armayor, J. M. Moreno-Martinez (2002). "Neuroscience in al-Andalus and its influence on medieval scholastic medicine", ''Revista de neurología'' '''34''' (9), p. 877-892.</ref> [[Abū Rayhān al-Bīrūnī]] (pioneer of [[Indology]],<ref>Zafarul-Islam Khan, [http://milligazette.com/Archives/15-1-2000/Art5.htm At The Threshhold Of A New Millennium – II], ''The Milli Gazette''.</ref> [[geodesy]] and [[anthropology]]),<ref>Akbar S. Ahmed (1984). "Al-Beruni: The First Anthropologist", ''RAIN'' '''60''', p. 9-10.</ref> [[Avicenna]] (pioneer of [[momentum]]<ref>Seyyed Hossein Nasr, "Islamic Conception Of Intellectual Life", in Philip P. Wiener (ed.), ''Dictionary of the History of Ideas'', Vol. 2, p. 65, Charles Scribner's Sons, New York, 1973-1974.</ref> and [[medicine]]),<ref>Cas Lek Cesk (1980). "The father of medicine, Avicenna, in our science and culture: Abu Ali ibn Sina (980-1037)", ''Becka J.'' '''119''' (1), p. 17-23.</ref> [[Nasīr al-Dīn al-Tūsī]] (polymath), and [[Ibn Khaldun]] (forerunner of [[social sciences]]<ref>Akbar Ahmed (2002). "Ibn Khaldun’s Understanding of Civilizations and the Dilemmas of Islam and the West Today", ''Middle East Journal'' '''56''' (1), p. 25.</ref> such as [[demography]],<ref name=Mowlana>H. Mowlana (2001). "Information in the Arab World", ''Cooperation South Journal'' '''1'''.</ref> [[cultural history]],<ref>Mohamad Abdalla (Summer 2007). "Ibn Khaldun on the Fate of Islamic Science after the 11th Century", ''Islam & Science'' '''5''' (1), p. 61-70.</ref> [[historiography]],<ref>Salahuddin Ahmed (1999). ''A Dictionary of Muslim Names''. C. Hurst & Co. Publishers. ISBN 1850653569.</ref> [[philosophy of history]] and [[sociology]]),<ref name=Akhtar>Dr. S. W. Akhtar (1997). "The Islamic Concept of Knowledge", ''Al-Tawhid: A Quarterly Journal of Islamic Thought & Culture'' '''12''' (3).</ref> among many others.
===Science in Medieval Europe===
{{Expand-section|examples before the twelfth century|date=April 2008}}
{{main|Science in Medieval Western Europe}}
{{see|Renaissance of the 12th century|Scholasticism|Medieval technology|Islamic contributions to Medieval Europe}}
[[Image:Map of Medieval Universities.jpg|left|thumb|''Map of [[Medieval university|Medieval Universities]]'']]
An intellectual revitalization of Europe started with the birth of [[Medieval university|medieval universities]] in the 12th century. The contact with the Islamic world in [[Al-Andalus|Spain]] and [[History of Islam in southern Italy|Sicily]], and during the [[Reconquista]] and the [[Crusades]], allowed Europeans access to scientific [[Greek language|Greek]] and [[Arabic language|Arabic]] texts, including the works of [[Aristotle]], [[Ptolemy]], [[Geber]], [[Muhammad ibn Mūsā al-Khwārizmī|al-Khwarizmi]], [[Ibn al-Haytham|Alhazen]], [[Avicenna]], and [[Averroes]]. European scholars like [[Michael Scotus]] would learn Arabic in order to study these texts. The European universities aided materially in the [[Latin translations of the 12th century|translation and propagation of these texts]] and started a new infrastructure which was needed for scientific communities. As well as this, Europeans began to venture further and further east (most notably, perhaps, [[Marco Polo]]) as a result of the [[Pax Mongolica]]. This led to the increased influence of Indian and even Chinese science on the European tradition. Technological advances were also made, such as the early flight of [[Eilmer of Malmesbury]] (who had studied Mathematics in 11th century [[England]]),<ref name="Eilmer"> [[William of Malmesbury]], ''[[Gesta regum Anglorum]] / The history of the English kings'', ed. and trans. R. A. B. Mynors, R. M. Thomson, and M. Winterbottom, 2 vols., [[Oxford]] Medieval Texts (1998–9)</ref> and the [[metallurgy|metallurgical]] achievements of the [[Cistercians|Cistercian]] [[blast furnace]] at [[Laskill]].<ref name="Laskill"> R. W. Vernon, G. McDonnell and A. Schmidt, 'An integrated geophysical and analytical appraisal of early iron-working: three case studies' <I>Historical Metallurgy<I> 31(2) (1998), 72-5 79.</ref><ref name="Woods">[[Thomas Woods]], ''How the Catholic Church Built Western Civilization'', (Washington, DC: Regenery, 2005), ISBN 0-89526-038-7</ref><ref name="Derbeyshire">David Derbyshire, ''Henry "Stamped Out Industrial Revolution"'', [[The Daily Telegraph]] ([[21 June]] [[2002]])</ref>
[[Image:Roger-bacon-statue.jpg|thumb|200px|Statue of Roger Bacon in the [[Oxford University Museum of Natural History|Oxford University Museum]]]]
At the beginning of the 13th century there were reasonably accurate Latin translations of the main works of almost all the intellectually crucial ancient authors, allowing a sound transfer of scientific ideas via both the universities and the monasteries. By then, the natural philosophy contained in these texts began to be extended by notable [[Scholasticism|scholastics]] such as [[Robert Grosseteste]], [[Roger Bacon]], [[Albertus Magnus]] and [[Duns Scotus]]. Precursors of the modern scientific method, influenced by earlier contributions of the Islamic world, can be seen already in Grosseteste's emphasis on mathematics as a way to understand nature, and in the empirical approach admired by Bacon, particularly in his ''[[Opus Majus]]''. According to [[Pierre Duhem]], the [[Condemnation of 1277]] led to ''the'' birth of [[modern science]], because it forced thinkers to break from relying so much on [[Aristotle]], and to think about the world in new ways.<ref name="Woods"/>
The first half of the 14th century saw much important scientific work being done, largely within the framework of [[Scholasticism|scholastic]] commentaries on Aristotle's scientific writings.<ref>Edward Grant, ''The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional, and Intellectual Contexts,'' (Cambridge: Cambridge Univ. Pr., 1996), pp. 127-31.</ref> [[William of Ockham]] introduced the principle of [[Occam's razor|parsimony]]: natural philosophers should not postulate unnecessary entities, so that motion is not a distinct thing but is only the moving object<ref>Edward Grant, ''A Source Book in Medieval Science,'' (Cambridge: Harvard Univ. Pr., 1974), p. 232</ref> and an intermediary "sensible species" is not needed to transmit an image of an object to the eye.<ref>David C. Lindberg, ''Theories of Vision from al-Kindi to Kepler,'' (Chicago: Univ. of Chicago Pr., 1976), pp. 140-2.</ref> Scholars such as [[Jean Buridan]] and [[Nicole Oresme]] started to reinterpret elements of Aristotle's mechanics. In particular, Buridan developed the theory that impetus was the cause of the motion of projectiles, which was a first step towards the modern concept of [[inertia]].<ref>Edward Grant, ''The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional, and Intellectual Contexts,'' (Cambridge: Cambridge Univ. Pr., 1996), pp. 95-7.</ref> The [[Oxford Calculators]] began to mathematically analyze the [[kinematics]] of motion, making this analysis without considering the causes of motion.<ref>Edward Grant, ''The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional, and Intellectual Contexts,'' (Cambridge: Cambridge Univ. Pr., 1996), pp. 100-3.</ref>
In 1348, the [[Black Death]] and other disasters sealed a sudden end to the previous period of massive philosophic and scientific development. Yet, the rediscovery of ancient texts was improved after the [[Fall of Constantinople]] in 1453, when many [[Byzantine Empire|Byzantine]] scholars had to seek refuge in the West. Meanwhile, the introduction of printing was to have great effect on European society. The facilitated dissemination of the printed word democratized learning and allowed a faster propagation of new ideas. New ideas also helped to influence the development of European science at this point: not least the introduction of [[Algebra]]. These developments paved the way for the [[Scientific Revolution]], which may also be understood as a resumption of the process of scientific change, halted at the start of the Black Death.
==Early modern science==<!--[[New science]] redirects here-->
{{main|Scientific Revolution|Age of Reason}}
{{see also|Continuity thesis|Decline of Western alchemy|Natural magic}}
[[Image:GodfreyKneller-IsaacNewton-1689.jpg|thumb|upright|left|[[Sir Isaac Newton]], initiated the field of [[classical mechanics]] in physics]]
The renewal of learning in Europe, that began with 12th century [[Scholasticism]], came to an end about the time of the Black Death, and the initial period of the subsequent [[Italian Renaissance]] is sometimes seen as a lull in scientific activity. The [[Northern Renaissance]], on the other hand, showed a decisive shift in focus from Aristoteleian natural philosophy to chemistry and the biological sciences (botany, anatomy, and medicine).<ref>Alan Debus, ''Man and Nature in the Renaissance'', (Cambridge: Cambridge Univ. Pr., 1978).</ref> Thus modern science in Europe was resumed in a period of great upheaval: the [[Protestant Reformation]] and [[Roman Catholic Church|Catholic]] [[Counter-Reformation]]; the discovery of the Americas by [[Christopher Columbus]]; the [[Fall of Constantinople]]; but also the re-discovery of Aristotle during the Scholastic period presaged large social and political changes. Thus, a suitable environment was created in which it became possible to question scientific doctrine, in much the same way that [[Martin Luther]] and [[John Calvin]] questioned religious doctrine. The works of [[Ptolemy]] (astronomy) and [[Galen]] (medicine) were found not always to match everyday observations. Work by [[Vesalius]] on human cadavers found problems with the Galenic view of anatomy.<ref>Precise titles of these landmark books can be found in the collections of the [[Library of Congress]]. A list of these titles can be found in [[Leonard C. Bruno]] (1989), ''The Landmarks of Science''. ISBN 0-8160-2137-6 </ref>
[[Image:1543,AndreasVesalius'Fabrica,BaseOfTheBrain.jpg|thumb|upright|right|[[Vesalius]]' experiments inspired interest in human anatomy.]]
The willingness to question previously held truths and search for new answers resulted in a period of major scientific advancements, now known as the [[Scientific Revolution]]. The Scientific Revolution is traditionally held by most historians to have begun in 1543, when ''[[De Revolutionibus Orbium Coelestium|De Revolutionibus]]'', by the astronomer [[Nicolaus Copernicus]], was first printed. The thesis of this book was that the Earth moved around the Sun. The period culminated with the publication of the ''[[Philosophiæ Naturalis Principia Mathematica]]'' in 1687 by [[Isaac Newton]].
Other significant scientific advances were made during this time by [[Galileo Galilei]], [[Edmond Halley]], [[Robert Hooke]], [[Christiaan Huygens]], [[Tycho Brahe]], [[Johannes Kepler]], [[Gottfried Leibniz]], and [[Blaise Pascal]]. In philosophy, major contributions were made by [[Francis Bacon (philosopher)|Francis Bacon]], Sir [[Thomas Browne]], [[René Descartes]], and [[Thomas Hobbes]]. The scientific method was also better developed as the modern way of thinking emphasized experimentation and reason over traditional considerations.
==Age of Enlightenment==
{{main|Science in the Age of Enlightenment}}
{{see|Age of Enlightenment}}
The 17th century "Age of Reason" opened the avenues to the decisive steps towards modern science, which took place during the 18th century "Age of Enlightenment". Directly based on the works of [[Isaac Newton|Newton]], [[Descartes]], [[Blaise Pascal|Pascal]] and [[Gottfried Leibniz|Leibniz]], the way was now clear to the development of modern [[mathematics]], [[physics]] and [[technology]]
by the generation of [[Benjamin Franklin]] (1706–1790), [[Leonhard Euler]] (1707–1783), [[Georges-Louis Leclerc]] (1707–1788) and [[Jean le Rond d'Alembert]] (1717–1783), epitomized in the appearance of [[Denis Diderot]]'s ''[[Encyclopédie]]'' between 1751 and 1772. The impact of this process was not limited to science and technology, but affected [[history of philosophy|philosophy]] ([[Immanuel Kant]], [[David Hume]]), [[history of religion|religion]] (notably with the appearance of positive [[atheism]], and the increasingly significant impact of [[Relationship between religion and science|science upon religion]]), and society and politics in general ([[Adam Smith]], [[Voltaire]]), the [[French Revolution]] of 1789 setting a bloody cesura indicating the beginning of [[political modernity]].
==Modern science==
[[Image:Albert Einstein Head.jpg|thumb|left|upright|[[Albert Einstein]] ]]
The Scientific Revolution established science as the preeminent source for the growth of knowledge. The [[early modern period]] is seen as a flowering of the Renaissance, in what is often known as the [[Scientific Revolution]], viewed as a foundation of [[modern science]]. During the 19th century, the practice of science became professionalized and institutionalized in ways which continued through the 20th century. As the role of scientific knowledge grew in society, it became incorporated with many aspects of the functioning of nation-states.
The history of science is marked by a chain of advances in [[technology]] and knowledge that have always complemented each other. Technological innovations bring about new [[discoveries]] and are bred by other discoveries which inspire new possibilities and approaches to longstanding science issues. Investing in [[science and technology]] is critical to ensuring [[prosperity]] and a high [[quality of life]]. [[Scientist]]s are at the forefront of the development of scientific and technological innovations. The primary objectives of these professionals are to create and develop novel [[research]] that can be used to solve problems for both the [[state]]s' populations and individual entities like [[company (law)|companies]] or other private organizations.
===Natural sciences===
====Physics====
{{main|History of physics}}
[[Image:James clerk maxwell.jpg|thumb|right|upright|[[James Clerk Maxwell]]]]
The Scientific Revolution is a convenient boundary between ancient thought and classical physics. [[Nicolaus Copernicus]] revived the [[heliocentrism|heliocentric]] model of the solar system described by [[Aristarchus of Samos]]. This was followed by the first known model of planetary motion given by [[Johannes Kepler|Kepler]] in the early 17th century, which proposed that the planets follow [[ellipse|elliptical]] orbits, with the Sun at one focus of the ellipse. [[Galileo Galilei|Galileo]] ("''Father of Modern Physics''") also made use of experiments to validate physical theories, a key element of the scientific method.
In 1687, [[Isaac Newton]] published the ''[[Philosophiæ Naturalis Principia Mathematica|Principia Mathematica]],'' detailing two comprehensive and successful physical theories: [[Newton's laws of motion]], which led to classical mechanics; and [[gravity|Newton's Law of Gravitation]], which describes the fundamental force of gravity. The behavior of electricity and magnetism was studied by [[Michael Faraday|Faraday]], [[Georg Ohm|Ohm]], and others during the early 19th century. These studies led to the unification of the two phenomena into a single theory of [[electromagnetism]], by [[James Clerk Maxwell|Maxwell]] (known as [[Maxwells equations|Maxwell's equations]]).
[[Image:Universe expansion2.png|thumb|left|Diagram of the [[expanding universe]]]]
The beginning of the 20th century brought the start of a revolution in physics. The long-held theories of Newton were shown not to be correct in all circumstances. Beginning in 1900, [[Max Planck]], [[Albert Einstein]], [[Niels Bohr]] and others developed quantum theories to explain various anomalous experimental results, by introducing discrete energy levels. Not only did quantum mechanics show that the laws of motion did not hold on small scales, but even more disturbingly, the theory of [[general relativity]], proposed by Einstein in 1915, showed that the fixed background of [[spacetime]], on which both [[Newtonian mechanics]] and [[special relativity]] depended, could not exist. In 1925, [[Werner Heisenberg]] and [[Erwin Schrödinger]] formulated [[quantum mechanics]], which explained the preceding quantum theories. The observation by [[Edwin Hubble]] in 1929 that the speed at which galaxies recede positively correlates with their distance, led to the understanding that the universe is expanding, and the formulation of the [[Big Bang]] theory by [[Georges Lemaître]].
[[Image:Trinity explosion.jpg|thumb|right|The development of the [[atomic bomb]] ushered in the era of "[[Big Science]]" in physics.]]
Further developments took place during World War II, which led to the practical application of [[radar]] and the development and use of the [[atomic bomb]]. Though the process had begun with the invention of the [[cyclotron]] by [[Ernest O. Lawrence]] in the 1930s, physics in the postwar period entered into a phase of what historians have called "[[Big Science]]", requiring massive machines, budgets, and laboratories in order to test their theories and move into new frontiers. The primary patron of physics became state governments, who recognized that the support of "basic" research could often lead to technologies useful to both military and industrial applications. Currently, general relativity and quantum mechanics are inconsistent with each other, and efforts are underway to unify the two.
====Chemistry====
{{main|History of chemistry}}
The history of modern chemistry can be taken to begin with the distinction of chemistry from [[alchemy]] by [[Robert Boyle]] in his work ''The Sceptical Chymist'', in 1661 (although the alchemical tradition continued for some time after this) and the gravimetric experimental practices of medical chemists like [[William Cullen]], [[Joseph Black]], [[Torbern Bergman]] and [[Pierre Macquer]]. Another important step was made by [[Antoine Lavoisier]] ([[Father or mother of something|''Father of Modern Chemistry'']]) through his recognition of [[oxygen]] and the law of [[conservation of mass]], which refuted [[phlogiston theory]]. The theory that all matter is made of atoms, which are the smallest constituents of matter that cannot be broken down without losing the basic chemical and physical properties of that matter, was provided by [[John Dalton]] in 1803, although the question took a hundred years to settle as proven. Dalton also formulated the law of mass relationships. In 1869, [[Dmitri Mendeleev]] composed his [[periodic table]] of elements on the basis of Dalton's discoveries.
The synthesis of [[urea]] by [[Friedrich Wöhler]] opened a new research field, [[organic chemistry]], and by the end of the 19th century, scientists were able to synthesize hundreds of organic compounds. The later part of the 19th century saw the exploitation of the Earth's petrochemicals, after the exhaustion of the oil supply from [[whaling]]. By the twentieth century, systematic production of refined materials provided a ready supply of products which provided not only energy, but also synthetic materials for clothing, medicine, and everyday disposable resources. Application of the techniques of organic chemistry to living organisms resulted in [[physiological chemistry]], the precursor to [[biochemistry]]. The twentieth century also saw the integration of physics and chemistry, with chemical properties explained as the result of the electronic structure of the atom. [[Linus Pauling]]'s book on ''The Nature of the Chemical Bond'' used the principles of quantum mechanics to deduce [[bond angle]]s in ever-more complicated molecules. Pauling's work culminated in the physical modelling of [[DNA]], ''the secret of life'' (in the words of [[Francis Crick]], 1953). In the same year, the [[Miller-Urey experiment]] demonstrated in a simulation of primordial processes, that basic constituents of proteins, simple [[amino acid]]s, could themselves be built up from simpler molecules.
====Geology====
{{main|Geology}}
Geology existed as a cloud of isolated, disconnected ideas about rocks, minerals, and landforms long before it became a coherent science. [[Theophrastus]]' work on rocks ''Peri lithōn'' remained authoritative for millennia: its interpretation of fossils was not overturned until after the Scientific Revolution. Chinese polymath [[Shen Kua]] (1031 - 1095) was the first to formulate hypotheses for the process of land formation. Based on his observation of fossils in a geological [[stratum]] in a mountain hundreds of miles from the ocean, he deduced that the land was formed by erosion of the mountains and by [[Deposition (sediment)|deposition]] of silt.
[[Image:Wegener.jpg|thumb|130px|right|[[Plate tectonics]] - [[seafloor spreading]] and [[continental drift]] illustrated on relief globe]]
Geology was not systematically restructured during the [[Scientific Revolution]], but individual theorists made important contributions. [[Robert Hooke]], for example, formulated theory of earthquakes, and [[Nicholas Steno]] developed the theory of [[superposition]] and argued that [[fossils]] were the remains of once-living creatures. Beginning with [[Thomas Burnet]]'s [[Sacred Theory of the Earth]] in 1685, natural philosophers began to explore the idea that the Earth had changed over time. Burnet and his contemporaries interpreted Earth's past in terms of events described in the Bible, but their work laid the intellectual foundations for secular interpretations of Earth history.
Modern geology, like modern chemistry, gradually evolved during the 1700s and early 1800s. [[Benoît de Maillet]] and the [[Georges-Louis Leclerc, Comte de Buffon|Comte de Buffon]] argued that Earth was much older than the 6,000 years envisioned by biblical scholars. [[Jean-Étienne Guettard]] and [[Nicolas Desmarest]] hiked central France and recorded their observations on some of the first geological maps. [[Abraham Werner]] created a systematic classification scheme for rocks and minerals--an achievement as significant for geology as that of [[Linnaeus]] was for biology. Werner also proposed a generalized interpretation of Earth history, as did contemporary Scottish polymath [[James Hutton]]. [[Georges Cuvier]] and [[Alexandre Brongniart]], expanding on the work of [[Nicolas Steno|Steno]], argued that layers of rock could be dated by the fossils they contained: a principle first applied to the geology of the Paris Basin. The use of [[index fossils]] became a powerful tool for making geological maps, because it allowed geologists to correlate the rocks in one locality with those of similar age in other, distant localities. Over the first half of the 19th century, geologists such as [[Charles Lyell]], [[Adam Sedgwick]], and [[Roderick Murchison]] applied the new technique to rocks throughout Europe and eastern North America, setting the stage for more detailed, government-funded mapping projects in later decades.
Midway through the 19th century, the focus of geology shifted from description and classification to attempts to understand ''how'' the surface of the Earth changed. The first comprehensive theories of mountain building were proposed during this period, as were the first modern theories of earthquakes and volcanoes. [[Louis Agassiz]] and others established the reality of continent-covering [[ice age]]s, and "fluvialists" like [[Andrew Crombie Ramsay]] argued that river valleys were formed, over millions of years by the rivers that flow through them. After the discovery of [[radioactivity]], [[radiometric dating]] methods were developed, starting in the 1900s. [[Alfred Wegener]]'s theory of "continental drift" was widely dismissed when it was proposed in the 1910s, but new data gathered in the 1950s and 1960s led to the theory of [[plate tectonics]], which provided a plausible mechanism for it. [[Plate tectonics]] also provided a unified explanation for a wide range of seemingly unrelated geological phenomena. Since 1970 it has been the unifying principle in geology.
Geologists' embrace of [[plate tectonics]] was part of a broadening of the field from a study of rocks into a study of the Earth as a planet. Other elements of this transformation include: geophysical studies of the interior of the Earth, the grouping of geology with [[meteorology]] and [[oceanography]] as one of the "earth sciences", and comparisons of Earth and the solar system's other rocky planets.
====Astronomy====
{{main|History of astronomy}}
[[Aristarchus of Samos]] published [[Aristarchus On the Sizes and Distances|work]] on how to determine the sizes and distances of the Sun and the Moon, and [[Eratosthenes]] used this work to figure the size of the Earth. [[Hipparchus]] later discovered the [[precession (astronomy)|precession]] of the Earth.
Advances in astronomy and in optical systems in the 19th century resulted in the first observation of an [[asteroid]] ([[Ceres (dwarf planet)|1 Ceres]]) in 1801, and the discovery of [[Neptune]] in 1846.
[[George Gamow]], [[Ralph Alpher]], and [[Robert Hermann]] had calculated that there should be evidence for a Big Bang in the background temperature of the universe.<ref>Alpher, Herman, and Gamow. ''[[Nature (journal)|Nature]]'' '''162''',774 (1948).</ref> In 1964, [[Arno Penzias]] and [[Robert Woodrow Wilson|Robert Wilson]]<ref>[http://nobelprize.org/physics/laureates/1978/wilson-lecture.pdf Wilson's 1978 Nobel lecture]</ref> discovered a 3 kelvin background hiss in their [[Bell Labs]] [[radiotelescope]], which was evidence for this hypothesis, and formed the basis for a number of results that helped determine the [[age of the universe]].
Supernova [[SN1987A]] was observed by astronomers on Earth both visually, and in a triumph for [[neutrino astronomy]], by the solar neutrino detectors at [[Kamiokande]]. But the solar neutrino flux was [[solar neutrino problem|a fraction of its theoretically-expected value]]. This discrepancy forced a change in some values in the [[standard model]] for [[particle physics]].
====Biology, medicine, and genetics====
{{main|History of biology|History of molecular biology|History of medicine|History of evolutionary thought}}
[[Image:DNA replication split.svg|thumb|left|upright|Semi-conservative [[DNA replication]]]]
In 1847, Hungarian physician [[Ignaz Semmelweis|Ignác Fülöp Semmelweis]] dramatically reduced the occurrency of [[puerperal fever]] by the simple experiment of requiring physicians to wash their hands before attending to women in childbirth. This discovery predated the [[germ theory of disease]]. However, Semmelweis' findings were not appreciated by his contemporaries and came into use only with discoveries by British surgeon [[Joseph Lister]], who in 1865 proved the principles of [[antisepsis]]. Lister's work was based on the important findings by French biologist [[Louis Pasteur]]. Pasteur was able to link microorganisms with disease, revolutionizing medicine. He also devised one of the most important methods in [[preventive medicine]], when in 1880 he produced a [[vaccine]] against [[rabies]]. Pasteur invented the process of [[pasteurization]], to help prevent the spread of disease through milk and other foods.
Perhaps the most prominent and far-reaching theory in all of science has been the theory of [[evolution]] by [[natural selection]] put forward by the British naturalist [[Charles Darwin]] in his book [[On the Origin of Species]] in 1859. Darwin proposed that the features of all living things, including humans, were shaped by natural processes over long periods of time. Implications of evolution on fields outside of pure science have led to both [[Social effect of evolutionary theory|opposition and support]] from different parts of society, and profoundly influenced the popular understanding of "man's place in the universe". In the early 20th century, the study of heredity became a major investigation after the rediscovery in 1900 of the laws of inheritance developed by the [[Moravia]]n<ref>{{cite book
| last = Henig
| first = Robin Marantz
| title = The Monk in the Garden : The Lost and Found Genius of Gregor Mendel, the Father of Genetics
| publisher = Houghton Mifflin
| date = 2000
| isbn = 0-395-97765-7
| quote = The article, written by an obscure Moravian monk named Gregor Mendel...
}}</ref> monk [[Gregor Mendel]] in 1866. Mendel's laws provided the beginnings of the study of [[genetics]], which became a major field of research for both scientific and industrial research. By 1953, [[James D. Watson]], [[Francis Crick]] and [[Rosalind Franklin]] clarified the basic structure of DNA, the [[genetic material]] for expressing life in all its forms.<ref>James D. Watson and Francis H. Crick. "Letters to ''Nature'': Molecular structure of Nucleic Acid." ''[[Nature (journal)|Nature]]'' '''171''', 737–738 (1953).</ref> In the late 20th century, the possibilities of [[genetic engineering]] became practical for the first time, and a massive international effort began in 1990 to map out an entire human [[genome]] (the [[Human Genome Project]]) has been touted as potentially having large medical benefits.
====Ecology====
{{main|History of ecology}}
[[Image:NASA-Apollo8-Dec24-Earthrise.jpg|thumb|right|Earthrise over the [[Moon]], [[Apollo 8]], [[NASA]]. This image helped create awareness of the finiteness of Earth, and the limits of its [[natural resource]]s.]]
The discipline of [[ecology]] typically traces its origin to the synthesis of [[evolution|Darwinian evolution]] and [[Humboldtian science|Humboldtian]] [[biogeography]], in the late 19th and early 20th centuries. Equally important in the rise of ecology, however, were [[microbiology]] and [[soil science]]—particularly the [[biogeochemical cycle|cycle of life]] concept, prominent in the work [[Louis Pasteur]] and [[Ferdinand Cohn]]. The word ''ecology'' was coined by [[Ernst Haeckel]], whose particularly holistic view of nature in general (and Darwin's theory in particular) was important in the spread of ecological thinking. In the 1930s, [[Arthur Tansley]] and others began developing the field of [[ecosystem ecology]], which combined experimental soil science with physiological concepts of energy and the techniques of [[natural history|field biology]]. The history of ecology in the 20th century is closely tied to that of [[environmentalism]]; the [[Gaia hypothesis]] in the 1960s and more recently the scientific-religious movement of [[Deep Ecology]] have brought the two closer together.
===Social sciences===
{{main|History of the social sciences}}
Successful use of the scientific method in the physical sciences led to the same methodology being adapted to better understand the many fields of human endeavor. From this effort the social sciences have been developed.
====Political science====
{{main|History of political science}}
While the study of politics is first found in [[Western culture]] in [[Ancient Greece]], political science is a late arrival in terms of [[social sciences]]. However, the discipline has a clear set of antecedents such as [[moral philosophy]], [[political philosophy]], [[political economy]], history, and other fields concerned with [[normative]] determinations of what ought to be and with [[deduction|deducing]] the characteristics and functions of the ideal [[state]]. In each historic period and in almost every geographic area, we can find someone studying politics and increasing political understanding.
The antecedents of politics trace their roots back even earlier than [[Plato]] and [[Aristotle]], particularly in the works of [[Homer]], [[Hesiod]], [[Thucydides]], [[Xenophon]], and [[Euripides]]. Later, Plato analyzed political systems, abstracted their analysis from more [[literary]]- and history- oriented studies and applied an approach we would understand as closer to [[philosophy]]. Similarly, Aristotle built upon Plato's analysis to include historical empirical evidence in his analysis.
During the rule of [[Rome]], famous historians such as [[Polybius]], [[Livy]] and [[Plutarch]] documented the rise of the Roman [[Republic]], and the organization and histories of other nations, while [[statesman|statesmen]] like [[Julius Caesar]], [[Cicero]] and others provided us with examples of the politics of the republic and Rome's empire and wars. The study of politics during this age was oriented toward understanding history, understanding methods of governing, and describing the operation of governments.
With the [[fall of the Roman Empire]], there arose a more diffuse arena for political studies. The rise of [[monotheism]] and, particularly for the Western tradition, [[Christianity]], brought to light a new space for politics and political action. During the [[Middle Ages]], the study of politics was widespread in the churches and courts. Works such as [[Augustine of Hippo]]'s ''[[The City of God]]'' synthesized current philosophies and political traditions with those of [[Christianity]], redefining the borders between what was religious and what was political. Most of the political questions surrounding the relationship between [[church]] and state were clarified and contested in this period.
In the [[Middle East]] and later other [[Islam]]ic areas, works such as the [[Rubaiyat of Omar Khayyam]] and Epic of Kings by [[Ferdowsi]] provided evidence of political analysis, while the [[Islamic]] [[aristotelians]] such as [[Avicenna]] and later [[Maimonides]] and [[Averroes]], continued [[Aristotle]]'s tradition of analysis and [[empiricism]], writing commentaries on Aristotle's works.
During the [[Italian Renaissance]], [[Niccolò Machiavelli]] established the emphasis of modern political science on direct [[empirical]] [[observation]] of political [[institution]]s and actors. Later, the expansion of the scientific paradigm during the [[the Age of Enlightenment|Enlightenment]] further pushed the study of politics beyond normative determinations. In particular, the study of [[statistics]], to study the subjects of the [[state]], has been applied to [[poll]]ing and [[voting]].
In the 20th century, the study of ideology, behaviouralism and international relations led to a multitude of 'pol-sci' subdisciplines including [[voting theory]], [[game theory]] (also used in economics), [[psephology]], [[political geography]]/[[geopolitics]], [[political psychology]]/[[political sociology]], [[political economy]], [[policy analysis]], [[public administration]], comparative political analysis and [[peace studies]]/conflict analysis.
====Linguistics====
{{main|History of linguistics}}
[[Historical linguistics]] emerged as an independent field of study at the end of the 18th century. [[William Jones (philologist)|Sir William Jones]] proposed that [[Sanskrit]], [[Persian language|Persian]], [[Greek language|Greek]], [[Latin]], [[Gothic language|Gothic]], and [[Celtic languages]] all shared a common base. After Jones, an effort to catalog all languages of the world was made throughout the 19th century and into the 20th century. Publication of [[Ferdinand de Saussure]]'s ''[[Cours de linguistique générale]]'' spawned the development of [[descriptive linguistics]]. Descriptive linguistics, and the related [[structuralism]] movement caused linguistics to focus on how language changes over time, instead of just describing the differences between languages. [[Noam Chomsky]] further diversified linguistics with the development of [[generative linguistics]] in the 1950s. His effort is based upon a mathematical model of language that allows for the description and prediction of valid [[syntax]]. Additional specialties such as [[sociolinguistics]], [[cognitive linguistics]], and [[computational linguistics]] have emerged from collaboration between linguistics and other disciplines.
====Economics====
{{main|History of economics}}
[[Image:Supply-demand-P.png|thumb|130px|left|The [[supply and demand]] model]]
The basis for [[classical economics]] forms [[Adam Smith]]'s ''[[The Wealth of Nations|An Inquiry into the Nature and Causes of the Wealth of Nations]]'', published in 1776. Smith criticized [[mercantilism]], advocating a system of free trade with [[division of labour]]. He postulated an "[[Invisible Hand]]" that large economic systems could be self-regulating through a process of enlightened self-interest. [[Karl Marx]] developed an alternative economical system, called [[Marxian economics]]. Marxian economics is based on the [[labor theory of value]] and assumes the value of good to be based on the amount of labor required to produce it. Under this assumption, [[capitalism]] was based on employeers not paying the full value of workers labor to create profit. The [[Austrian school]] responded to Marxian economics by viewing [[entrepreneurship]] as driving force of economic development. This replaced the labor theory of value by a system of [[supply and demand]].
In the 1920s, [[John Maynard Keynes]] prompted a division between [[microeconomics]] and [[macroeconomics]]. Under [[Keynesian economics]] macroeconomic trends can overwhelm economic choices made by individuals. Governments should promote [[aggregate demand]] for goods as a means to encourage economic expansion. Following World War II, [[Milton Friedman]] created the concept of [[monetarism]]. Monetarism focuses on using the supply and demand of money as a method for controlling economic activity. In the 1970s, monetarism has adapted into [[supply-side economics]] which advocates reducing taxes as a means to increase the amount of money available for economic expansion.
Other modern schools of economic thought are [[New Classical economics]] and [[New Keynesian economics]]. New Classical economics was developed in the 1970s, emphasizing solid microeconomics as the basis for macroeconomic growth. New Keynesian economics was created partially in response to New Classical economics, and deals with how inefficiencies in the market create a need for control by a central bank or government.
====Psychology====
{{main|History of psychology}}
The end of the 19th century marks the start of psychology as a scientific enterprise. The year 1879 is commonly seen as the start of psychology as an independent field of study. In that year [[Wilhelm Wundt]] founded the first laboratory dedicated exclusively to psychological research (in [[Leipzig]]). Other important early contributors to the field include [[Hermann Ebbinghaus]] (a pioneer in memory studies), [[Ivan Pavlov]] (who discovered [[classical conditioning]]), and [[Sigmund Freud]]. Freud's influence has been enormous, though more as cultural icon than a force in scientific psychology.
The 20th century saw a rejection of Freud's theories as being too unscientific, and a reaction against [[Edward Titchener]]'s atomistic approach of the mind. This led to the formulation of [[behaviorism]] by [[John B. Watson]], which was popularized by [[B.F. Skinner]]. Behaviorism proposed [[epistemology|epistemologically]] limiting psychological study to overt behavior, since that could be reliably measured. Scientific knowledge of the "mind" was considered too metaphysical, hence impossible to achieve.
The final decades of the 20th century have seen the rise of a new interdisciplinary approach to studying human psychology, known collectively as [[cognitive science]]. Cognitive science again considers the mind as a subject for investigation, using the tools of [[evolutionary psychology]], [[linguistics]], [[computer science]], [[philosophy]], and [[neurobiology]]. New methods of visualizing the activity of the brain, such as [[PET scan]]s and [[CAT scan]]s, began to exert its influence as well. These new forms of investigation assume that a wide understanding of the human mind is possible, and that such an understanding may be applied to other research domains, such as [[artificial intelligence]].
====Sociology====
{{main|History of sociology}}
[[Ibn Khaldun]] can be regarded as the earliest scientific systematic sociologist.<ref>Muhammed Abdullah Enan, ''Ibn Khaldun: His Life and Works'', The Other Press, 2007, pp. 104–105. ISBN 9839541536.</ref> The modern sociology, emerged in the early 19th century as the academic response to the modernization of the world. Among many early sociologists (e.g., [[Émile Durkheim]]), the aim of sociology was in [[Functionalism (sociology)|structuralism]], understanding the cohesion of social groups, and developing an "antidote" to social disintegration. [[Max Weber]] was concerned with the modernization of society through the concept of [[rationalization (sociology)|rationalization]], which he believed would trap individuals in an "iron cage" of rational thought. Some sociologists, including [[Georg Simmel]] and [[W. E. B. Du Bois]], utilized more [[microsociology|microsociological]], qualitative analyses. This microlevel approach played an important role in American sociology, with the theories of [[George Herbert Mead]] and his student [[Herbert Blumer]] resulting in the creation of the [[symbolic interactionism]] approach to sociology.
American sociology in the 1940s and 1950s was dominated largely by [[Talcott Parsons]], who argued that aspects of society that promoted structural integration were therefore "functional". This [[structural functionalism]] approach was questioned in the 1960s, when sociologists came to see this approach as merely a justification for inequalities present in the status quo. In reaction, [[conflict theory]] was developed, which was based in part on the philosophies of [[Karl Marx]]. Conflict theorists saw society as an arena in which different groups compete for control over resources. Symbolic interactionism also came to be regarded as central to sociological thinking. [[Erving Goffman]] saw social interactions as a stage performance, with individuals preparing "backstage" and attempting to control their audience through [[impression management]]. While these theories are currently prominent in sociological thought, other approaches exist, including [[feminist theory]], [[post-structuralism]], [[rational choice theory]], and [[postmodernism]].
====Anthropology====
{{main|History of anthropology}}
Anthropology can best be understood as an outgrowth of the [[Age of Enlightenment]]. It was during this period that Europeans attempted systematically to study human behaviour. Traditions of jurisprudence, history, philology and sociology developed during this time and informed the development of the social sciences of which anthropology was a part.
At the same time, the romantic reaction to the Enlightenment produced thinkers such as [[Johann Gottfried Herder]] and later [[Wilhelm Dilthey]] whose work formed the basis for the [[culture]] concept which is central to the discipline. Traditionally, much of the history of the subject was based on [[colonial]] encounters between Europe and the rest of the world, and much of 18th- and 19th-century anthropology is now classed as forms of [[scientific racism]].
During the late 19th-century, battles over the "study of man" took place between those of an "anthropological" persuasion (relying on [[anthropometry|anthropometrical]] techniques) and those of an "[[ethnology|ethnological]]" persuasion (looking at cultures and traditions), and these distinctions became part of the later divide between [[physical anthropology]] and [[cultural anthropology]], the latter ushered in by the students of [[Franz Boas]].
In the mid-20th century, much of the methodologies of earlier anthropological and ethnographical study were reevaluated with an eye towards research ethics, while at the same time the scope of investigation has broadened far beyond the traditional study of "primitive cultures" (scientific practice itself is often an arena of anthropological study).
The emergence of [[paleoanthropology]], a scientific discipline which draws on the [[methodology|methodologies]] of [[paleontology]], [[physical anthropology]] and [[ethology]], among other disciplines, and increasing in scope and momentum from the mid-20th century, continues to yield further insights into human origins, evolution, genetic and cultural heritage, and perspectives on the contemporary human predicament as well.
===Emerging disciplines===
During the 20th century, a number of interdisciplinary scientific fields have emerged. Three examples will be given here:
[[Communication studies]] combines [[animal communication]], [[information theory]], [[marketing]], [[public relations]], [[telecommunication]]s and other forms of communication.
[[Computer science]], built upon a foundation of [[theoretical linguistics]], [[discrete mathematics]], and [[electrical engineering]], studies the nature and limits of computation. Subfields include [[Computability theory (computer science)|computability]], [[Computational complexity theory|computational complexity]], [[database]] design, [[computer networking]], [[artificial intelligence]], and the design of [[computer hardware]]. One area in which advances in computing have contributed to more general scientific development is by facilitating large-scale [[Scientific data archiving|archiving of scientific data]]. Contemporary computer science typically distinguishes
itself by emphasising mathematical 'theory' in contrast to the practical emphasis of [[software engineering]].
[[Materials science]] has its roots in [[metallurgy]], [[minerology]], and [[crystallography]]. It combines chemistry, physics, and several engineering disciplines. The field studies metals, [[ceramic]]s, plastics, [[semiconductor]]s, and [[composite material]]s.
==Academic study==
{{main|History of science and technology}}
As an academic field, '''[[History of science and technology|history of science]]''' began with the publication of [[William Whewell]]'s ''History of the Inductive Sciences'' (first published in 1837). A more formal study of the history of science as an independent discipline was launched by [[George Sarton]]'s publications, ''Introduction to the History of Science'' (published in 1927) and the [[Isis (journal)|''Isis'' journal]] (founded in 1912). The [[history of mathematics]], [[history of technology]], and [[history of philosophy]] are distinct areas of research and are covered in other articles. Mathematics is closely related to but distinct from natural science (at least in the modern conception). Technology is likewise closely related to but clearly differs from the search for empirical truth. Philosophy differs from science in its engagement in [[Philosophical analysis|analysis]] and [[normative]] discourse, among other differences. In practice science, mathematics, technology, and philosophy are obviously deeply entwined, and clear lines demarcating them are not evident until the 19th century (when science first became [[professional]]ized). History of science has therefore been deeply informed by the histories of mathematics, technology, and philosophy—even as those fields have become increasingly autonomous.
===Theories and sociology of the history of science===
{{main|Theories and sociology of the history of science}}
Much of the study of the history of science has been devoted to answering questions about what science ''is'', how it ''functions'', and whether it exhibits large-scale patterns and trends.<ref>[http://books.google.com/books?hl=en&lr=&id=Dp1f03arcbYC&oi=fnd&pg=PR11&dq=What+is+science&ots=QaNbohocMO&sig=rJcsk4pOh59Ivm7m_B7vIq1k8yM ''What is this thing called science?'']</ref> The [[sociology of science]] in particular has focused on the ways in which scientists work, looking closely at the ways in which they "produce" and "construct" scientific knowledge. Since the 1960s, a common trend in [[science studies]] (the study of the sociology and history of science) has been to emphasize the "human component" of scientific knowledge, and to de-emphasize the view that scientific data are self-evident, value-free, and context-free.<ref>[http://books.google.com/books?hl=en&lr=&id=I_3i18x5BqcC&oi=fnd&pg=PR9&dq=sociology+of+science&ots=VqVsNV1os1&sig=6pa_UvmikTgiw-3vYdVx-vSVd6E The Sociology of Science: Theoretical and Empirical Investigations]
By Robert King Merton</ref>
A major subject of concern and controversy in the [[philosophy of science]] has been the nature of ''theory change'' in science. [[Karl Popper]] argued that scientific knowledge is progressive and cumulative; [[Thomas Kuhn]], that scientific knowledge moves through "[[paradigm shift]]s" and is not necessarily progressive; and [[Paul Feyerabend]], that scientific knowledge is not cumulative or progressive and that there can be no [[demarcation problem|demarcation]] in terms of method between science and any other form of investigation.<ref>[http://books.google.com/books?hl=en&lr=&id=qnwzRqh5jFMC&oi=fnd&pg=RA1-PR11&dq=philosophy+of+science&ots=3pZXuriZ46&sig=6HTkRM2vdTv2BkUL70xyrF9GKGU ''Science Teaching: The Role of History and Philosophy of Science''] By Michael Robert Matthews</ref>
Since the publication of Kuhn's ''[[The Structure of Scientific Revolutions]]'' in 1970,<ref>[http://books.google.ie/books?id=iT1v31LUz54C&dq=The+Structure+of+Scientific+Revolutions&ots=uJIPYnc9YW&sig=8IF2ACMpyVWAyloajbnL18cVtFw&prev=http://www.google.ie/search%3Ftab%3Dsw%26sa%3DN%26hl%3Den%26lr%3D%26client%3Dfirefox-a%26q%3DThe%2BStructure%2Bof%2BScientific%2BRevolutions%26btnG%3DSearch&sa=X&oi=print&ct=result&cd=1&cad=legacy Summary on Google books]</ref> historians, sociologists, and philosophers of science have debated the meaning and objectivity of science.
==See also==
{{portal|History of science|Kepler-solar-system-2.gif}}
{{col-begin}}
{{col-2}}
* [[History]]
** [[History of science and technology]]
** [[History of mathematics]]
** [[History of physics]]
** [[History of philosophy]]
** [[History of technology]]
** [[History of science and technology in China]]
** [[Science and technology in Canada]]
** [[Science and technology in India]]
** [[Timeline of science and technology in the Islamic world]]
** [[2000s in science and technology]]
* [[Philosophy of history]]
* [[List of famous experiments]]
* [[List of scientists]]
* [[List of Nobel laureates]]
* [[List of years in science]]
* [[List of discoveries]]
{{col-2}}
* [[Science]]
** [[Fields of science]]
*** [[Natural science]]s
**** [[Natural Sciences Tripos]] University of Cambridge, UK
*** [[Behavioural sciences]]
*** [[Social science]]s
** [[History of technology]]
** [[Philosophy of science]]
*** [[Imre Lakatos]]
*** [[Naïve empiricism]]
** [[Science studies]]
* [[Theories and sociology of the history of science]]
* [[List of timelines#Science|Timelines of science]]
** [[Timeline of scientific discoveries]]
** [[Timeline of scientific experiments]]
** [[Timeline of the history of scientific method]]
** [[List of multiple independent discoveries]]
{{col-end}}
==References==
{{reflist}}
==Further reading==
* [[Joseph Agassi]] (2007) ''Science and History: A Reassessment of the Historiography of Science'' (Boston Studies in the Philosophy of Science, 253) Kluwer Academic. ISBN 1-4020-5631-1 (Forthcoming, currently Agassi,J. ''Towards an Historiography of Science'' Wesleyan University Press, 1963.
* [[Thomas S. Kuhn]] (1996). ''[[The Structure of Scientific Revolutions]]'' (3rd ed.). [[University of Chicago Press]]. ISBN 0-226-45807-5
*[[Imre Lakatos]] ''History of Science and its Rational Reconstructions'' published in ''The Methodology of Scientific Research Programmes: Philosophical Papers Volume 1''. Cambridge: Cambridge University Press 1978
* Howard Margolis (2002). ''It Started with Copernicus''. New York: [[McGraw-Hill]]. ISBN 0-07-138507-X
* [[Joseph Needham]]. ''Science and Civilisation in China''. Multiple volumes (1954–2004).
* [[Bertrand Russell]] (1945). ''A History of Western Philosophy: And Its Connection with Political and Social Circumstances from the Earliest Times to the Present Day''. New York: [[Simon and Schuster]].
* John L. Heilbron, ed., ''The Oxford companion to the history of modern science'' (New York: [[Oxford University Press]], 2003).
* [[Deepak Kumar (historian)|Deepak Kumar]] (2006). ''Science and the Raj: A Study of British India'', 2nd edition. Oxford University Press. ISBN 0-19-568003-0
* George Rousseau and Roy Porter, eds., ''The Ferment of Knowledge: Studies in the Historiography of Science'' (Cambridge: Cambridge University Press, 1980). ISBN 0-521-22599-X
* Caroline L. Herzenberg. 1986. ''Women Scientists from Antiquity to the Present'' Locust Hill Press ISBN 0-933951-01-9
* Nina Byers and Gary Williams, ed. (2006) ''OUT OF THE SHADOWS: Contributions of 20th Century Women to Physics'', [http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521821971 Cambridge University Press] ISBN 0-5218-2197-1
==External links==
{{commons|History of science|History of science}}
*[http://www.worldwideschool.org/library/catalogs/bysubject-sci-history.html A History of Science, Vols 1–4], online text
*[http://ocw.mit.edu/OcwWeb/Science--Technology--and-Society/STS-002Toward-the-Scientific-RevolutionFall2003/CourseHome/index.htm MIT STS.002 – Toward the Scientific Revolution]. From MIT OpenCourseWare, class materials for the history of science up to and including [[Isaac Newton]].
*[http://cwp.library.ucla.edu/ Contributions of 20th century Women to Physics ("CWP")]
*[http://www.hssonline.org/ History of Science Society ("HSS")]
*[http://nobelprize.org/ The official site of the Nobel Foundation]. Features biographies and info on Nobel laureates
*[http://www.imss.fi.it/ The Institute and Museum of the History of Science in Florence, Italy]
*[http://www.vega.org.uk/ The Vega Science Trust] Free to view videos of scientists including Feynman, Perutz, Rotblat, Born and many Nobel Laureates.
*[http://www.crhst.cnrs.fr The CNRS History of Science and Technology Research Center] in Paris. This center develop differents websites about history of science & tech. : [http://www.ampere.cnrs.fr Ampère], Lamarck, Buffon, etc.
[[Category:History of science| ]]
[[Category:Science]]
[[bn:বিজ্ঞানের ইতিহাস]]
[[bg:История на науката]]
[[de:Wissenschaftsgeschichte]]
[[es:Historia de la ciencia]]
[[eo:Historio de scienco kaj teknologio]]
[[fr:Histoire des sciences]]
[[gl:Historia da ciencia]]
[[zh-classical:泰西格致史]]
[[ko:과학사]]
[[it:Storia della scienza]]
[[he:היסטוריה של המדע]]
[[hu:Tudománytörténet]]
[[nl:Wetenschapsgeschiedenis]]
[[ja:科学史]]
[[pl:Historia nauki]]
[[ro:Istoria ştiinţei]]
[[ru:История науки]]
[[sl:Zgodovina znanosti in tehnologije]]
[[fi:Tieteen ja tekniikan historia]]
[[sv:Vetenskapshistoria]]
[[tl:Kasaysayan ng agham at teknolohiya]]
[[ta:அறிவியல், தொ.நுட்ப வரலாறு]]
[[th:ประวัติศาสตร์ของวิทยาศาสตร์และเทคโนโลยี]]
[[tr:Bilim ve teknoloji tarihi]]
[[yi:היסטאריע פון וויסנשאפט]]
[[zh:科学史]]