List of numbers
209103
225604676
2008-07-14T14:51:00Z
18.4.1.76
/* Fractional numbers */
This is a '''list of articles about [[number]]s''' (''not'' about [[numeral]]s).
== [[Rational number]]s ==
=== Notable rational numbers ===
==== [[Natural number]]s ====
{| cellpadding="3" style="text-align: right"
|-
| [[0 (number)|0]]
| [[1 (number)|1]]
| [[2 (number)|2]]
| [[3 (number)|3]]
| [[4 (number)|4]]
| [[5 (number)|5]]
| [[6 (number)|6]]
| [[7 (number)|7]]
| [[8 (number)|8]]
| [[9 (number)|9]]
|-
| [[10 (number)|10]]
| [[11 (number)|11]]
| [[12 (number)|12]]
| [[13 (number)|13]]
| [[14 (number)|14]]
| [[15 (number)|15]]
| [[16 (number)|16]]
| [[17 (number)|17]]
| [[18 (number)|18]]
| [[19 (number)|19]]
|-
| [[20 (number)|20]]
| [[21 (number)|21]]
| [[22 (number)|22]]
| [[23 (number)|23]]
| [[24 (number)|24]]
| [[25 (number)|25]]
| [[26 (number)|26]]
| [[27 (number)|27]]
| [[28 (number)|28]]
| [[29 (number)|29]]
|-
| [[30 (number)|30]]
| [[31 (number)|31]]
| [[32 (number)|32]]
| [[33 (number)|33]]
| [[34 (number)|34]]
| [[35 (number)|35]]
| [[36 (number)|36]]
| [[37 (number)|37]]
| [[38 (number)|38]]
| [[39 (number)|39]]
|-
| [[40 (number)|40]]
| [[41 (number)|41]]
| [[42 (number)|42]]
| [[43 (number)|43]]
| [[44 (number)|44]]
| [[45 (number)|45]]
| [[46 (number)|46]]
| [[47 (number)|47]]
| [[48 (number)|48]]
| [[49 (number)|49]]
|-
| [[50 (number)|50]]
| [[51 (number)|51]]
| [[52 (number)|52]]
| [[53 (number)|53]]
| [[54 (number)|54]]
| [[55 (number)|55]]
| [[56 (number)|56]]
| [[57 (number)|57]]
| [[58 (number)|58]]
| [[59 (number)|59]]
|-
| [[60 (number)|60]]
| [[61 (number)|61]]
| [[62 (number)|62]]
| [[63 (number)|63]]
| [[64 (number)|64]]
| [[65 (number)|65]]
| [[66 (number)|66]]
| [[67 (number)|67]]
| [[68 (number)|68]]
| [[69 (number)|69]]
|-
| [[70 (number)|70]]
| [[71 (number)|71]]
| [[72 (number)|72]]
| [[73 (number)|73]]
| [[74 (number)|74]]
| [[75 (number)|75]]
| [[76 (number)|76]]
| [[77 (number)|77]]
| [[78 (number)|78]]
| [[79 (number)|79]]
|-
| [[80 (number)|80]]
| [[81 (number)|81]]
| [[82 (number)|82]]
| [[83 (number)|83]]
| [[84 (number)|84]]
| [[85 (number)|85]]
| [[86 (number)|86]]
| [[87 (number)|87]]
| [[88 (number)|88]]
| [[89 (number)|89]]
|-
| [[90 (number)|90]]
| [[91 (number)|91]]
| [[92 (number)|92]]
| [[93 (number)|93]]
| [[94 (number)|94]]
| [[95 (number)|95]]
| [[96 (number)|96]]
| [[97 (number)|97]]
| [[98 (number)|98]]
| [[99 (number)|99]]
|-
| [[100 (number)|100]]
| [[101 (number)|101]]
| [[102 (number)|102]]
| [[103 (number)|103]]
| [[104 (number)|104]]
| [[105 (number)|105]]
| [[106 (number)|106]]
| [[107 (number)|107]]
| [[108 (number)|108]]
| [[109 (number)|109]]
|-
| [[110 (number)|110]]
| [[111 (number)|111]]
| [[112 (number)|112]]
| [[113 (number)|113]]
| [[114 (number)|114]]
| [[115 (number)|115]]
| [[116 (number)|116]]
| [[117 (number)|117]]
| [[118 (number)|118]]
| [[119 (number)|119]]
|-
| [[120 (number)|120]]
| [[121 (number)|121]]
| [[122 (number)|122]]
| [[123 (number)|123]]
| [[124 (number)|124]]
| [[125 (number)|125]]
| [[126 (number)|126]]
| [[127 (number)|127]]
| [[128 (number)|128]]
| [[129 (number)|129]]
|-
| [[130 (number)|130]]
| [[131 (number)|131]]
| [[132 (number)|132]]
| [[133 (number)|133]]
| [[134 (number)|134]]
| [[135 (number)|135]]
| [[136 (number)|136]]
| [[137 (number)|137]]
| [[138 (number)|138]]
| [[139 (number)|139]]
|-
| [[140 (number)|140]]
| [[141 (number)|141]]
| [[142 (number)|142]]
| [[143 (number)|143]]
| [[144 (number)|144]]
| [[145 (number)|145]]
| [[146 (number)|146]]
| [[147 (number)|147]]
| [[148 (number)|148]]
| [[149 (number)|149]]
|-
| [[150 (number)|150]]
| [[151 (number)|151]]
| [[152 (number)|152]]
| [[153 (number)|153]]
| [[154 (number)|154]]
| [[155 (number)|155]]
| [[156 (number)|156]]
| [[157 (number)|157]]
| [[158 (number)|158]]
| [[159 (number)|159]]
|-
| [[160 (number)|160]]
| [[161 (number)|161]]
| [[162 (number)|162]]
| [[163 (number)|163]]
| [[164 (number)|164]]
| [[165 (number)|165]]
| [[166 (number)|166]]
| [[167 (number)|167]]
| [[168 (number)|168]]
| [[169 (number)|169]]
|-
| [[170 (number)|170]]
| [[171 (number)|171]]
| [[172 (number)|172]]
| [[173 (number)|173]]
| [[174 (number)|174]]
| [[175 (number)|175]]
| [[176 (number)|176]]
| [[177 (number)|177]]
| [[178 (number)|178]]
| [[179 (number)|179]]
|-
| [[180 (number)|180]]
| [[181 (number)|181]]
| [[182 (number)|182]]
| [[183 (number)|183]]
| [[184 (number)|184]]
| [[185 (number)|185]]
| [[186 (number)|186]]
| [[187 (number)|187]]
| [[188 (number)|188]]
| [[189 (number)|189]]
|-
| [[190 (number)|190]]
| [[191 (number)|191]]
| [[192 (number)|192]]
| [[193 (number)|193]]
| [[194 (number)|194]]
| [[195 (number)|195]]
| [[196 (number)|196]]
| [[197 (number)|197]]
| [[198 (number)|198]]
| [[199 (number)|199]]
|-
| [[200 (number)|200]]
| [[201 (number)|201]]
| [[202 (number)|202]]
| [[203 (number)|203]]
| [[204 (number)|204]]
| [[205 (number)|205]]
| [[206 (number)|206]]
| [[207 (number)|207]]
| [[208 (number)|208]]
| [[209 (number)|209]]
|-
| |
| [[210 (number)|210]]
| [[220 (number)|220]]
| [[230 (number)|230]]
| [[240 (number)|240]]
| [[250 (number)|250]]
| [[260 (number)|260]]
| [[270 (number)|270]]
| [[280 (number)|280]]
| [[290 (number)|290]]
|-
|
|
|
| [[300 (number)|300]]
| [[400 (number)|400]]
| [[500 (number)|500]]
| [[600 (number)|600]]
| [[700 (number)|700]]
| [[800 (number)|800]]
| [[900 (number)|900]]
|-
|
| [[1000 (number)|1000]]
| [[2000 (number)|2000]]
| [[3000 (number)|3000]]
| [[4000 (number)|4000]]
| [[5000 (number)|5000]]
| [[6000 (number)|6000]]
| [[7000 (number)|7000]]
| [[8000 (number)|8000]]
| [[9000 (number)|9000]]
|-
|
| [[10000 (number)|10000]]
| [[20000 (number)|20000]]
| [[30000 (number)|30000]]
| [[40000 (number)|40000]]
| [[50000 (number)|50000]]
| [[60000 (number)|60000]]
| [[70000 (number)|70000]]
| [[80000 (number)|80000]]
| [[90000 (number)|90000]]
|-
|colspan=2| [[100000 (number)|100k-1M]]
|colspan=2| [[1000000 (number)|1M-10M]]
|colspan=2| [[10000000 (number)|10M-100M]]
|colspan=2| [[100000000 (number)|100M-1000M]]
|colspan=2| [[Orders of magnitude (numbers)|Larger #s]]
|}
==== Powers of ten ====
{{main|Orders of magnitude (numbers)}}
=== [[Integer]]s ===
==== Notable integers ====
Other numbers that are notable for their mathematical properties or cultural meanings include:
<!-- Note that this is a list of OTHER notable integers. Please do NOT include integers like 13 or 42 which already appear in the table above. -->
* [[−40 (number)|-40]]
* [[−1 (number)|-1]]
* [[211 (number)|211]]
* [[212 (number)|212]]
* [[213 (number)|213]]
* [[216 (number)|216]]
* [[221 (number)|221]]
* [[222 (number)|222]]
* [[223 (number)|223]]
* [[227 (number)|227]]
* [[229 (number)|229]]
* [[233 (number)|233]]
* [[235 (number)|235]]
* [[239 (number)|239]]
* [[241 (number)|241]]
* [[242 (number)|242]]
* [[243 (number)|243]]
* [[245 (number)|245]]
* [[251 (number)|251]]
* [[255 (number)|255]]
* [[256 (number)|256]]
* [[257 (number)|257]]
* [[263 (number)|263]]
* [[269 (number)|269]]
* [[273 (number)|273]]
* [[277 (number)|277]]
* [[284 (number)|284]]
* [[311 (number)|311]]
* [[313 (number)|313]]
* ''[[316 (number)|316]]''
* [[318 (number)|318]]
* [[353 (number)|353]]
* ''[[355 (number)|355]]''
* [[359 (number)|359]]
* [[360 (number)|360]]
* [[363 (number)|363]]
* [[365 (number)|365]]
* [[384 (number)|384]]
* [[418 (number)|418]]
* [[419 (number)|419]]
* [[420 (number)|420]]
* [[440 (number)|440]]
* [[444 (number)|444]]
* [[486 (number)|486]]
* [[495 (number)|495]]
* [[496 (number)|496]]
* [[501 (number)|501]]
* [[555 (number)|555]]
* [[593 (number)|593]]
* [[616 (number)|616]]
* [[619 (number)|619]]
* [[666 (number)|666]]
* [[702 (number)|702]]
* [[715 (number)|715]]
* [[720 (number)|720]]
* [[743 (number)|743]]
* [[786 (number)|786]]
* [[790 (number)|790]]
* [[880 (number)|880]]
* [[881 (number)|881]]
* [[883 (number)|883]]
* [[888 (number)|888]]
* [[911 (number)|911]]
* [[999 (number)|999]]
* [[1001 (number)|1001]]
* [[1024 (number)|1024]]
* [[1089 (number)|1089]]
* [[1138 (number)|1138]]
* [[1458 (number)|1458]]
* [[1701 (number)|1701]]
* [[1728 (number)|1728]]
* [[1729 (number)|1729]]
* [[1987 (number)|1987]]
* [[3600 (number)|3600]]
* [[4104 (number)|4104]]
* [[5040 (number)|5040]]
* [[6174 (number)|6174]]
* [[6236 (number)|6236]]
* [[6346 (number)|6346]]
* [[7744 (number)|7744]]
* [[8128 (number)|8128]]
* [[9999 (number)|9999]]
* [[64079 (number)|64079]]
* [[65535 (number)|65535]]
* [[65536 (number)|65536]]
* [[65537 (number)|65537]]
* [[69105 (number)|69105]]
* [[124000 (number)|124000]]
* [[144000 (number)|144000]]
* [[142857 (number)|142857]]
* [[9814072356 (number)|9814072356]]
==== Named integers ====
* [[Graham's number]]
* [[Hardy-Ramanujan number]]
* [[Skewes' number]]
* [[Steinhaus-Moser notation|Steinhaus' Mega and Megiston, Moser's number]]
* [[Number of the Beast]]
* [[Leviathan number]]
* [[6174 (number)|Kaprekar's constant]]
=== [[Prime number]]s ===
{{main|List of prime numbers}}
A prime number is a positive integer which has exactly two [[divisor]]s: one and itself.
The first 100 prime numbers:
<table>
<tr><td>[[2 (number)|2]] <td>[[3 (number)|3]] <td>[[5 (number)|5]] <td>[[7 (number)|7]] <td>[[11 (number)|11]] <td>[[13 (number)|13]] <td>[[17 (number)|17]] <td>[[19 (number)|19]] <td>[[23 (number)|23]] <td>[[29 (number)|29]]
<tr><td>[[31 (number)|31]] <td>[[37 (number)|37]] <td>[[41 (number)|41]] <td>[[43 (number)|43]] <td>[[47 (number)|47]] <td>[[53 (number)|53]] <td>[[59 (number)|59]] <td>[[61 (number)|61]] <td>[[67 (number)|67]] <td>[[71 (number)|71]]
<tr><td>[[73 (number)|73]] <td>[[79 (number)|79]] <td>[[83 (number)|83]] <td>[[89 (number)|89]] <td>[[97 (number)|97]] <td>[[101 (number)|101]] <td>[[103 (number)|103]] <td>[[107 (number)|107]] <td>[[109 (number)|109]] <td>[[113 (number)|113]]
<tr><td>[[127 (number)|127]] <td>[[131 (number)|131]] <td>[[137 (number)|137]] <td>[[139 (number)|139]] <td>[[149 (number)|149]] <td>[[151 (number)|151]] <td>[[157 (number)|157]] <td>[[163 (number)|163]] <td>[[167 (number)|167]]<td>[[173 (number)|173]]
<tr><td>[[179 (number)|179]]<td>[[181 (number)|181]] <td>[[191 (number)|191]]<td>[[193 (number)|193]] <td>[[197 (number)|197]] <td>[[199 (number)|199]] <td>[[211 (number)|211]] <td>[[223 (number)|223]] <td>[[227 (number)|227]]<td>[[229 (number)|229]]
<tr><td>[[233 (number)|233]] <td>[[239 (number)|239]] <td>[[241 (number)|241]] <td>[[251 (number)|251]] <td>[[257 (number)|257]] <td>[[263 (number)|263]] <td>[[269 (number)|269]] <td>271 <td>277 <td>281
<tr><td>283 <td>293 <td>307 <td>311 <td>313 <td>317 <td>331 <td>337 <td>347 <td>349
<tr><td>353 <td>359 <td>367 <td>373 <td>379 <td>383 <td>389 <td>397 <td>401 <td>409
<tr><td>419 <td>421 <td>431 <td>433 <td>439 <td>443 <td>449 <td>457 <td>461 <td>463
<tr><td>467 <td>479 <td>487 <td>491 <td>499 <td>503 <td>509 <td>521 <td>523 <td>541
</table>
=== [[Perfect number]]s ===
A perfect number is an integer that is the sum of its positive proper divisors (all divisors except itself).
The first '''ten''' perfect numbers:
<table>
<tr><th>1</td><td align="right">6</td></tr>
<tr><th>2</td><td align="right">28</td></tr>
<tr><th>3</td><td align="right">496</td></tr>
<tr><th>4</td><td align="right">8 128</td></tr>
<tr><th>5</td><td align="right">33 550 336</td></tr>
<tr><th>6</td><td align="right">8 589 869 056</td></tr>
<tr><th>7</td><td align="right">137 438 691 328</td></tr>
<tr><th>8</td><td align="right">2 305 843 008 139 952 128</td></tr>
<tr><th>9</td><td align="right">2 658 455 991 569 831 744 654 692 615 953 842 176</td></tr>
<tr><th>10</td><td align="right"> 191 561 942 608 236 107 294 793 378 084 303 638 130 997 321 548 169 216</td></tr>
</table>
=== [[Cardinal number]]s ===
In the following tables, '''[and]''' indicates that the word ''and'' is used in some [[dialect]]s (such as [[British English]]), and omitted in other dialects (such as [[American English]]).
==== Small numbers ====
This table demonstrates the standard English construction of small cardinal numbers up to ten million -- names for which all variants of English agree.
{| class="wikitable"
|-
! Value !! Name !! Alternate names
|-
| align="right" | 0 || Zero || aught, cipher, cypher, goose egg, nada, naught, nil, none, nought, nowt, null, ought, oh, squat, zed, zilch, zip
|-
| align="right" | 1 || One || ace, single, singleton, unary, unit, unity
|-
| align="right" | 2 || Two || binary, [[brace (grouping)|brace]], couple, couplet, distich, deuce, double, doubleton, duad, duality, duet, duo, dyad, pair, span, twain, twosome, yoke
|-
| align="right" | 3 || Three || deuce-ace, leash, set, tercet, ternary, ternion, terzetto, threesome, tierce, trey, triad, trine, trinity, trio, triplet, troika
|-
| align="right" | 4 || Four || foursome, quadruplet, quatern, quaternary, quaternion, quaternity, quartet, tetrad
|-
| align="right" | 5 || Five || cinque, fin, fivesome, pentad, quint, quintet, quintuplet
|-
| align="right" | 6 || Six || half dozen, hexad, sestet, sextet, sextuplet, sise
|-
| align="right" | 7 || Seven || heptad, septet, septuplet
|-
| align="right" | 8 || Eight || octad, octave, octet, octonary, octuplet, ogdoad
|-
| align="right" | 9 || Nine || ennead
|-
| align="right" | 10 || Ten || deca, decade, sawbuck
|-
| align="right" | 11 || Eleven
|-
| align="right" | 12 || Twelve || dozen
|-
| align="right" | 13 || Thirteen || [[baker's dozen]], long dozen
|-
| align="right" | 14 || Fourteen
|-
| align="right" | 15 || Fifteen
|-
| align="right" | 16 || Sixteen
|-
| align="right" | 17 || Seventeen
|-
| align="right" | 18 || Eighteen
|-
| align="right" | 19 || Nineteen
|-
| align="right" | 20 || Twenty || score
|-
| align="right" | 21 || Twenty-one
|-
| align="right" | 22 || Twenty-two
|-
| align="right" | 23 || Twenty-three
|-
| align="right" | 24 || Twenty-four || two dozen
|-
| align="right" | 25 || Twenty-five
|-
| align="right" | 26 || Twenty-six
|-
| align="right" | 27 || Twenty-seven
|-
| align="right" | 28 || Twenty-eight
|-
| align="right" | 29 || Twenty-nine
|-
| align="right" | 30 || Thirty
|-
| align="right" | 31 || Thirty-one
|-
| align="right" | 40 || Forty
|-
| align="right" | 50 || Fifty || Half - century
|-
| align="right" | 60 || Sixty || shock
|-
| align="right" | 70 || Seventy || three-score and ten
|-
| align="right" | 80 || Eighty || four-score
|-
| align="right" | 87 || Eighty-seven || [[Gettysburg Address|four-score and seven]]
|-
| align="right" | 90 || Ninety
|-
| align="right" | 100 || One hundred || centred, century, ton, short hundred
|-
| align="right" | 101 || One hundred [and] one
|-
| align="right" | 110 || One hundred [and] ten
|-
| align="right" | 111 || One hundred [and] eleven,
|-
| align="right" | 120 || One hundred [and] twenty || long hundred, great hundred, ''(obsolete)'' hundred
|-
| align="right" | 121 || One hundred [and] twenty-one
|-
| align="right" | 144 || One hundred [and] forty-four || [[Gross (unit)|gross]], dozen dozen, small gross
|-
| align="right" | 200 || Two hundred
|-
| align="right" | 300 || Three hundred
|-
| align="right" | 666 || Six Hundred [and] sixty-six || [[Number of the Beast]]
|-
| align="right" | 1 000 || One thousand || chiliad, grand (or G), thou, yard, kilo (often shortened to K)
|-
| align="right" | 1 001 || One thousand [and] one
|-
| align="right" | 1 010 || One thousand [and] ten
|-
| align="right" | 1 011 || One thousand [and] eleven
|-
| align="right" | 1 024 || One thousand [and] twenty-four || kilo (in [[computing]], see [[binary prefix]]) (often shortened to K)
|-
| align="right" | 1 100 || One thousand one hundred
|-
| align="right" | 1 101 || One thousand one hundred [and] one
|-
| align="right" | 1 728 || One thousand seven hundred [and] twenty-eight || great gross, long gross, dozen gross
|-
| align="right" | 2 000 || Two thousand
|-
| align="right" | 10 000 || Ten thousand || [[myriad]]
|-
| align="right" | 100 000 || One hundred thousand || [[lakh]]
|-
| align="right" | 500 000 || Five hundred thousand || [[crore]] (Iranian)
|-
| align="right" | 1 000 000 || One million || meg, mil, (often shortened to M)
|-
| align="right" | 1 048 576 || One million forty-eight thousand five hundred [and] seventy-six || meg (in [[computing]], see [[binary prefix]]) (often shortened to M)
|-
| align="right" | 10 000 000 || Ten million || [[crore]] (Indian)
|-
|}
==== English names for powers of 10 ====
This table compares the English names of cardinal numbers according to various American, British, and Continental European conventions. See [[names of numbers in English]] or [[English-language numerals]] for more information on naming numbers.
{| class="wikitable"
|- style="text-align: center"
! !! [[long and short scales|Short scale]] !! colspan="2" | [[long and short scales|Long scale]] !! colspan="2" | Power
|- style="background: #eeeeff; text-align: center"
! Value !! American & Modern British!! Traditional British<br> ([[Nicolas Chuquet]]) !! Continental European <br> ([[Jacques Peletier du Mans]]) !! of a thousand !! of a million
|-
| 10<sup>0</sup> || colspan=3 align="center"| One || 1000<sup>-1+1</sup> || 1000000<sup>0</sup>
|-
| 10<sup>1</sup> || colspan=3 align="center"| Ten || ||
|-
| 10<sup>2</sup> || colspan=3 align="center"| Hundred || ||
|-
| 10<sup>3</sup> || colspan=3 align="center"| Thousand || 1000<sup>0+1</sup> || 1000000<sup>0.5</sup>
|-
| 10<sup>6</sup> || colspan=3 align="center"| Million || 1000<sup>1+1</sup> || 1000000<sup>1</sup>
|-
| 10<sup>9</sup> || Billion || Thousand million || Milliard || 1000<sup>2+1</sup> || 1000000<sup>1.5</sup>
|-
| 10<sup>12</sup> || Trillion || colspan=2 align="center"| Billion || 1000<sup>3+1</sup> || 1000000<sup>2</sup>
|-
| 10<sup>15</sup> || Quadrillion || Thousand billion || Billiard || 1000<sup>4+1</sup> || 1000000<sup>2.5</sup>
|-
| 10<sup>18</sup> || Quintillion || colspan=2 align="center"| Trillion || 1000<sup>5+1</sup> || 1000000<sup>3</sup>
|-
| 10<sup>21</sup> || Sextillion || Thousand trillion || Trilliard || 1000<sup>6+1</sup> || 1000000<sup>3.5</sup>
|-
| 10<sup>24</sup> || Septillion || colspan=2 align="center"| Quadrillion || 1000<sup>7+1</sup> || 1000000<sup>4</sup>
|-
| 10<sup>27</sup> || Octillion || Thousand quadrillion || Quadrilliard || 1000<sup>8+1</sup> || 1000000<sup>4.5</sup>
|-
| 10<sup>30</sup> || Nonillion || colspan=2 align="center"| Quintillion || 1000<sup>9+1</sup> || 1000000<sup>5</sup>
|-
| 10<sup>33</sup> || Decillion || Thousand quintillion || Quintilliard || 1000<sup>10+1</sup> || 1000000<sup>5.5</sup>
|-
| 10<sup>36</sup> || Undecillion || colspan=2 align="center"| Sextillion || 1000<sup>11+1</sup> || 1000000<sup>6</sup>
|-
| 10<sup>39</sup> || Duodecillion || Thousand sextillion || Sextilliard || 1000<sup>12+1</sup> || 1000000<sup>6.5</sup>
|-
| 10<sup>42</sup> || Tredecillion || colspan=2 align="center"| Septillion || 1000<sup>13+1</sup> || 1000000<sup>7</sup>
|-
| 10<sup>45</sup> || Quattuordecillion || Thousand septillion || Septilliard || 1000<sup>14+1</sup> || 1000000<sup>7.5</sup>
|-
| 10<sup>48</sup> || Quindecillion || colspan=2 align="center"| Octillion || 1000<sup>15+1</sup> || 1000000<sup>8</sup>
|-
| 10<sup>51</sup> || Sexdecillion || Thousand octillion || Octilliard || 1000<sup>16+1</sup> || 1000000<sup>8.5</sup>
|-
| 10<sup>54</sup> || Septendecillion || colspan=2 align="center"| Nonillion || 1000<sup>17+1</sup> || 1000000<sup>9</sup>
|-
| 10<sup>57</sup> || Octodecillion || Thousand nonillion || Nonilliard || 1000<sup>18+1</sup> || 1000000<sup>9.5</sup>
|-
| 10<sup>60</sup> || Novemdecillion || colspan=2 align="center"| Decillion || 1000<sup>19+1</sup> || 1000000<sup>10</sup>
|-
| 10<sup>63</sup> || Vigintillion || Thousand decillion || Decilliard || 1000<sup>20+1</sup> || 1000000<sup>10.5</sup>
|-
| 10<sup>66</sup> || Unvigintillion || colspan=2 align="center"| Undecillion || 1000<sup>21+1</sup> || 1000000<sup>11</sup>
|-
| 10<sup>69</sup> || Duovigintillion || Thousand undecillion || Undecilliard || 1000<sup>22+1</sup> || 1000000<sup>11.5</sup>
|-
| 10<sup>72</sup> || Trevigintillion || colspan=2 align="center"| Duodecillion || 1000<sup>23+1</sup> || 1000000<sup>12</sup>
|-
| 10<sup>75</sup> || Quattuorvigintillion || ... || ... || 1000<sup>24+1</sup> || 1000000<sup>12.5</sup>
|-
| ... || ... || colspan=2 align="center"| ... || ... || ...
|-
| 10<sup>93</sup> || Trigintillion || Thousand quindecillion || Quindecilliard || 1000<sup>30+1</sup> || 1000000<sup>15.5</sup>
|-
| ... || ... || colspan=2 align="center"| ... || ... || ...
|-
| 10<sup>120</sup> || Novemtrigintillion || colspan=2 align="center"| Vigintillion || 1000<sup>39+1</sup> || 1000000<sup>20</sup>
|-
| 10<sup>123</sup> || Quadragintillion || Thousand vigintillion || Vigintilliard || 1000<sup>40+1</sup> || 1000000<sup>20.5</sup>
|-
| ... || ... || colspan=2 align="center"| ... || ... || ...
|-
| 10<sup>153</sup> || Quinquagintillion || Thousand duovigintillion || Duovigintilliard || 1000<sup>50+1</sup> || 1000000<sup>25.5</sup>
|-
| ... || ... || colspan=2 align="center"| ... || ... || ...
|-
| 10<sup>180</sup> || Novemquinquagintillion || colspan=2 align="center"| Trigintillion || 1000<sup>59+1</sup> || 1000000<sup>30</sup>
|-
| 10<sup>183</sup> || Sexagintillion || Thousand trigintillion || Trigintilliard || 1000<sup>60+1</sup> || 1000000<sup>30.5</sup>
|-
| ... || ... || colspan=2 align="center"| ... || ... || ...
|-
| 10<sup>213</sup> || Septuagintillion || Thousand quintrigintillion || Quintrigintilliard || 1000<sup>70+1</sup> || 1000000<sup>35.5</sup>
|-
| ... || ... || colspan=2 align="center"| ... || ... || ...
|-
| 10<sup>240</sup> || Novemseptuagintillion || colspan=2 align="center"| Quadragintillion || 1000<sup>79+1</sup> || 1000000<sup>40</sup>
|-
| 10<sup>243</sup> || Octogintillion || Thousand quadragintillion || Quadragintilliard || 1000<sup>80+1</sup> || 1000000<sup>40.5</sup>
|-
| ... || ... || colspan=2 align="center"| ... || ... || ...
|-
| 10<sup>273</sup> || Nonagintillion || Thousand quinquadragintillion || Quinquadragintilliard || 1000<sup>90+1</sup> || 1000000<sup>45.5</sup>
|-
| ... || ... || colspan=2 align="center"| ... || ... || ...
|-
| 10<sup>300</sup> || Novemnonagintillion || colspan=2 align="center"| Quinquagintillion || 1000<sup>99+1</sup> || 1000000<sup>50</sup>
|-
| 10<sup>303</sup> || [[Centillion]] || Thousand quinquagintillion || Quinquagintilliard || 1000<sup>100+1</sup> || 1000000<sup>50.5</sup>
|-
| ... || || colspan=2 align="center"| ... || ... || ...
|-
| 10<sup>360</sup> || || colspan=2 align="center"| Sexagintillion || 1000<sup>119+1</sup> || 1000000<sup>60</sup>
|-
| 10<sup>420</sup> || || colspan=2 align="center"| Septuagintillion || 1000<sup>139+1</sup> || 1000000<sup>70</sup>
|-
| 10<sup>480</sup> || || colspan=2 align="center"| Octogintillion || 1000<sup>159+1</sup> || 1000000<sup>80</sup>
|-
| 10<sup>540</sup> || || colspan=2 align="center"| Nonagintillion || 1000<sup>179+1</sup> || 1000000<sup>90</sup>
|-
| 10<sup>600</sup> || || colspan=2 align="center"| [[Centillion]] || 1000<sup>199+1</sup> || 1000000<sup>100</sup>
|-
| 10<sup>603</sup> || ducentillion || Thousand Centillion || [[Centilliard]] || 1000<sup>200+1</sup> || 1000000<sup>100.5</sup>
|}
* There is no consistent and widely accepted way to extend cardinals beyond [[centillion]] ([[centilliard]]).
==== Proposed systematic names for powers of 10 ====
===== Gillion system =====
As proposed by [[Russ Rowlett]], based on [[Greek language|Greek]]-derived [[numerical prefix]]es:
<!-- nested tables. outer table has three columns, one row.
each of three inner tables has two columns, many rows. -->
{|
|
{| class="wikitable"
|-
! Value !! Name
|-
| 10<sup>3</sup> || Thousand
|-
| 10<sup>6</sup> || Million
|-
| 10<sup>9</sup> || Gillion
|-
| 10<sup>12</sup> || Tetrillion
|-
| 10<sup>15</sup> || Pentillion
|-
| 10<sup>18</sup> || Hexillion
|-
| 10<sup>21</sup> || Heptillion
|-
| 10<sup>24</sup> || Oktillion
|-
| 10<sup>27</sup> || Ennillion
|-
| 10<sup>30</sup> || Dekillion
|-
|}
|
{| class="wikitable"
|-
! Value !! Name
|-
| 10<sup>33</sup> || Hendekillion
|-
| 10<sup>36</sup> || Dodekillion
|-
| 10<sup>39</sup> || Trisdekillion
|-
| 10<sup>42</sup> || Tetradekillion
|-
| 10<sup>45</sup> || Pentadekillion
|-
| 10<sup>48</sup> || Hexadekillion
|-
| 10<sup>51</sup> || Heptadekillion
|-
| 10<sup>54</sup> || Oktadekillion
|-
| 10<sup>57</sup> || Enneadekillion
|-
| 10<sup>60</sup> || Icosillion
|-
|}
|
{| class="wikitable"
|-
! Value !! Name
|-
| 10<sup>63</sup> || Icosihenillion
|-
| 10<sup>66</sup> || Icosidillion
|-
| 10<sup>69</sup> || Icositrillion
|-
| 10<sup>72</sup> || Icositetrillion
|-
| 10<sup>75</sup> || Icosipentillion
|-
| 10<sup>78</sup> || Icosihexillion
|-
| 10<sup>81</sup> || Icosiheptillion
|-
| 10<sup>84</sup> || Icosioktillion
|-
| 10<sup>87</sup> || Icosiennillion
|-
| 10<sup>90</sup> || Triacontillion
|-
|}
|}
===== Myriad system =====
[[Knuth -yllion|Proposed by Donald E. Knuth]]:
{| class="wikitable"
|-
! Value !! Name !! Notation
|-
| 10<sup>0</sup>
| align="center" | One
| 1
|-
| 10<sup>1</sup>
| align="center" | Ten
| 10
|-
| 10<sup>2</sup>
| align="center" | Hundred
| 100
|-
| 10<sup>3</sup>
| align="center" | Ten hundred
| 1000
|-
| 10<sup>4</sup>
| align="center" | Myriad
| 1,0000
|-
| 10<sup>5</sup>
| align="center" | Ten myriad
| 10,0000
|-
| 10<sup>6</sup>
| align="center" | Hundred myriad
| 100,0000
|-
| 10<sup>7</sup>
| align="center" | Ten hundred myriad
| 1000,0000
|-
| 10<sup>8</sup>
| align="center" | Myllion
| 1,0000,0000
|-
| 10<sup>12</sup>
| align="center" | Myriad myllion
| 1,0000,0000,0000
|-
| 10<sup>16</sup>
| align="center" | Byllion
| 1,0000,0000,0000,0000
|-
| 10<sup>24</sup>
| align="center" | Myllion byllion
| 1,0000,0000:0000,0000;0000,0000
|-
| 10<sup>32</sup>
| align="center" | Tryllion
| 1 0000,0000;0000,0000:0000,0000;0000,0000
|-
| 10<sup>64</sup>
| align="center" | Quadryllion
| 1'0000,0000;0000,0000:0000,0000;0000,0000 0000,0000;0000,0000:0000,0000;0000,0000
|-
| 10<sup>128</sup>
| align="center" | Quintyllion
| 1'0000,0000;0000,0000:0000,0000;0000,0000 0000,0000;0000,0000:0000,0000;0000,0000'0000,0000;0000,0000:0000,0000;0000,0000 0000,0000;0000,0000:0000,0000;0000,0000
|-
| 10<sup>256</sup>
| align="center" | Sextyllion
| 1'0000,0000;0000,0000:0000,0000;0000,0000 0000,0000;0000,0000:0000,0000;0000,0000'0000,0000;0000,0000:0000,0000;0000,0000 0000,0000;0000,0000:0000,0000;0000,00000000,0000;0000,0000:0000,0000;0000,0000 0000,0000;0000,0000:0000,0000;0000,0000'0000,0000;0000,0000:0000,0000;0000,0000 0000,0000;0000,0000:0000,0000;0000,0000
|-
| 10<sup>512</sup>
| align="center" | Septyllion
|-
| 10<sup>1024</sup>
| align="center" | Octyllion
|-
| 10<sup>2048</sup>
| align="center" | Nonyllion
|-
| 10<sup>4096</sup>
| align="center" | Decyllion
|-
| 10<sup>8192</sup>
| align="center" | Undecyllion
|-
| 10<sup>16,384</sup>
| align="center" | Duodecyllion
|-
| 10<sup>32,768</sup>
| align="center" | Tredecyllion
|-
| 10<sup>65,536</sup>
| align="center" | Quattuordecyllion
|-
| 10<sup>131,072</sup>
| align="center" | Quindecyllion
|-
| 10<sup>262,144</sup>
| align="center" | Sexdecyllion
|-
| 10<sup>524,288</sup>
| align="center" | Septendecyllion
|-
| 10<sup>1,048,576</sup>
| align="center" | Octodecyllion
|-
| 10<sup>2,097,152</sup>
| align="center" | Novemdecyllion
|-
| 10<sup>4,194,304</sup>
| align="center" | Vigintyllion
|-
| 10<sup>8,388,608</sup>
| align="center" | Cafaolion
|-
| 10<sup>16,777,216</sup>
| align="center" | Saralion
|-
| <math>{10}^{\,\! 4 * 2^{40}}</math>
| align="center" | Quadragintyllion
|-
| <math>{10}^{\,\! 4 * 2^{50}}</math>
| align="center" | Quinquagintyllion
|-
| <math>{10}^{\,\! 4 * 2^{60}}</math>
| align="center" | Sexagintyllion
|-
| <math>{10}^{\,\! 4 * 2^{70}}</math>
| align="center" | Septuagintyllion
|-
| <math>{10}^{\,\! 4 * 2^{80}}</math>
| align="center" | Octogintyllion
|-
| <math>{10}^{\,\! 4 * 2^{90}}</math>
| align="center" | Nonagintyllion
|-
| <math>{10}^{\,\! 4 * 2^{100}}</math>
| align="center" | Centyllion
|-
| <math>{10}^{\,\! 4 * 2^{1000}}</math>
| align="center" | Millyllion
|-
| <math>{10}^{\,\! 4 * 2^{10000}}</math>
| align="center" | Myryllion
|-
|}
===== ''Googol'' and others =====
{| class="wikitable"
|-
| 10<sup>100</sup>
| [[Googol]]
|-
| <math>{10}^{\,\!10^{100}}</math>
| [[Googolplex]]
|-
| 10<sup>-N</sup>
| N-[[minex]]
|-
| 10<sup>N</sup>
| N-[[Names of large numbers#The Googol family|plex]]
|-
|}
===== SI-derived =====
{| class="wikitable"
|-
! Value !! [[SI prefix]] !! Name !! [[Binary prefix]] !! Value
|-
| 1 000 || k || Kilo (k) || Ki || 1024
|-
| 1 000 000 || M || Meg (M) || Mi || 1 048 576
|-
| 1 000 000 000 || G || Gig || Gi || 1 073 741 824
|-
|}
=== [[Fraction (mathematics)|Fraction]]al numbers ===
This is a table of English names for positive [[rational number]]s less than or equal to 1. It also lists alternative names, but there is no widespread convention for the names of extremely small positive numbers.
Keep in mind that rational numbers like 0.12 can be represented in [[infinite]]ly many ways, e.g. ''zero-point-one-two'' (0.12), ''twelve [[percent]]'' (12%), ''three twenty-fifths'' <math>\left({3 \over 25}\right)</math>, ''nine seventy-fifths'' <math>\left({9 \over 75} \right)</math>, ''six fiftieths'' <math>\left({6 \over 50}\right)</math>, ''twelve hundredths'' <math>\left({12 \over 100}\right)</math>, ''twenty-four two-hundredths'' <math>\left({24 \over 200}\right)</math>, etc.
{| class="wikitable"
|-
! Value !! Fraction !! Common names !! Alternative names
|-
| 1
| align="center" | <math>1 \over 1</math>
| One
| [[0.999...]]
|-
| 0.9
| align="center" | <math>9 \over 10</math>
| Nine tenths, [zero] point nine
|-
| 0.8
| align="center" | <math>4 \over 5</math>
| Four fifths, eight tenths, [zero] point eight
|-
| 0.7
| align="center" | <math>7 \over 10</math>
| Seven tenths, [zero] point seven
|-
| 0.6
| align="center" | <math>3 \over 5</math>
| Three fifths, six tenths, [zero] point six
|-
| 0.5
| align="center" | <math>1 \over 2</math>
| [[One half]], five tenths, [zero] point five
|-
| 0.4
| align="center" | <math>2 \over 5</math>
| Two fifths, four tenths, [zero] point four
|-
| 0.3 (333 333)...
| align="center" | <math>1 \over 3</math>
| One third
|-
| 0.3
| align="center" | <math>3 \over 10</math>
| Three tenths, [zero] point three
|-
| 0.25
| align="center" | <math>1 \over 4</math>
| One [[quarter]], one fourth, twenty-five hundredths, [zero] point two five
|-
| 0.2
| align="center" | <math>1 \over 5</math>
| One fifth, two tenths, [zero] point two
|-
| 0.16 (666 666)...
| align="center" | <math>1 \over 6</math>
| One sixth
|-
| 0.142 857 (142 857)...
| align="center" | <math>1 \over 7</math>
| One seventh
|-
| 0.125
| align="center" | <math>1 \over 8</math>
| One eighth, one-hundred-[and-]twenty-five thousandths, [zero] point one two five
|-
| 0.1 (111 111)...
| align="center" | <math>1 \over 9</math>
| One ninth
|-
| 0.1
| align="center" | <math>1 \over 10</math>
| One tenth, [zero] point one
| One perdecime, one perdime
|-
| 0.090 (909 090)...
| align="center" | <math>1 \over 11</math>
| One eleventh
|-
| 0.09
| align="center" | <math>9 \over 100</math>
| Nine hundredths, [zero] point zero nine
|-
| 0.083 (333 333)...
| align="center" | <math>1 \over 12</math>
| One twelfth
|-
| 0.08
| align="center" | <math>2 \over 25</math>
| Two twenty-fifths, eight hundredths, [zero] point zero eight
|-
| 0.0625
| align="center" | <math>1 \over 16</math>
| One sixteenth, six-hundred-[and-]twenty-five ten-thousandths, [zero] point zero six two five
|-
| 0.05
| align="center" | <math>1 \over 20</math>
| One twentieth, [zero] point zero five
|-
| 0.047 619 (047 619)...
| align="center" | <math>1 \over 21</math>
| One twenty-first
|-
| 0.045 (454 545)...
| align="center" | <math>1 \over 22</math>
| One twenty-second
|-
| 0.043 478 260 869 565 217 3913 (043 478)...
| align="center" | <math>1 \over 23</math>
| One twenty-third
|-
| 0.03 (333 333)...
| align="center" | <math>1 \over 30</math>
| One thirtieth
|-
| 0.016 (666 666)...
| align="center" | <math>1 \over 60</math>
| One sixtieth
| One [[minute]]
|-
| 0.012345679 (012345679)
| align="center" | <math>1 \over 81</math>
| One eighty-first
|-
| 0.01
| align="center" | <math>1 \over 100</math>
| One hundredth, [zero] point zero one
| One [[percent]]
|-
| 0.001
| align="center" | <math>1 \over 1000</math>
| One thousandth, [zero] point zero zero one
| One [[permille]]
|-
| 0.000 27 (777 777)...
| align="center" | <math>1 \over 3600</math>
| One thirty-six hundredth
| One [[arcsecond|second]]
|-
| 0.000 1
| align="center" | <math>1 \over 10000</math>
| One ten-thousandth, [zero] point zero zero zero one
| One myriadth, one permyria, one permyriad, one [[basis point]]
|-
| 0.000 01
| align="center" | <math>1 \over 10^5</math>
| One hundred-thousandth
| One lakhth, one perlakh
|-
| 0.000 001
| align="center" | <math>1 \over 10^6</math>
| One millionth
| One perion, one [[Parts per million|ppm]]
|-
| 0.000 000 1
| align="center" | <math>1 \over 10^7</math>
| One ten-millionth
| One crorth, one percrore
|-
| 0.000 000 01
| align="center" | <math>1 \over 10^8</math>
| One hundred-millionth
| One awkth, one perawk
|-
| 0.000 000 001
| align="center" | <math>1 \over 10^9</math>
| One billionth (in some dialects)
| One [[ppb]]
|-
| 0
| align="center" | <math>0 \over 1</math>
| Zero
|-
|}
== [[Irrational number]]s ==
=== [[Algebraic number]]s ===
{| class="wikitable"
|-
! Expression !! Value !! Notes
|-
| align="center" | <math>{\sqrt{5} - 1} \over 2</math>
| 0.618 033 988 749 894 848 204 586 834 366...
| [[Golden ratio conjugate]] <math>\Phi\,</math>, [[reciprocal]] of and one less than the [[golden ratio]].
|-
| align="center" | <math>\sqrt[12]{2}</math>
| 1.059 463 094 359 295 264 561 825 294 946...
| [[Twelfth root of two]]. <br> Proportion between the frequencies of adjacent [[semitone]]s in the [[equal temperament]] scale.
|-
| align="center" | <math>\sqrt[3]{2}</math>
| 1.259 921 049 894 873 164 767 210 607 278...
| [[Cube root]] of two. <br> Length of the edge of a [[cube]] with volume two. See [[doubling the cube]] for the significance of this number.
|-
| align="center" | <math>\sqrt[3]{\frac{1}{2}+\frac{1}{6}\sqrt{\frac{23}{3}}}+</math><br><math>\sqrt[3]{\frac{1}{2}-\frac{1}{6}\sqrt{\frac{23}{3}}}</math>
| 1.324 717 957 244 746 025 960 908 854 478...
| [[Plastic number]].
|-
| align="center" | <math>\sqrt{2}</math>
| 1.414 213 562 373 095 048 801 688 724 210...
| <math>\sqrt{2} = 2 \sin 45^\circ = 2 \cos 45^\circ</math> <br> [[Square root of two]] a.k.a. [[Pythagoras' constant]]. <br> Ratio of [[diagonal]] to side length in a [[Square (geometry)|square]]. <br> Proportion between the sides of [[paper size]]s in the [[ISO 216]] series (originally [[DIN]] 476 series).
|-
| align="center" | <math>{\sqrt{5} + 1} \over 2</math>
| 1.618 033 988 749 894 848 204 586 834 366...
| [[Golden ratio]] <math>\left(\phi\right)</math>.
|-
| align="center" | <math>\sqrt{3}</math>
| 1.732 050 807 568 877 193 176 604 123 437...
| <math>\sqrt{3} = 2 \sin 60^\circ = 2 \cos 30^\circ</math> <br> [[Square root of three]] a.k.a. ''[[vesica piscis|the measure of the fish]]''. <br> Length of the [[diagonal]] of a [[cube]] with edge length 1. <br> Length of the diagonal of a <math>1 \times \sqrt{2}</math> [[rectangle]]. <br> [[Altitude (triangle)|Altitude]] of an [[equilateral triangle]] with side length 2. <br> Twice the altitude of an equilateral triangle with side length 1. <br> Altitude of a [[hexagon|regular hexagon]] with side length 1 and diagonal length 2.
|-
| align="center" | <math>\sqrt{5}</math>
| 2.236 067 977 499 789 805 051 477 742 381...
| Square root of five. <br> Length of the [[diagonal]] of a <math>1 \times 2</math> [[rectangle]]. <br> Length of the diagonal of a <math>\sqrt{2} \times \sqrt{3}</math> rectangle. <br> Length of the diagonal of a <math>1 \times \sqrt{2} \times \sqrt{2}</math> [[cuboid|rectangular box]].
|-
| align="center" | <math>\sqrt{2} + 1</math>
| 2.414 213 562 373 095 048 801 688 724 210...
| [[Silver ratio]] <math>\left(\delta_S\right)</math>.
|-
| align="center" | <math>\sqrt{6}</math>
| 2.449 489 742 783 177 881 335 632 264 381...
| <math>\sqrt{2} \cdot \sqrt{3}</math> = [[area]] of a <math>\sqrt{2} \times \sqrt{3}</math> rectangle. <br> Length of the [[diagonal]] of a <math>1 \times 1 \times 2</math> [[cuboid|rectangular box]]. <br> Length of the diagonal of a <math>1 \times \sqrt{5}</math> [[rectangle]]. <br> Length of the diagonal of a <math>2 \times \sqrt{2}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{3} \times \sqrt{3}</math> rectangle.
|-
| align="center" | <math>\sqrt{7}</math>
| 2.645 751 311 064 590 716 171 096 573 817...
| Length of the [[diagonal]] of a <math>1 \times 2 \times \sqrt{2}</math> [[cuboid|rectangular box]]. <br> Length of the diagonal of a <math>1 \times \sqrt{6}</math> [[rectangle]]. <br> Length of the diagonal of a <math>2 \times \sqrt{3}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{2} \times \sqrt{5}</math> rectangle.
|-
| align="center" | <math>\sqrt{8}</math>
| 2.828 427 124 746 190 290 949 243 717 478...
| <math>2 \sqrt{2}</math> <br> [[Volume]] of a [[cube]] with edge length <math>\sqrt{2}</math>. <br> Length of the [[diagonal]] of a <math>2 \times 2</math> [[rectangle]]. <br> Length of the diagonal of a <math>1 \times \sqrt{7}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{2} \times \sqrt{6}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{3} \times \sqrt{5}</math> rectangle.
|-
| align="center" | <math>\sqrt{10}</math>
| 3.162 277 660 168 379 522 787 063 251 599...
| <math>\sqrt{2} \cdot \sqrt{5}</math> = [[area]] of a <math>\sqrt{2} \times \sqrt{5}</math> rectangle. <br> Length of the [[diagonal]] of a <math>1 \times 3</math> [[rectangle]]. <br> Length of the diagonal of a <math>2 \times \sqrt{6}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{3} \times \sqrt{7}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{5} \times \sqrt{5}</math> rectangle.
|-
| align="center" | <math>\sqrt{11}</math>
| 3.316 624 790 355 399 849 114 932 736 671
| Length of the [[diagonal]] of a <math>1 \times 1 \times 3</math> [[cuboid|rectangular box]]. <br> Length of the diagonal of a <math>1 \times \sqrt{10}</math> [[rectangle]]. <br> Length of the diagonal of a <math>2 \times \sqrt{7}</math> rectangle. <br> Length of the diagonal of a <math>3 \times \sqrt{2}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{3} \times \sqrt{8}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{5} \times \sqrt{6}</math> rectangle.
|-
| align="center" | <math>\sqrt{12}</math>
| 3.464 101 615 137 754 587 054 892 683 012...
| <math>2 \sqrt{3}</math> <br> Length of the [[diagonal]] of a [[cube]] with edge length 2. <br> Length of the diagonal of a <math>1 \times \sqrt{11}</math> [[rectangle]]. <br> Length of the diagonal of a <math>2 \times \sqrt{8}</math> rectangle. <br> Length of the diagonal of a <math>3 \times \sqrt{3}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{2} \times \sqrt{10}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{5} \times \sqrt{7}</math> rectangle. <br> Length of the diagonal of a <math>\sqrt{6} \times \sqrt{6}</math> rectangle.
|}
=== [[Transcendental number]]s ===
* [[Khinchin-Lévy constant]]: 1.186 569 110 4...[http://mathworld.wolfram.com/Khinchin-LevyConstant.html]
* [[Euler's number]]: e = 2.718 281 828 459 045 235 360 287 471 353 ...
* [[Pi]]: π = 3.141 592 653 589 793 238 462 643 383 279 ...
====Suspected transcendentals====
* [[Euler-Mascheroni constant]]: γ = 0.577 215 664 901 532 860 606 512 090 082 ...
* [[Gauss-Kuzmin-Wirsing constant]]: 0.303 663 002 9...[http://mathworld.wolfram.com/Gauss-Kuzmin-WirsingConstant.html]
* [[Laplace limit]]: ε=0.662 743 419 3...[http://mathworld.wolfram.com/LaplaceLimit.html]
* [[Khinchin's constant]]: 2.685 452 001...[http://mathworld.wolfram.com/KhinchinsConstant.html]
* [[Feigenbaum constant]]s: δ = 4.6692 ... and α = 2.5029 ...
=== Numbers not known with high precision ===
[[Grothendieck constant]]: between 1.67 and 1.79
== [[Hypercomplex number]]s ==
=== Algebraic [[complex number]]s ===
* [[Imaginary unit]]: <math>i = \sqrt{-1}</math>
===Other hypercomplex numbers===
* The [[quaternion]]s
* The [[octonion]]s
* The [[sedenion]]s
* The [[dual number]]s (with an [[infinitesimal]])
== [[Transfinite number]]s ==
* [[Infinity]] in general: <math>\infty</math>
* [[Aleph-null]]: <math>\aleph_0</math>
* [[Aleph-one]]: <math>\aleph_1</math>
* [[Beth-one]]: (<math>\beth_1</math>) is the [[cardinality]] of the [[continuum (mathematics)|continuum]]: <math>2^{\aleph_0}</math>
== Numbers representing measured quantities ==
* [[Pair]]: 2 (the base of the [[binary numeral system]])
* [[Dozen]]: 12 (the base of the [[duodecimal]] numeral system)
* [[Baker's dozen]]: 13
* [[Twenty|Score]]: 20 (the base of the [[vigesimal]] numeral system)
* [[Gross (unit)|Gross]]: 144 (= 12<sup>2</sup>)
* [[Great gross]]: 1728 (= 12<sup>3</sup>)
* [[Avogadro's number]]: N<sub>A</sub> = <math>6.022... \times 10^{23}</math>
== Numbers without specific values ==
{{main|Placeholder name#Numbers}}
== Bases ==
* [[Negative base|Base -3]] ([[Negative base|negaternary]])
* [[Negative base|Base -2]] ([[Negative base|negabinary]])
* [[Negative base|Base 1]] ([[Unary numeral system|unary]])
* [[Base 2]] ([[Binary numeral system|binary]])
* [[Base 3]] ([[ternary numeral system|ternary]] or [[trinary]], see also [[balanced ternary]])
* [[Base 4]] ([[quaternary numeral system|quaternary]])
* [[Base 5]] ([[quinary]])
* [[Base 6]] ([[senary]] or [[heximal]])
* [[Base 7]] ([[septenary]])
* [[Base 8]] ([[octal]])
* [[Base 9]] ([[nonary]])
* [[Base 10]] ([[decimal]])
* [[Base 12]] ([[duodecimal]] or [[dozenal]])
* [[Base 13]] ([[tridecimal]] or [[tredecimal]])
* [[Base 16]] ([[hexadecimal]])
* [[Base 20]] ([[vigesimal]])
* [[Base 24]] ([[quadrovigesimal]])
* [[Base 26]] ([[hexavigesimal]])
* [[Base 27]] ([[septemvigesimal]])
* [[Base 30]] ([[trigesimal]])
* [[Base 32]] ([[duotrigesimal]])
* [[Base 36]] ([[hexatridecimal]], [[sexatrigesimal]] or [[hexatrigesimal]])
* [[Base 60]] ([[sexagesimal]])
* [[Base 64]] ([[quadrosexagesimal]])
* [[mixed radix]]
* [[Golden ratio base|Base φ]] ([[phinary]])
* [[Base 2i]] ([[quater-imaginary base|quater-imaginary]])
See also ''positional systems'' of [[numeral system]] for bases which might not be listed here.
==See also==
<div style="-moz-column-count:3; column-count:3;">
* [[English-language numerals]]
* [[Numbers in various languages]]
* [[Floating point]]
* [[Fraction (mathematics)]]
* [[Interesting number paradox]]
* [[Large number]]
* [[List of prime numbers]]
* [[Mathematical constant]]
* [[Names of large numbers]]
* [[Negative number]]
* [[Number names]]
* [[Orders of magnitude (numbers)]]
* [[Ordinal number]]
* [[SI prefix]]
* [[Small number]]
* [[Surreal number]]
* [[Table of prime factors]]
</div>
== Further reading ==
* ''Kingdom of Infinite Number: A Field Guide'' by Bryan Bunch, W.H. Freeman & Company, 2001. ISBN 0-7167-4447-3
== External links ==
* [http://www.archimedes-lab.org/numbers/Num1_69.html What's Special About This Number? A Zoology of Numbers: from 0 to 500]
* [http://www.mathcats.com/explore/reallybignumbers.html See how to write big numbers]
* [http://www.kokogiak.com/megapenny/ The MegaPenny Project - Visualizing big numbers]
* [http://pages.prodigy.net/jhonig/bignum/indx.html About big numbers]
* [http://home.earthlink.net/~mrob/pub/math/largenum.html Robert P. Munafo's Large Numbers page]
* [http://www-users.cs.york.ac.uk/~susan/cyc/b/big.htm Different notations for big numbers - by Susan Stepney]
* [http://www.unc.edu/~rowlett/units/large.html Names for Large Numbers], in ''How Many? A Dictionary of Units of Measurement'' by Russ Rowlett
[[Category:Mathematics-related lists|Numbers]]
[[Category:Mathematical tables]]
[[Category:Integer sequences]]
[[Category:Numbers]]
[[Category:Numeration]]
[[bg:Имена на числата]]
[[cs:Seznam čísel]]
[[de:Liste besonderer Zahlen]]
[[es:Anexo:Lista de números]]
[[eo:Listo de nombroj]]
[[fr:Liste des nombres]]
[[ko:수 목록]]
[[id:Daftar angka]]
[[it:Lista dei numeri]]
[[he:שמות מספרים]]
[[hu:Számok listája]]
[[nl:Getallen en getalverzamelingen]]
[[pt:Anexo:Lista de números]]
[[ru:Список чисел]]
[[sk:Zoznam čísel]]
[[sl:Seznam števil]]
[[sv:Lista över tal]]
[[tl:Talaan ng mga bilang]]
[[ta:எண்களின் பட்டியல்]]
[[uk:Список чисел]]
[[zh:數表]]