Magnetic susceptibility
187360
224898156
2008-07-10T22:13:22Z
Xenonice
2984581
update of data
In [[electromagnetism]] the '''magnetic susceptibility''' ([[latin]]: ''susceptibilis'' “receptiveness”) is the degree of [[magnetization]] of a material in response to an applied [[magnetic field]].
==Definition of volume susceptibility==
::''See also '' [[Permeability (electromagnetism)#Relative permeability|Relative permeability]].
The '''volume magnetic susceptibility''', represented by the symbol <math>\ \chi_{v}</math> (often simply <math>\ \chi</math>, sometimes <math>\ \chi_m</math> — magnetic, to distinguish from the [[electric susceptibility]]), is defined by the relationship
:<math>
\mathbf{M} = \chi_{v} \mathbf{H}
</math>
where, in [[SI]] units,
:'''M''' is the '''magnetization''' of the material (the [[magnetic dipole moment]] per unit volume), measured in [[amperes]] per meter, and
:'''H''' is the [[magnetic field strength]], also measured in amperes per meter.
The [[magnetic field|magnetic induction]] '''B''' is related to '''H''' by the relationship
:<math>
\mathbf{B} \ = \ \mu_0(\mathbf{H} + \mathbf{M}) \ = \ \mu_0(1+\chi_{v}) \mathbf{H} \ = \ \mu \mathbf{H}
</math>
where μ<sub>0</sub> is the '''[[magnetic constant]]''' (see table of [[physical constant]]s), and
<math> \ (1+\chi_{v}) </math> is the '''relative permeability''' of the material.
The '''magnetic susceptibility''' χ<sub>v</sub> and the '''[[magnetic permeability]]''' μ are related by the following formula:
:<math>\mu = \mu_0(1+\chi_v) \,</math> .
Sometimes <ref>[http://info.ee.surrey.ac.uk/Workshop/advice/coils/mu/#itns Magnetic properties of materials<!-- Bot generated title -->]</ref> an auxiliary quantity, called '''intensity of magnetization''' and measured in [[Tesla_(unit)|tesla]], is defined as
:<math>\mathbf{I} = \mu_0 \mathbf{M} \,</math> .
This allows an alternative description of all magnetization phenomena in terms of the quantities '''I''' and '''B''', as opposed to the commonly used '''M''' and '''H'''.
==Conversion between [[SI]] and [[cgs]] units==
Note that these definitions are according to [[SI]] conventions. However, many tables of magnetic susceptibility give [[cgs]] values (often denoted by "'''emu'''" or "'''e.m.u.'''", short for [[electromagnetic unit]]) that rely on a different definition of the permeability of free space:<ref name=bennett>{{
cite journal
| author = Bennett, L. H.; Page, C. H.; and Swartzendruber, L. J.
| title = Comments on units in magnetism
| year = 1978
| journal = Journal of Research of the National Bureau of Standards
| volume = 83
| issue = 1
| publisher = [[NIST]], USA
| pages = 9-12
| doi = }}</ref>
:<math>
\mathbf{B}^{\text{cgs}} \ = \ \mathbf{H}^{\text{cgs}} + 4\pi\mathbf{M}^{\text{cgs}} \ = \ (1+4\pi\chi_{v}^{\text{cgs}}) \mathbf{H}^{\text{cgs}}
</math>
The [[dimensionless]] cgs value of volume susceptibility is multiplied by 4π to give the dimensionless [[SI]] volume susceptibility value:<ref name=bennett/>
:<math>\chi_v^{\text{SI}}=4\pi\chi_v^{\text{cgs}}</math>
For example, the [[cgs]] volume magnetic susceptibility of water at 20°C is −7.19×10<sup>−7</sup> which is −9.04×10<sup>−6</sup> using the [[SI]] convention.
==Mass susceptibility and molar susceptibility==
There are two other measures of susceptibility, the '''mass magnetic susceptibility''' (χ<sub>mass</sub> or χ<sub>g</sub>, sometimes χ<sub>m</sub>), measured in m<sup>3</sup>·kg<sup>−1</sup> in SI or in cm<sup>3</sup>·g<sup>−1</sup> in cgs and the '''molar magnetic susceptibility''' (χ<sub>mol</sub>) measured in m<sup>3</sup>·mol<sup>−1</sup> (SI) or cm<sup>3</sup>·mol<sup>−1</sup> (cgs) that are defined below, where ρ is the [[density]] in kg·m<sup>−3</sup> (SI) or g·cm<sup>−3</sup> (cgs) and M is [[molar mass]] in kg·mol<sup>−1</sup> (SI) or g·mol<sup>−1</sup> (cgs).
:<math>\chi_{\text{mass}}=\chi_v/\rho</math>
:<math>\chi_{\text{mol}}=M\chi_{\text{mass}}=M\chi_v/\rho</math>
==Sign of susceptibility: [[diamagnetic]]s and [[paramagnetic]]s==
If χ is positive, then (1+χ<sub>v</sub>) > 1 (or, in [[cgs]] units, (1+4πχ<sub>v</sub>) > 1) and the material is called [[paramagnetic]]. In this case, the magnetic field is strengthened by the presence of the material. Alternatively, if χ is negative, then (1+χ<sub>v</sub>) < 1 (or, in [[cgs]] units, (1+4πχ<sub>v</sub>) < 1), and the material is [[diamagnetic]]. As a result, the magnetic field is weakened in the presence of the material.
==Experimental methods to determine susceptibility==
Volume magnetic susceptibility is measured by the force change felt upon the application of a magnetic field gradient <ref>{{cite book
| author=L. N. Mulay
| title=Techniques of Chemistry
| editor=A. Weissberger and B. W. Rossiter
| publisher=Wiley-Interscience: New York
| volume=4
| page = p. 431
| year=1972}}</ref>. Early measurements were made using the [[Gouy balance]] where a sample is hung between the poles of an electromagnet. The change in weight when the electromagnet is turned on is proportional to the susceptibility. Today, high-end measurement systems use a superconductive magnet. An alternative is to measure the force change on a strong compact magnet upon insertion of the sample. This system, widely used today, is called the [[Evan's balance]].<ref> [http://www.sherwood-scientific.com/msb/shmagway.html Magway Magnetic Susceptibility Balances]</ref> For liquid samples, the susceptibility can be measured from the dependence of the [[Nuclear magnetic resonance|NMR]] frequency of the sample on its shape or orientation<ref>{{
cite journal
| author=J. R. Zimmerman, and M. R. Foster
| title=Standardization of NMR high resolution spectra
| journal=J. Phys. Chem.
| volume=61
| year=1957
| pages=282-289
| doi=10.1021/j150549a006}}</ref><ref>{{
cite journal
| author=Robert Engel, Donald Halpern, and Susan Bienenfeld
| title=Determination of magnetic moments in solution by nuclear magnetic resonance spectrometry
| journal=Anal. Chem.
| volume=45
| year=1973
| pages=367-369
| doi=10.1021/ac60324a054}}</ref><ref>{{
cite journal
| author=P. W. Kuchel, B. E. Chapman, W. A. Bubb, P. E. Hansen, C. J. Durrant, and M. P. Hertzberg
| title=Magnetic susceptibility: solutions, emulsions, and cells
| journal=Concepts Magn. Reson.
| volume=A 18
| year=2003
| pages=56-71
| doi=10.1002/cmr.a.10066}}</ref><ref>{{
cite journal
| author=K. Frei and H. J. Bernstein
| title=Method for determining magnetic susceptibilities by NMR
| journal=J. Chem. Phys.
| volume=37
| year=1962
| pages=1891-1892
| doi=10.1063/1.1733393}}</ref><ref>{{
cite journal
| author=R. E. Hoffman
| title=Variations on the chemical shift of TMS
| journal=J. Magn. Reson.
| volume=163
| year=2003
| pages=325-331
| doi=10.1016/S1090-7807(03)00142-3}}</ref>.
==Tensor susceptibility==
The '''magnetic susceptibility''' of most [[crystal]]s is not a scalar. Magnetic response '''M''' is dependent upon the orientation of the sample and can occur in directions other than that of the applied field '''H'''. In these cases, volume susceptibility is defined as a [[tensor]]
:<math> M_i=\chi_{ij}H_j </math>
where i and j refer to the directions (e.g., x, y and z in Cartesian coordinates) of the applied field and magnetization, respectively. The [[tensor]] is thus rank 2, dimension (3,3) describing the component of magnetization in the i-th direction from the external field applied in the j-th direction.
==Differential susceptibility==
In [[ferromagnetic]] crystals, the relationship between '''M''' and '''H''' is not linear. To accommodate this, a more general definition of '''differential susceptibility''' is used
:<math>\chi^{d}_{ij} = \frac{\part M_i}{\part H_j}</math>
where <math>\chi^{d}_{ij}</math> is a [[tensor]] derived from [[partial derivative]]s of components of '''M''' with respect to components of '''H'''.
When the [[coercivity]] of the material parallel to an applied field is the smaller of the two, the differential susceptibility is a function of the applied field and self interactions, such as the [[magnetic anisotropy]]. When the material is not saturated, the effect will be nonlinear and dependent upon the [[domain wall]] configuration of the material.
==Susceptibility in the frequency domain==
When the '''magnetic susceptibility''' is studied as a function of frequency, the permeability is a complex quantity and resonances can be seen. In particular, when an ac-field is applied perpendicular to the detection direction (called the "transverse susceptibility" regardless of the frequency), the effect has a peak at the [[ferromagnetic resonance]] frequency of the material with a given static applied field. Currently, this effect is called the '''[[microwave permeability]]''' or '''[[network ferromagnetic resonance]]''' in the literature. These results are sensitive to the [[domain wall]] configuration of the material and [[eddy currents]].
In terms of [[ferromagnetic resonance]], the effect of an ac-field applied along the direction of the magnetization is called '''[[parallel pumping]]'''.
== Examples ==
{| class="wikitable" align="center" style="text-align:center"
|+ Magnetic susceptibility of some materials
! Material !![[Temperature]] !!colspan="2" | <math>\chi_{\text{mol}}</math> (molar susc.)!! colspan="2" | <math>\chi_{\text{mass}}</math> (mass susc.) !! colspan="2" | <math>\chi_{v}</math> (volume susc.) !! ''M'' ([[molar mass]]) !!<math>\rho</math> ([[density]])
|-
|align="right" | [[Unit]]s ||align="center" |([[Celsius|<sup>o</sup>C]])||align="center" |SI<br/>([[cubic meter|m<sup>3</sup>]]·[[Mole (unit)|mol]]<sup>−1</sup>)||align="center" |cgs<br/>([[cubic centimeter|cm<sup>3</sup>]]·[[Mole (unit)|mol]]<sup>−1</sup>)||align="center" |SI<br/>([[cubic meter|m<sup>3</sup>]]·[[kg]]<sup>−1</sup>)||align="center" |cgs<br/>([[cubic centimeter|cm<sup>3</sup>]]·[[gram|g]]<sup>−1</sup>)||align="center" |SI<br/>||align="center" |cgs<br/> (''[[electromagnetic unit|emu]]'')||align="center" |(10<sup>-3</sup> [[kg]]/[[Mole (unit)|mol]])<br/>or ([[gram|g]]/[[Mole (unit)|mol]])||align="center" |(10<sup>3</sup> [[kg]]/[[cubic meter|m<sup>3</sup>]])<br/>or ([[gram|g]]/[[cubic centimeter|cm<sup>3</sup>]])
|-
|align="left" | [[vacuum]] ||Any||0||0||0||0||0||0||– ||0
|-
|align="left" | [[Water (data page)|water]] <ref>{{
cite journal
| author=G. P. Arrighini, M. Maestro, and R. Moccia
| title=Magnetic Properties of Polyatomic Molecules: Magnetic Susceptibility of H<sub>2</sub>O, NH<sub>3</sub>, CH<sub>4</sub>, H<sub>2</sub>O<sub>2</sub>
| journal=J. Chem. Phys.
| volume=49
| year=1968
| pages=882-889
| doi=10.1063/1.1670155}}</ref> ||20 ||−1.631×10<sup>−10</sup>||−1.298×10<sup>−5</sup> ||−9.051×10<sup>−9</sup> ||−7.203×10<sup>−7</sup> ||−9.035×10<sup>−6</sup> ||−7.190×10<sup>−7</sup> ||18.015 ||0.9982
|-
|align="left" | [[bismuth]] <ref>{{
cite journal
| author = S. Otake, M. Momiuchi and N. Matsuno
| title = Temperature Dependence of the Magnetic Susceptibility of Bismuth
| year = 1980
| journal = J. Phys. Soc. Jap.
| volume = 49
| issue = 5
| pages = 1824-1828
| doi = 10.1143/JPSJ.49.1824}}
The tensor needs to be averaged over all orientations: <math>\chi=(1/3)\chi_{||}+(2/3)\chi_{\perp}</math> . </ref>|| 20 ||−3.55×10<sup>−9</sup> ||−2.82×10<sup>−4</sup>||−1.70×10<sup>−8</sup> ||−1.35×10<sup>−6</sup> ||−1.66×10<sup>−4</sup> ||−1.32×10<sup>−5</sup>|| 208.98
||9.78
|-
|align="left" | [[Carbon|Diamond]] <ref>{{
cite journal
| author = J. Heremans, C. H. Olk and D. T. Morelli
| title = Magnetic Susceptibility of Carbon Structures
| year = 1994
| journal = Phys. Rev. B
| volume = 49
| issue = 21
| pages = 15122-15125
| doi = 10.1103/PhysRevB.49.15122}}</ref> || [[Room temperature|r.t.]] ||−6.9×10<sup>−11</sup> ||−5.5×10<sup>−6</sup>|| −5.8×10<sup>−9</sup>||−4.6×10<sup>−7</sup> || −2.0×10<sup>−5</sup> ||−1.6×10<sup>−6</sup> || 12.01|| 3.513
|-
|align="left" | [[Helium|He]] <ref name=gases1>{{
cite journal
| author = R. E. Glick
| title = On the Diamagnetic Susceptibility of Gases
| year = 1961
| journal = J. Phys. Chem.
| volume = 65
| issue = 9
| pages = 1552-1555
| doi = 10.1021/j100905a020}}</ref> ||
||−2.38×10<sup>−11</sup>||−1.89×10<sup>−6</sup>||−5.93×10<sup>−9</sup> ||−4.72×10<sup>−7</sup> || || ||4.0026 ||
|-
|align="left" | [[Xenon|Xe]] <ref name=gases1/> || ||−5.7×10<sup>−10</sup>||−4.54×10<sup>−5</sup>|| −4.35×10<sup>-9</sup>||−3.46×10<sup>−7</sup> || || || 131.29||
|-
|align="left" | [[Oxygen|O<sub>2</sub>]] <ref name=gases1/> || ||4.3×10<sup>−8</sup>||3.42×10<sup>−3</sup>||2.69×10<sup>−6</sup> ||2.14×10<sup>−4</sup> || || || 16.00||
|-
|align="left" | [[Aluminium|Al]] || || 2.2×10<sup>−10</sup> ||1.7×10<sup>−5</sup>||7.9×10<sup>−9</sup> ||6.3×10<sup>−7</sup> ||2.2×10<sup>−5</sup> ||1.75×10<sup>−6</sup> ||26.98 ||2.70
|-
|align="left" | [[Silver|Ag]] <ref>{{
cite journal
| author = R. Dupree and C. J. Ford
| title = Magnetic susceptibility of the noble metals around their melting points
| year = 1973
| journal = Phys. Rev. B
| volume = 8
| issue = 4
| pages = 1780–1782
| doi = 10.1103/PhysRevB.8.1780}}</ref> || 961 || || || || ||−2.31×10<sup>−5</sup>||−1.84×10<sup>−6</sup> || 107.87||
|}
==Sources of confusion in published data==
There are tables of magnetic susceptibility values published on-line that seem to have been uploaded from a substandard source,<ref>[http://www.reade.com/Particle_Briefings/magnetic_susceptibilities.html Magnetic Properties Susceptibilities Chart from READE<!-- Bot generated title -->]</ref>
which itself has probably borrowed heavily from the [[CRC Press|CRC Handbook of Chemistry and Physics]]. Some of the data (e.g. for Al, Bi, and diamond) are apparently in cgs '''Molar Susceptibility''' units, whereas that for water is in '''Mass Susceptibility''' units (see discussion above). The susceptibility table in the CRC Handbook is known to suffer from similar errors, and even to contain sign errors. Effort should be made to trace the data in such tables to the original sources, and to double-check the proper usage of units. Use them at your own risk!
==See also==
* [[Maxwell's equations]]
* [[Magnetic flux density]]
* [[Electric susceptibility]]
* [[Curie constant]]
* [[Magnetometer]]
* [[Paleomagnetism]]
* [[Magnetism]]
* [[Iron]]
* [[Permeability (electromagnetism)]]
* [[magnetic constant]]
==References and notes==
{{Reflist}}
[[Category:Physical quantity]]
[[Category:Magnetism]]
[[Category:Electric and magnetic fields in matter]]
[[Category:Scientific techniques]]
[[ca:Susceptibilitat magnètica]]
[[cs:Magnetická susceptibilita]]
[[de:Magnetische Suszeptibilität]]
[[es:Susceptibilidad magnética]]
[[fa:پذیرفتاری مغناطیسی]]
[[fr:Susceptibilité magnétique]]
[[it:Suscettività magnetica]]
[[nl:Magnetische susceptibiliteit]]
[[pl:Podatność magnetyczna]]
[[sk:Magnetická susceptibilita]]
[[vi:Độ cảm từ]]
[[uk:Магнітна сприйнятливість]]