Mangrove 73448 226112179 2008-07-16T21:38:46Z Geg 267604 [[Image:Mangroves.jpg|thumb|right|240px|Above and below water view at the edge of the mangal.]] '''Mangroves''' (generally) are [[tree]]s and [[shrub]]s that grow in [[saline water|saline]] coastal habitats in the [[tropics]] and [[subtropics]]. The word is used in at least three senses: (1) most broadly to refer to the habitat and entire plant assemblage or '''''mangal''''' <ref name="Hogarth"> Hogarth, Peter J. (1999). ''The Biology of Mangroves'' Oxford University Press, Oxford. </ref>, for which the terms '''mangrove swamp''' and '''mangrove forest''' are also used, (2) to refer to all trees and large shrubs in the mangal, and (3) narrowly to refer to the mangrove ''[[Family (biology)|family]]'' of plants, the [[Rhizophoraceae]], or even more specifically just to mangrove trees of the genus ''[[Rhizophora]]''. Mangals are found in [[Sedimentary depositional environment|depositional]] coastal environments where fine sediments, often with high organic content, collect in areas protected from high energy wave action. == Ecology == A mangrove is a plant and mangal is a plant community and habitat where mangroves thrive<ref name="Mathias"/>. They are found in tropical and sub-tropical [[tidal]] areas, and as such have a high degree of salinity. Areas where mangals occur include [[estuary|estuaries]] and marine shorelines. Plants in mangals are diverse but all are able to exploit their habitat (the [[intertidal zone]]) by developing physiological adaptations to overcome the problems of [[anoxia]], high [[salinity]] and frequent tidal [[inundation]]. About 110 species have been identified as belonging to the mangal.<ref name="Mathias">[http://www.botgard.ucla.edu/html/botanytextbooks/worldvegetation/marinewetlands/mangal/index.html Mangal (Mangrove). ''World Vegetation''. Mildred E. Mathias Botanical Garden, University of California at Los Angeles]</ref> Each species has its own capabilities and solutions to these problems; this may be the primary reason why, on some shorelines, [[Rhizophora|mangrove tree species]] show distinct zonation. Small environmental variations within a mangal may lead to greatly differing methods of coping with the environment. Therefore, the mix of species at any location within the intertidal zone is partly determined by the tolerances of individual species to physical conditions, like tidal inundation and salinity, but may also be influenced by other factors such as predation of plant seedlings by crabs. [[Image:Mangroves1.JPG|thumb|left|240px|A cluster of mangroves on the banks of the Vellikeel River in [[Kannur District]] of [[Kerala]], [[India]]]] Once established, roots of mangrove plants provide a habitat for oysters and help to impede water flow, thereby enhancing the deposition of sediment in areas where it is already occurring. Usually, the fine, anoxic sediments under mangroves act as sinks for a variety of [[Heavy metals|heavy (trace) metals]] which are scavenged from the overlying seawater by [[colloidal particle]]s in the sediments. In areas of the world where mangroves have been removed for development purposes, the disturbance of these underlying sediments often creates problems of trace metal contamination of seawater and [[biota (ecology)|biota]]. {{Expert-subject|Ecology|date=May 2008}} Mangroves protect the coast from erosion, surge storms (especially during [[hurricanes]]), and tsunamis.<ref name="Mazda-2">Mazda, Y.; Kobashi, D. and Okada, S. (2005) "Tidal-Scale Hydrodynamics within Mangrove Swamps" ''Wetlands Ecology and Management'' 13(6): pp. 647-655</ref><ref name="Danielsen">Danielsen, F. ''et al.'' (2005) "The Asian tsunami: a protective role for coastal vegetation" ''Science'' 310: p. 643.</ref> Their massive root system is efficient at dissipating wave energy.<ref name="Massel">Massel, S. R.; Furukawa, K.and Brinkman R. M. (1999) "Surface wave propagation in mangrove forests" ''Fluid Dynamics Research'' 24(4): pp.219-249</ref> Likewise, they slow down tidal water enough that its sediment is deposited as the tide comes in and is not re-suspended when the tide leaves, except for fine particles.<ref>Mazda, Yoshihiro et al. (1997) "Drag force due to vegetation in mangrove swamps" ''Mangroves and Salt Marshes'' 1: pp.193-199</ref> As a result, mangroves build their own environment.<ref name="Mazda-2"/> Because of the uniqueness of the mangrove ecosystems and their protection against erosion, they are often the object of conservation programs including national [[Biodiversity Action Plan]]s.<ref name="Danielsen"/> Despite their benefits, the protective value of mangroves is sometimes overstated. Wave energy is typically low in areas where mangroves grow,<ref>Baird, Andrew (26 December 2006) "False Hopes and Natural Disasters" ''New York Times'' editorial</ref> so their effect on erosion can only be measured in the long-term.<ref name="Massel"/> Their capacity to limit high-energy wave erosion is limited to events like storm surges and tsunamis.<ref>Dahdouh-Guebas, F. ''et al.'' (2005) "How effective were mangroves as a defence against the recent tsunami?" ''Current Biology'' 15(12): pp. 443-447</ref> Erosion often still occurs on the outer sides of bends in river channels that wind through mangroves, just as new stands of mangroves are appearing on the inner sides where sediment is [[Accretion (geology)|accreting]].{{Fact|date=May 2007}} Mangroves support unique ecosystems, especially on their intricate root systems. The mesh of mangrove [[root]]s produces a quiet marine region for many young organisms. In areas where roots are permanently submerged, they may host a wide variety of organisms, including [[algae]], [[barnacle]]s, [[oyster]]s, [[sea sponge|sponge]]s, and [[bryozoan]]s, which all require a hard substratum for anchoring while they filter feed. [[Shrimp]]s and [[Thalassinidea|mud lobsters]] use the muddy bottom as their home<ref>[[Encarta]] Encyclopedia 2005. Article &mdash; Seashore, by [[Heidi Nepf]].</ref>. [[Mangrove crab]]s improve the nutritional quality of the mangal muds for other bottom feeders by mulching the mangrove leaves. <ref>Skov, Martin W. and Hartnoll, Richard G. (March 2002). Paradoxical selective feeding on a low-nutrient diet: why do mangrove crabs eat leaves? ''[[Oecologia]]'' 131(1): pp. 1-7.</ref> In at least some cases, export of carbon fixed in mangroves is important in coastal food webs. The habitats also host several commercially important species of fish and crustaceans. In [[Vietnam]], [[Thailand]], the [[Philippines]], and [[India]], mangrove plantations are grown in coastal regions for the benefits they provide to coastal fisheries and other uses. Despite replanting programs, over half of the world's mangroves have been lost in recent times. == Biology == [[Image:Mangrove.jpg|thumb|right|280px|A red mangrove, ''Rhizophora mangle'']] A wide variety of plant species can be found in mangrove habitat, but of the recognized 110 species, only about 54 species in 20 genera from 16 [[Family (biology)|families]] constitute the "true mangroves", species that occur almost exclusively in mangrove habitats and rarely elsewhere<ref name="Hogarth"/>. [[Convergent evolution]] has resulted in many species of these plants finding similar solutions to the problems of variable salinity, tidal ranges (inundation), [[Anaerobic environment|anaerobic]] soils and intense sunlight that come from living in the tropics. Plant biodiversity is generally low in a given mangal—more than twenty species are uncommon.<ref name="Mathias"/> This is especially true in higher latitudes and in the Americas. The greatest biodiversity occurs in the mangal of [[New Guinea]], [[Indonesia]] and [[Malaysia]].<ref>[http://maps.grida.no/go/graphic/distribution_of_coral_mangrove_and_seagrass_diversity/ UN Report on mangrove diversity].</ref> ===Adaptations to low oxygen=== Red mangroves, which can live in the most inundated areas, prop themselves up above the water level with stilt roots and can then take in air through pores in their bark ([[lenticel]]s). Black mangroves live on higher ground and make many [[pneumatophore]]s (specialised root-like structures which stick up out of the soil like straws for breathing) which are covered in lenticels. These "breathing tubes" typically reach heights of up to thirty centimeters, and in some species, over three meters. There are four types of pneumatophore—stilt or prop type, snorkel or peg type, knee type, and ribbon or plank type. Knee and ribbon types may be combined with buttress roots at the base of the tree. The roots also contain wide [[aerenchyma]] to facilitate oxygen transport within the plant. [[Image:Saltcrystals on avicennia marina var resinifera leaves.JPG|right|thumb|150px|Salt crystals formed on grey mangrove leaf]] ===Limiting salt intake=== [[Rhizophora mangle|Red mangroves]] exclude salt by having rather impermeable roots which are highly [[suberin|suberised]], acting as an ultra-filtration mechanism to exclude [[sodium]] [[salts]] from the rest of the plant. Water inside the plant shows that 90%, and in some cases of high salinity, up to 97%, of the salt has been excluded at the roots. Any salt which does accumulate in the shoot is concentrated in old leaves which are then shed, as well as stored away safely in cell [[vacuole]]s. White (or grey) mangroves can secrete salts directly; they have two salt glands at each leaf base (hence their name—they are covered in white salt crystals). ===Limiting water loss=== Because of the limited availability of freshwater in the salty soils of the intertidal zone, mangrove plants have developed ways of limiting the amount of water that they lose through their leaves. They can restrict the opening of their [[stomata]] (pores on the leaf surfaces, which exchange [[carbon dioxide]] gas and water vapour during photosynthesis). They also vary the orientation of their leaves to avoid the harsh midday sun and so reduce evaporation from the leaves. Anthony Calfo, a noted [[aquarium]] author, has observed anecdotally that a red mangrove in captivity only grows if its leaves are misted with fresh water several times a week, simulating the frequent rainstorms in the tropics.<ref>[http://www.reefkeeping.com/issues/2004-12/ac/feature/index.php Calfo, Anthony (2006). ''Mangroves for the Marine Aquarium''.]</ref> ===Nutrient uptake=== The biggest problem that mangroves face is nutrient uptake. Because the soil is perpetually waterlogged, there is little free oxygen. Thus anaerobic [[bacteria]] liberate [[nitrogen]] gas, soluble [[iron]], inorganic [[phosphate]]s, [[sulfide]]s, and [[methane]], which makes the soil much less nutritious and contributes to a mangrove's pungent [[odor]]. Prop root systems allow mangroves to take up gasses directly from the atmosphere, and various other nutrients, like iron, from the inhospitable soil. Gases are quite often stored directly inside the roots and processed even when the roots are submerged during high tide. ===Increasing survival of offspring=== In this harsh environment, mangroves have evolved a special mechanism to help their offspring survive. All mangroves have buoyant [[seed]]s suited to dispersal in water. Unlike most plants, whose seeds germinate in soil, many mangrove plants (e.g. Red Mangrove) are viviparous, i.e., their seeds germinate while still attached to the parent tree. Once germinated, the seedling grows either within the fruit (e.g. ''Aegialitis'', ''Acanthus'', ''Avicennia'' and ''Aegiceras''), or out through the fruit (e.g. ''Rhizophora'', ''Ceriops'', ''Bruguiera'' and ''Nypa'') to form a [[propagule]] (a seedling ready to go), which can produce its own food via [[photosynthesis]]. When the propagule is mature it drops into the water where it can then be transported great distances. Propagules can survive desiccation and remain dormant for weeks, months, or even over a year until they arrive in a suitable environment. Once a propagule is ready to root, it will change its density so that the elongated shape now floats vertically rather than horizontally. In this position, it is more likely to become lodged in the mud and root. If it does not root, it can alter its density so that it floats off again in search of more favorable conditions. == Species == The following listing (modified from Tomlinson, 1986) gives the number of species of mangroves in each listed plant genus and family. ===Major components=== {| class=wikitable ! Family !! Genus, number of species !! Common name |- | '''[[Avicennia|Acanthaceae, Avicenniaceae or Verbenaceae]]''' <br><small>(family allocation disputed)</small> | ''[[Avicennia]]'', 9 | Black mangrove |- | '''[[Combretaceae]]''' | ''[[Conocarpus erectus|Conocarpus]]'', 1; ''[[Laguncularia]]'', 11; ''[[Lumnitzera]]'', 2 | Buttonwood, White mangrove |- | '''[[Arecaceae]]''' | ''[[Nypa fruticans|Nypa]]'', 1 | Mangrove palm |- | '''[[Rhizophoraceae]]'''&nbsp;&nbsp; | ''[[Bruguiera]]'', 6; ''[[Ceriops]]'', 2; ''[[Kandelia]]'', 1; ''[[Rhizophora]]'', 8 | Red mangrove |- | '''[[Lythraceae]]''' | ''[[Sonneratia]]'', 5 | Mangrove apple |} ===Minor components=== {| class=wikitable ! Family !! Genus, number of species |- | '''[[Acanthaceae]]''' | ''[[Acanthus (genus)|Acanthus]]'', 1; ''[[Bravaisia]]'', 2 |- | '''[[Bombacaceae]]''' | ''[[Camptostemon]]'', 2 |- | '''[[Cyperaceae]]''' | ''[[Fimbristylis]]'', 1 |- | '''[[Euphorbiaceae]]''' | ''[[Excoecaria]]'', 2 |- | '''[[Lecythidaceae]]''' | ''[[Barringtonia]]'', 6 |- | '''[[Lythraceae]]''' | ''[[Pemphis]]'', 1 |- | '''[[Meliaceae]]''' | ''[[Xylocarpus]]'', 2 |- | '''[[Myrsinaceae]]''' | ''[[Aegiceras]]'', 2 |- | '''[[Myrtaceae]]''' | ''[[Osbornia]]'', 1 |- | '''[[Pellicieraceae]]''' | ''[[Pelliciera]]'', 1 |- | '''[[Plumbaginaceae]]'''&nbsp;&nbsp; | ''[[Aegialitis]]'', 2 |- | '''[[Pteridaceae]]''' | ''[[Acrostichum]]'', 3 |- | '''[[Rubiaceae]]''' | ''[[Scyphiphora]]'', 1 |- | '''[[Sterculiaceae]]''' | ''[[Heritiera]]'', 3 |} == Geographical regions == Mangroves occur in numerous areas worldwide. See [[List of mangrove ecoregions]]. ===Africa=== There are important examples of mangrove swamps in [[Kenya]] and [[Madagascar]], the latter even admixed at the coastal verge with the [[Madagascar dry deciduous forests]]. Nigeria has the largest concentration of mangroves in Africa, spanning an area of 36,000 sq km. Many of [[Nigeria]]'s mangroves have been destroyed in the last fifty years due to oil spills and leaks, destroying local fishing economy and water quality.<ref name = Geographic>{{cite journal|author = O'Neill.T|year=2007|month=February|title=Curse of the Black Gold|journal= National Geographic|pages=88 to 117}}</ref> === Americas === Mangroves are found in many parts of the tropical and subtropical coastal parts of the Americas. ====United States==== Because of their sensitivity to sub-freezing temperatures, mangroves in the continental [[United States]] are limited to the coastal [[Florida]] Peninsula (see [[Florida mangroves]]) and south Texas. ====Central America & Caribbean==== Mangroves also occur on the west coast of [[Costa Rica]], on the Pacific and Caribbean coasts of [[Nicaragua]], [[Belize]], [[Guatemala]], [[Honduras]], and [[Panama]] and on many [[Caribbean Islands]], such as [[Antigua]] and [[St. Lucia]]. Significant mangals include the [[Marismas Nacionales-San Blas mangroves]] in [[Mexico]]. Mangroves can also be found in [[Puerto Rico]], [[Cuba]], the [[Dominican Republic]], [[Haiti]], [[Jamaica]], [[Trinidad]] and the Pacific coast of [[El Salvador]]. ====South America==== [[Brazil]] contains approximately 26,000 km² of mangals, which is 15% of the world's total of 172,000 km². [[Ecuador]] and [[Peru]] also have significant areas of mangroves mainly in the [[Manglares National Santuary|Gulf of Guayaquil-Tumbes mangroves]]. [[Venezuela]]'s northern Caribbean island, [[Isla Margarita|Margarita]], also possesses mangrove forest in the [[Parque Nacional la Restinga]]. [[Image:Cienaga6.png|thumb|right|200px|Mangrove near the town of [[Ciénaga, Magdalena|Cienaga]], [[Magdalena Department|Magdalena]] in the [[Ciénaga Grande de Santa Marta]] swampy marshes.]] [[Colombia]] also possesses large mangrove forests on both the Caribbean and Pacific coasts. [[Image:Mangrove knees Yap.jpg|thumb|right|200px|A mangrove of the genus ''Sonneratia'', showing abundant [[pneumatophore]]s, growing on the landward margin of the reef flat on [[Yap]].]] ===Asia=== Mangroves occur on the south coast of Asia, throughout the [[Indian subcontinent]], in all the [[southeast Asia]]n countries, and on islands in the [[Indian Ocean]], [[Arabian Sea]], [[Bay of Bengal]], [[South China Sea]] and the Pacific. The mangal is particularly prevalent in the deltas of large Asian rivers. The [[Sundarbans]] is the largest mangrove forest in the world, located in the [[Ganges]] [[river delta|delta]] in [[Bangladesh]] and [[West Bengal]], India. There are major mangals in the [[Andaman and Nicobar Islands]] and the [[Gulf of Kutch]] in [[Gujarat]].<ref>[http://www.mangroveindia.org/ Mangroves of India] - URL retrieved [[November 26]], [[2006]]</ref> Other significant mangals include the [[Bhitarkanika Mangroves]] and [[Godavari-Krishna mangroves]]. The [[Pichavaram]] Mangrove Forest near [[Chidambaram]], South India is the second largest mangrove forest in the world. It is home to a large variety of birds—local resident, migratory resident and the pure migratory birds—and is separated from the Bay of Bengal by a lovely beach. It is one of those rare mangrove forests which has actually increased by 90% between 1986 and 2002.{{Fact|date=March 2008}} There are large areas of mangroves in Oman near Muscat, in particular at Shinas, Qurm Park and Mahout Island. In Arabic, mangrove trees are known as ''qurm'', thus the mangrove area in Oman is known as Qurm Park. Iranian mangrove forests occur between 25°11′N to 27°52′N. These forests exist in the north part of the [[Persian Gulf]] and Oman Sea, along three Maritime Provinces in the south of [[Iran]]. These provinces respectively from southwest to southeast of Iran, include [[Bushehr]], [[Hormozgan]] and Sistan & Balouchestan. In [[Vietnam]], mangrove forests grow along the southern coast, including two forests: the [[Can Gio Mangrove Forest]] [[biosphere reserve]] and the [[U Minh Thuong National Park|U Minh mangrove forest]] in the Sea and Coastal Region of [[Kien Giang]], [[Ca Mau]] and [[Bac Lieu province]]. ===Australasia=== In [[Australasia]], mangroves occur around much of [[New Guinea]], [[Sulawesi]] and the surrounding islands. [[Australia]] has mangle primarily on the northern and eastern coasts of the continent. It has approximately 11,500 km² of mangroves with occurrences as far south as Corner Inlet in [[Victoria (Australia)|Victoria]] (37°45′S) and Barker Inlet in [[Adelaide]], [[South Australia]].<ref>{{cite book|last=Zann |first = Leon P.|url=http://www.deh.gov.au/coasts/publications/somer/annex1/mangrove.html |publisher=Australian Government, Dept of Environment and Heritage |chapter = Mangrove ecosystems in Australia: structure, function and status |title= State of the Marine Environment Report for Australia | accessdate = 2006-11-25|id = ISBN |origyear = 1995 | id = ISBN 0-642-17399-0}}</ref> [[New Zealand]] also has mangrove forests extending to around 38°S (similar to Australia's southernmost mangrove incidence): the furthest geographical extent on the west coast is [[Raglan|Raglan Harbour]] (37°48′S); on the east coast, Ohiwa Harbour (near [[Opotiki]]) is the furthest south that mangroves are found (38°00′S).<ref>[http://www.treasuresofthesea.org.nz/mangroves-and-seagrasses Mangroves and Seagrasses - Treasures of the Sea<!-- Bot generated title -->]</ref> ===Pacific islands=== Twenty-five species of mangrove are found on various Pacific islands, with extensive mangals on some islands. Mangals on [[Guam]], [[Palau]], [[Kosrae]] and [[Yap]] have been badly affected by development.<ref>[http://biology.usgs.gov/s+t/SNT/noframe/pi179.htm Hawaii and the Pacific Islands]</ref> Mangroves are not native to [[Hawaii]], but the Red mangrove, ''[[Rhizophora mangle]]'', and Oriental mangrove, ''[[Bruguiera sexangula]]'', have been introduced and are now [[Naturalisation (biology)|naturalized]].<ref>Allen, James A. and Krauss, Ken W. (2006) "Influence of Propagule Flotation Longevity and Light Availability on Establishment of Introduced Mangrove Species in Hawai'i". ''Pacific Science'' 60:3, July 2006. Abstract at [http://muse.jhu.edu/journals/pacific_science/toc/psc60.3.html] - URL retrieved [[November 28]] [[2006]].</ref> Both species are classified as "Pest Plants of Hawaiian Native Ecosystems" by the [[University of Hawaii]] Botany Department.<ref>[http://www.botany.hawaii.edu/faculty/cw_smith/aliens.htm Hawaiian Alien Plant Studies] - URL retrieved [[November 28]] [[2006]].</ref> ==Growing mangroves== Red Mangroves are the most commonly grown of all species, used particularly in [[Marine Aquariums]] in a [[sump]] to reduce [[proteins]] and other [[minerals]] in the water. People also may grow them just for their unusual appearance, either in [[Aquariums]], or as ornamental plants, such as in [[Japan]]. In [[Hawaii]], these plants are considered pests, while in [[Florida]] they are heavily protected. ==Destruction== The [[United Nations Environment Program]] has estimated that a quarter of the destruction of mangrove forests stems from [[shrimp farming]].<ref>Botkin, D. and E. Keller (2003) ''Enrivonmental Science: Earth as a living planet'' (p.2) John Wiley & Sons. ISBN 0-471-38914-5</ref> Grassroots efforts to save mangroves from development are becoming more popular as the benefits of mangroves are becoming more widely known. In the [[Bahamas]], for example, active efforts to save mangroves are occurring on the islands of [[Bimini]] and [[Great Guana Cay]]. == In popular media == * The mangrove is used as a symbol in [[Annie Dillard|Annie Dillard's]] essay ''Sojourner'' due to its significance as a self-sustaining biome. * The manga series ''[[One Piece]]'' has a forest of giant mangroves forming the Sabaody Archipelago, notable for creating a resin combined with the oxygen breathed out of the trees to create large bubbles used and manipulated by the local population for everything from transport to hotels. ==Notes== <!--<nowiki> See http://en.wikipedia.org/wiki/Wikipedia:Footnotes for an explanation of how to generate footnotes using the <ref> and </ref> tags. </nowiki>--> {{reflist}} ==See also== * [[Body of water]] * [[Salt marsh]] * [[Wetland]] == References == * Saenger, Peter (2002). ''Mangrove Ecology, Silviculture, and Conservation''. Kluwer Academic Publishers, Dordrecht. ISBN 1-4020-0686-1. * Hogarth, Peter J. (1999). ''The Biology of Mangroves''. Oxford University Press, Oxford. ISBN 0-19-850222-2. * [[Ganapathi Thanikaimoni|Thanikaimoni, Ganapathi]] (1986). ''Mangrove Palynology'' [[UNDP]]/[[UNESCO]] and the French Institute of [[Pondicherry]], ISSN 0073-8336 (E). * Tomlinson, Philip B. (1986). ''The Botany of Mangroves''. Cambridge University Press, Cambridge, ISBN 0-521-25567-8. * Teas, H. J. (1983). ''Biology and Ecology of Mangroves''. W. Junk Publishers, The Hague. ISBN 90-6193-948-8. * Plaziat, J.C., et al. (2001). "History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record". ''Wetlands Ecology and Management'' 9 (3): pp. 161-179. * Sato, Gordon, et al. [http://www.bioone.org/perlserv/?request=get-pdf&doi=10.1672%2F0277-5212%282005%29025%5B0776%3AANATGM%5D2.0.CO%3B2 Growing Mangroves With The Potential For Relieving Regional Poverty And Hunger] WETLANDS, Vol. 25, No. 3 - September 2005 * Jayatissa, L. P., Dahdouh-Guebas, F. & Koedam, N. (2002). "A review of the floral composition and distribution of mangroves in Sri Lanka". ''Botanical Journal of the Linnean Society'' 138: 29-43. * Warne, K. (February 2007). "Forests of the Tide". ''National Geographic'' pp. 132-151 *Aaron M. Ellison (2000) Mangrove Restoration: Do We Know Enough? Restoration Ecology 8 (3), 219–229 doi: 10.1046/j.1526-100x.2000.80033.x *Agrawala, Shardul; Hagestad; Marca; Koshy, Kayathu; Ota, Tomoko; Prasad, Biman; Risbey, James; Smith, Joel; Van Aalst, Maarten. 2003. Development and Climate Change in Fiji: Focus on Coastal Mangroves. Organisation of Economic Co-operation and Development, Paris, Cedex 16, France. *Barbier, E.B., Sathirathai, S., 2001. Valuing Mangrove Conservation in Southern Thailand. Contemproary Economic Policy. 19 (2) 109-122. *Bosire, J.O., Dahdouh-Guebas, F., Jayatissa, L.P., Koedam, N., Lo Seen, D., Nitto, Di D. 2005. How Effective were Mangroves as a Defense Against the Recent Tsunami? Current Biology Vol. 15 R443-R447. *Bowen, Jennifer L., Valiela, Ivan, York, Joanna K. 2001. Mangrove Forests: One of the World’s Threatened Major Tropical Environments. Bio Science 51:10, 807-815. *Jin-Eong, Ong. 2004. The Ecology of Mangrove Conservation and Management. Hydrobiologia. 295:1-3, 343-351. *Glenn, C. R. 2006. "Earth's Endangered Creatures" (Online). Accessed 4/28/2008 at http://earthsendangered.com. *Lewis, Roy R. III. 2004. Ecological Engineering for Successful Management and Restoration of Mangrove Forest. Ecological Engineering. 24:4, 403-418. *Lucien-Brun H. 1997. Evolution of world shrimp production: Fisheries and aquaculture. World Aquaculture. 28:21–33. *Twilley, R. R., V.H. Rivera-Monroy, E. Medina, A. Nyman, J. Foret, T. Mallach, and L. Botero. 2000. Patterns of forest development in mangroves along the San Juan River estuary, Venezuela. Forest Ecology and Management. ==External links== {{linkfarm}} * [http://forests.org/articles/reader.asp?linkid=37762 Tsunami protection.] * [http://www.unesco.org/csi/intro/mangrove.htm The story of the UNESCO Mangrove Programme.] * [http://www.unepscs.org/index.php?option=com_content&task=view&id=53&Itemid=85 Science and Management of Mangroves in the South China Sea and the Gulf of Thailand.] *[http://www.panda.org/about_wwf/where_we_work/ecoregions/about/habitat_types/selecting_terrestrial_ecoregions/habitat14.cfm WWF article about the mangrove biome.] * [http://www.dbag.unifi.it/mangroves/ East African Mangroves, a website managed by the Universities of Brussels (Belgium) and Florence (Italy).] * [http://www.kenyanmangroves.com/ Kenyan Mangroves.] * [http://www.mangrove.at Large mangrove website.] * [http://www.mysabah.com/mangrove/ Borneo Mangroves.] *[http://www.sundarbanstigerproject.info Sundarbans Tiger Project] Research and Conservation of tigers in the largest remaining mangrove forest in the world. * [http://www.gisdevelopment.net/application/nrm/coastal/mnm/ma04081pf.htm Coastal wetland and shoreline change mapping of Pichavaram, south east coast of India using satellite data.] * [http://landbase.hq.unu.edu/Workshops/OkinawaMarch2000/Papers/Subramanianpapermar2000.htm Status of Indian Mangroves: Pollution Status of Pichavaram Mangrove, Southeast Coast of India.] * [http://www.mangroveactionproject.org Mangrove Action Project.] Advocacy group devoted to the conservation, restoration and sustainable management of mangroves and related coastal ecosystems. Spun off from [[Earth Island Institute]] in March 2007. * [http://www.glomis.com Global Mangrove database and Information System (GLOMIS).] * {{it icon}} [http://www.mangrovie.com Information and photo of Red Mangrove in aquarium - ''Rhizophora mangle''.] * [http://www.vivrodrigues.com/patrimoine-rodrigues-tourisme-environnement.htm Mangroves of Rodrigues Island.] * [http://mangrove.nus.edu.sg/guidebooks/index.htm Mangroves of Singapore.] * [http://mangrove.org/ mangrove.org] - Mangrove Afforestation, Habitat Creation, Replenishment, Shoreline Stabilization. {{Terrestrial biomes}} {{Ecozones}} [[Category:Aquatic ecology]] [[Category:Mangroves| ]] [[ca:Manglar]] [[cs:Mangrovy]] [[de:Mangrove (Baum)]] [[de:Mangrove (Ökosystem)]] [[et:Mangroov]] [[es:Manglar]] [[fr:Mangrove]] [[gl:Mangleiro]] [[id:Hutan bakau]] [[it:Mangrovia]] [[he:מנגרובים]] [[lt:Mangrovė]] [[ml:കണ്ടല്‍കാട്]] [[ms:Pokok Bakau]] [[nl:Mangrove]] [[ja:マングローブ]] [[no:Mangrove]] [[nn:Mangrove]] [[oc:Mangròva]] [[pl:Namorzyny]] [[pt:Manguezal]] [[ro:Mangrove]] [[ru:Мангры]] [[sk:Mangrovník]] [[sr:Мангрове]] [[fi:Mangrove]] [[sv:Mangrove]] [[th:ป่าชายเลน]] [[to:Tongo]] [[uk:Мангровий ліс]] [[yi:מאנגראווע]] [[zh:红树林]]