Mount Wilson Observatory
213583
223989047
2008-07-06T21:03:04Z
Howcheng
314721
missing word
{{Infobox Observatory
|name = Mount Wilson Observatory
|image = [[Image:100inchHooker.jpg|250px]]
|caption = The 100 inch Hooker telescope that [[Edwin Hubble]] used to discover the general [[expanding universe|expansion of the universe]].
|organization = Mount Wilson Institute
|location = [[Mount Wilson]], [[Los Angeles County]], [[California]]
|coords = {{coor dms|34|13|21.2873|N|118|03|42.0624|W}}
|altitude = 1,742 m (5,715 ft)
|weather =
|established =
|closed =
|website=http://www.mtwilson.edu/vis/
|telescope1_name = [[Hale Telescope]]
|telescope1_type = 60" reflector
|telescope2_name = [[Hooker Telescope]]
|telescope2_type = 100" reflector
|telescope3_name = [[Infrared Spatial Interferometer]]
|telescope3_type = 3 65" reflectors
|telescope4_name = [[CHARA array]]
|telescope4_type = 6 40" reflectors
}}
[[Image:Mount Wilson California Map.PNG|thumb]]
The '''Mount Wilson Observatory''' (MWO) is an [[astronomical observatory]] in [[Los Angeles County, California]]. The MWO is located on [[Mount Wilson (California)|Mount Wilson]], a 5,715 foot (1,742 m) peak in the [[San Gabriel Mountains]] near [[Pasadena, California|Pasadena]], northeast of [[Los Angeles]].
Thanks to the [[inversion layer]] that traps [[smog]] over Los Angeles, Mount Wilson has naturally steadier air than any other location in North America, making it ideal for [[astronomy]] and in particular for [[interferometry]].<ref name="lat">{{cite news | url=http://www.latimes.com/news/local/la-me-then6-2008jul06,0,6407442.story | title=Mount Wilson Observatory an astronomical gem | publisher=[[Los Angeles Times]] | date=[[July 6]] [[2008]] | first=Wendy | last=Hansen | accessdate=2008-07-06}}</ref> The growth of [[greater Los Angeles]] has limited the ability of the observatory to engage in deep space astronomy, but it remains a productive center with many new and old instruments in use for science.
It was first directed by [[George Ellery Hale]], who had built the 40 inch (1 m) telescope at the [[Yerkes Observatory]]. The Mount Wilson Solar Observatory was first funded by the [[Carnegie Institution of Washington]] in 1904, leasing the land from the owners of the Mount Wilson Hotel in 1904. Among the conditions of the lease was that it allow public access.<ref>[http://www.sgvtribune.com/search/ci_6674075?IADID=Search-www.sgvtribune.com-www.sgvtribune.com Window to other worlds - SGVTribune.com<!-- Bot generated title -->]</ref>
== 60 inch (1.5 m) Hale telescope==
George Ellery Hale received the 60 inch (1.5 m) blank mirror, cast by [[Saint-Gobain]] in France, in 1896 as a gift from his father, [[William Hale]]. It was a glass disk 7½ inches (191 mm) thick and weighing 1900 pounds (860 kg). However it was not until 1904 that Hale received funding from the Carnegie Institution to build an observatory. Grinding began in 1905 and took two years. The mounting and structure for the telescope was built in [[San Francisco]] and barely survived the [[1906 San Francisco earthquake|1906 earthquake]]. Transporting the pieces to the top of Mount Wilson was an enormous task, and a [[mule]] train was built to carry the material up. '[[First light]]' was [[December 8]], [[1908]]. It was at the time the largest operational telescope in the world.<ref name="lat"/>
The 60 inch (1.5 m) reflector became one of the most productive and successful telescopes in astronomical history. Its design and light-gathering power allowed the pioneering of [[spectroscopic]] analysis, [[parallax]] measurements, [[nebula]] photography, and [[Photometry (astronomy)|photometric]] photography. Though surpassed in size by the Hooker telescope nine years later, the Hale telescope remained one of the largest in use for decades.
In 1992 the 60 inch telescope was fitted with an early [[adaptive optics]] system, the ''Atmospheric Compensation Experiment'' (ACE). The 69-channel system improved the potential resolving power of the telescope from 0.5-1.0 arc sec to 0.07 arc sec. ACE was developed by [[DARPA]] for the [[Strategic Defense Initiative]] system, and the [[National Science Foundation]] funded the civilian conversion.
Today the 60 inch telescope is used for public outreach. Eyepieces are fitted to its focus instead of instruments. It is one of the largest telescopes in the world which the general public can look through freely.
Another telescope, the 200-inch telescope at the [[Palomar Observatory]], is also called the "Hale Telescope".
== 100 inch (2.5 m) Hooker telescope==<!-- This section is linked from [[Edwin Hubble]] -->
[[Image:MtWilsonGlass-1917.jpg|250px|thumb|right|The 100 inch mirror on its way up, 1917.]]
Hale immediately set about creating a larger telescope. John D. Hooker provided crucial funding for it, along with Carnegie. The Saint-Gobain factory was again chosen to cast a blank in 1906, which it completed in 1908, After considerable trouble over the blank (and potential replacements), the 100 inch (2.5 m) telescope was completed and saw "[[first light]]" on November 2, 1917.
The mechanism incorporates a mercury float to provide smooth operation. The Hooker telescope was equipped in 1919 with a special attachment, an optical [[astronomical interferometer]] developed by [[Albert Michelson]], much larger than the one he had used to measure Jupiter's satellites. Michelson was able to use the equipment to determine the precise diameter of stars, such as [[Betelgeuse]], the first time the size of a star had ever been measured. [[Henry Norris Russell]] developed his star classification system based on observations using the Hooker.
[[Image:Assembling hooker polar axis.jpg|left|thumb|250px|Workmen assembling the polar axis of the Hooker telescope.]]
[[Edwin Hubble]] performed his critical calculations from work on the 100 inch (2.5 m) telescope. He determined that some nebulae were actually [[Galaxy|galaxies]] outside our own [[Milky Way]]. Hubble, assisted by [[Milton L. Humason]], discovered the presence of the [[redshift]] that indicated the universe is expanding.<ref name="lat"/>
The Hooker's long reign as the largest telescope came to an end when the [[Caltech]]-Carnegie consortium completed its 200 inch (5 m) telescope in 1948 at [[Mount Palomar]], 90 miles (150 km) south, in [[San Diego County, California]].
By the 1980s, the focus of astronomy research had turned to deep space observation, which required darker skies than what could be found in the Los Angeles area, due to ever-increasing problem of [[light pollution]]. In 1986, the [[Carnegie Institution]], which ran the observatory, handed it over to the non-profit Mount Wilson Institute. At that time, the 100 inch (2.5 m) telescope was deactivated, but it was restarted in 1992 and outfitted with adaptive optics. The Hooker telescope remains one of the pre-eminent scientific instruments of the 20th century.
The telescope has a resolving power of 0.05 [[arcsec]].
== Solar telescopes ==
There are three solar telescopes, two of which are now in use for science. The 60 foot (18 m) tower telescope was completed in 1908, and the 150 foot (46 m) tower telescope was completed in 1912. The Snow solar telescope, built in 1904 is used for educational demonstrations. The telescopes are used to study [[helioseismology]] and other changes in the [[sun]]'s nature.
== Interferometry ==
The extremely steady air over Mount Wilson is well suited to interferometry, the use of multiple viewing points to increase resolution enough to allow for the direct measurement of the size of details such as star diameters. Michelson performed the first measurements of other stars in the [[history of astronomical interferometry]] on the Hooker telescope in 1919.
The [[Infrared Spatial Interferometer]] (ISI) is an array of three 65 inch (1.65 m) telescopes operating in the mid-infrared. The telescopes are fully mobile and their current site on Mount Wilson allows for placements as far as 70 m apart, giving the resolution of a telescope of that diameter. The signals are converted to radio frequencies through [[heterodyne]] circuits and then combined electronically using techniques copied from [[radio astronomy]]. ISI is run by an arm of the [[University of California, Berkeley]]. The longest (70m) baseline provides a resolution of 0.003 arcsec at 11 micrometers. On July 9, 2003, ISI recorded the first [[closure phase]] [[aperture synthesis]] measurements in the mid infrared.
The [[CHARA array|Center for High Angular Resolution Astronomy (CHARA) array]] is an interferometer formed from six 1 m (40-inch) telescopes arranged along three axes with a maximum separation length of 330 m. The light beams travel through vacuum tubes and are combined optically, requiring a building 100 meters long with movable mirrors to keep the light in phase as the earth rotates. CHARA is operated by the [[Georgia State University]] and began scientific use in 2002 and began "routine operations" in early 2004. In infrared the integrated image can resolve down to 0.0005 arcseconds. As of 2005 four of the six telescopes have been commissioned for interferometric observations.
These and other astronomical interferometers are included in the [[List of astronomical interferometers at visible and infrared wavelengths]]. The history of the development of these instruments is given in [[History of astronomical interferometry]].
==Other telescopes==
A 24-inch telescope fitted with an infrared detector purchased from a military contractor was used by [[Eric Becklin]] in 1966 to determine the center of the [[Milky Way]] for the first time.<ref>"Monster of the Milky Way", ''[[NOVA]]'' PBS Airdate: October 31, 2006 [http://www.pbs.org/wgbh/nova/transcripts/3314_blackhol.html]</ref>
In 1968, the first large-area near-IR (2.2 µm) survey of the sky was conducted by [[Gerry Neugebauer]] and [[Robert B. Leighton (physicist)|Robert B. Leighton]] using a 62-inch reflecting dish they had built.<ref>http://www.astro.psu.edu/users/kluhman/a597/Lec3.pdf</ref> The instrument is now in the Smithsonian.<ref>http://pr.caltech.edu/periodicals/caltechnews/articles/v40/infrarednecks.html[http://pr.caltech.edu/periodicals/caltechnews/articles/v40/infrarednecks.html "Infrarednecks: How Three Caltech Alumni Helped Take Infrared Astronomy from the Farm to the Major Leagues"] Michael Rogers, ''Caltech News'' Volume 40, number 2</ref>
== Miscellaneous ==
*Letters to the Mount Wilson Observatory are the subject of a permanent exhibition at the [[Museum of Jurassic Technology]] in [[Los Angeles, California]]. A small room is dedicated to a collection of unusual letters and theories received by the observatory circa 1915–1935. These letters were also collected in the book ''No One May Ever Have the Same Knowledge Again: Letters to Mt. Wilson Observatory 1915–1935'' (ISBN 0-9647215-0-3).
==References==
{{reflist}}
==See also==
*[[Mount Wilson Toll Road]]
==External links==
*[http://www.mtwilson.edu/ Official website]
**[http://www.mtwilson.edu/vir/100/ The 100-inch Hooker Telescope]
**[http://www.astro.ucla.edu/~obs/towercam.htm 150-Foot Solar Tower Webcam Image]
*[http://www.chara.gsu.edu/CHARA/index.html CHARA]
*[http://isi.ssl.berkeley.edu The ISI Array]
*[http://cleardarksky.com/c/MtWilsonOBCAkey.html?1 Mount Wilson Observatory Clear Sky Clock]
*[http://www.mjt.org/exhibits/letters/letters.html Letters to the MWO, 1915-1935]
[[Category:Astronomical observatories in California]]
[[Category:Landmarks in Los Angeles, California]]
[[Category:San Gabriel Mountains|Wilson Observatory]]
[[Category:Telescopes]]
[[Category:Domes]]
[[ca:Observatori de Mount Wilson]]
[[cy:Arsyllfa Mount Wilson]]
[[de:Mount-Wilson-Observatorium]]
[[es:Observatorio Monte Wilson]]
[[fa:رصدخانه کوه ویلسون]]
[[fr:Observatoire du Mont Wilson]]
[[it:Osservatorio di Monte Wilson]]
[[lb:Mount-Wilson-Observatoire]]
[[lt:Maunt Vilsonas]]
[[nl:Mount Wilson Observatory]]
[[ja:ウィルソン山天文台]]
[[pl:Mount Wilson Observatory]]
[[ru:Обсерватория Маунт-Вильсон]]
[[fi:Mount Wilsonin observatorio]]
[[tr:Wilson Dağı Gözlemevi]]
[[zh:威尔逊山天文台]]