Navigation
21854
224787244
2008-07-10T12:23:04Z
Lightbot
7178666
Units/dates/other
{{otheruses4|determination of position and direction on or above the surface of the earth}}
[[Image:Table of Geography and Hydrography, Cyclopaedia, Volume 1.jpg|thumb|right|Table of geography, hydrography, and navigation, from the 1728 ''[[Cyclopaedia]]''.]]
'''Navigation''' is the process of planning, reading, and controlling the movement of a craft or vehicle from one place to another.<ref name="bow799">Bowditch, 2003:799.</ref> The word ''navigate'' is derived from the Latin roots ''navis'' meaning "ship" and ''agere'' meaning "to move" or "to direct."<ref name="bow799"/> All navigational techniques involve locating the navigator's position compared to known locations or patterns.
==Basic concepts==
{{longlat}}
===Latitude===
{{see|Latitude}}
The latitude of a place on the earth's surface is the angular distance north or south of the [equator].<ref name="bow4">Bowditch, 2003:4.</ref> Latitude is usually expressed in [[degree (angle)|degrees]] (marked with °) ranging from 0° at the [[Equator]] to 90° at the North and South poles.<ref name="bow4"/> The latitude of the [[North Pole]] is 90° N, and the latitude of the [[South Pole]] is 90° S.<ref name="bow4" /> Historically, mariners calculated latitude in the Northern Hemisphere by sighting the North Star [[Polaris]] with a [[sextant]] and sight reduction tables to take out error for height of eye and atmospheric refraction. Generally, the height of [[Polaris]] in degrees of arc above the horizon is the latitude of the observer.
===Longitude===
{{see|Longitude}}
Similar to latitude, the longitude of a place on the earth's surface is the angular distance east or west of the [[prime meridian]] or [[Greenwich meridian]].<ref name="bow4"/> Longitude is usually expressed in [[degree (angle)|degrees]] (marked with °) ranging from 0° at the Greenwich meridian to 180° east and west. [[Sydney, Australia]], for example, has a longitude of about 151° east. [[New York City]] has a longitude of about 74° west. For most of history, mariners struggled to determine precise longitude. The problem was solved with the invention of the [[marine chronometer]]. Longitude can be calculated if the precise time of a sextant sighting is known.
==Modern technique==
Most modern navigation relies primarily on positions determined electronically by receivers collecting information from satellites. Most other modern techniques rely on crossing [[line of position|lines of position]] or LOP.<ref name="mal615">Maloney, 2003:615.</ref> A line of position can refer to two different things: a line on a chart and a line between the observer and an object in real life.<ref name="mal614">Maloney, 2003:614</ref> A bearing is a measure of the direction to an object.<ref name="mal614"/> If the navigator measures the direction in real life, the angle can then be drawn on a [[nautical chart]] and the navigator will be on that line on the chart.<ref name="mal614"/>
In addition to bearings, navigators also often measure distances to objects.<ref name="mal615"/> On the chart, a distance produces a circle or arc of position.<ref name="mal615"/> Circles, arcs, and hyperbolae of positions are often referred to as lines of position.
If the navigator draws two lines of position, and they intersect he must be at that position.<ref name="mal615"/> A [[fix]] is the intersection of two or more LOPs.<ref name="mal615"/>
If only one line of position is available, this may be evaluated against the dead reckoning position to establish an estimated position.<ref name="mal618">Maloney, 2003:618.</ref>
Lines (or circles) of position can be derived from a variety of sources:
*celestial observation (a short segment of the circle of equal altitude, but generally represented as a line),
*terrestrial range (natural or man made) when two charted points are observed to be in line with each other,<ref name="mal622">Maloney, 2003:622.</ref>
*compass bearing to a charted object,
*radar range to a charted object,
*on certain coastlines, a depth sounding from [[Fathometer|echo sounder]] or hand [[lead line]].
There are some methods seldom used today such as "dipping a light" to calculate the geographic range from observer to lighthouse
Methods of navigation have changed through history.<ref name="bow1">Bowditch, 2002:1.</ref> Each new method has enhanced the mariner’s ability to complete his voyage.<ref name="bow1"/> One of the most important judgments the navigator must make is the best method to use.<ref name="bow1"/> Some types of navigation are depicted in the table.
{| bgcolor="#f7f8ff" align="center" cellpadding="3" cellspacing="0" border="1" style="font-size: 95%; border: gray solid 1px; border-collapse: collapse;"
|-bgcolor="#CCCCCC" align="center"
| colspan="3" | '''Modern navigation methods'''
|- bgcolor="#CCCCCC" align="center"
! Illustration !! Description !! Application
|- valign="top"
|[[Image:Cruising sailor navigating.jpg|100px]]
|'''[[Dead reckoning]]''' or DR, in which one advances a prior position using the ship's course and speed. The new position is called a DR position. It is generally accepted that only course and speed determine the DR position. Correcting the DR position for [[leeway]], current effects, and steering error result in an estimated position or EP. An [[Inertial guidance system|inertial navigator]] develops an extremely accurate EP.<ref name="bow1"/>
|Used at all times.
|-valign="top"
|[[Image:SplitPointLighthouse.jpg|100px]]
|'''[[Pilotage]]''' involves navigating in [[restricted water]]s with frequent determination of position relative to geographic and hydrographic features.<ref name="bow1"/>
|When within sight of land.
|-valign="top"
|[[Image:Moon-Mdf-2005.jpg|100px]]
|'''[[Celestial navigation]]''' involves reducing celestial measurements to lines of position using tables, [[spherical trigonometry]], and [[Nautical almanac|almanacs]].
|Used primarily as a backup to [[satellite navigation|satellite]] and other [[electronic navigation|electronic systems]] in the open ocean.<ref name="bow1"/>
|-valign="top"
! bgcolor="#CCCCCC" align="center" colspan="3" | '''[[Electronic navigation]]''' covers any method of position fixing using electronic means, including:
|-valign="top"
|[[Image:Decca Navigator Mk 12.jpg|100px]]
|'''[[Radio navigation]]''' uses radio waves to determine position by either [[radio direction finder|radio direction finding systems]] or hyperbolic systems, such as [[Decca Navigator System|Decca]], [[OMEGA Navigation System|Omega]] and [[LORAN-C]].
| Losing ground to GPS.
|-valign="top"
|[[Image:Radar screen.JPG|100px]]
|'''[[Radar navigation]]''' uses radar to determine the distance from or bearing of objects whose position is known. This process is separate from radar’s use as a collision avoidance system.<ref name="bow1"/>
| Primarily when within radar range of land.
|-valign="top"
|[[Image:GPS Satellite NASA art-iif.jpg|100px]]
|'''[[Satellite navigation]]''' uses artificial earth satellite systems, such as GPS, to determine position.<ref name="bow1"/>
|Used in all situations.
|}
The practice of navigation usually involves a combination of these different methods.<ref name="bow1"/>
===Dead reckoning===
{{see|Dead reckoning}}
[[Image:Dead-reckining.svg|right|thumb|The navigator plots his 9am position, indicated by the triangle, and, using his course and speed, estimates his position at 9:30am and 10am.]]
Dead reckoning is the process of estimating present position by projecting course and speed from a known past position.<ref name="bow99">Bowditch, 2002:99.</ref> It is also used to predict a future position by projecting course and speed from a known present position.<ref name="bow99"/> The DR position is only an approximate position because it does not allow for the effect of leeway, current, helmsman error, compass error, or any other external influences.<ref name="bow99"/>
The navigator uses dead reckoning in many ways, such as:<ref name="bow99"/>
* to determine sunrise and sunset,
* to predict landfall, sighting lights and arrival times,
* to evaluate the accuracy of electronic positioning information,
* to predict which celestial bodies will be available for future observation.
The most important use of dead reckoning is to project the position of the ship into the immediate future and avoid hazards to navigation.<ref name="bow99"/>
The navigator carefully tends the DR plot, updating it when required, and uses it to evaluate external forces acting on the ship. The navigator also consults the DR plot to avoid navigation hazards.<ref name="bow99"/> A fix taken at each DR position will reveal the effects of current, wind, and steering error, and allow the navigator to stay on track by correcting for them.<ref name="bow99"/>
The use of DR when an [[ECDIS|Electronic Charts Display and Information System]] (ECDIS) is the primary plotting method will vary with the type of system. An ECDIS allows the display of the ship’s heading projected out to some future position as a function of time, the display of waypoint information, and progress toward each waypoint in turn.<ref name="bow99"/>
Until ECDIS is proven to provide the level of safety and accuracy required, the use of a traditional DR plot on paper charts is a prudent backup, especially in restricted waters.<ref name="bow99"/>
Before the development of the [[lunar distance method]] or the [[marine chronometer]], dead reckoning was the primary method of determining [[longitude]] available to mariners such as [[Christopher Columbus]] and [[John Cabot]] on their trans-Atlantic voyages.
===Piloting===
{{see|Pilotage}}
Piloting (also called pilotage) involves navigating a vessel in restricted waters and fixing its position as precisely as possible at frequent intervals.<ref name="bow105">Bowditch, 2002:105.</ref> More so than in other phases of navigation, proper preparation and attention to detail are important.<ref name="bow105"/> Procedures vary from vessel to vessel, and between military, commercial, and private vessels.<ref name="bow105"/>
A military navigation team will nearly always consist of several people.<ref name="bow105"/> A military navigator might have bearing takers stationed at the gyro repeaters on the bridge wings for taking simultaneous bearings, while the civilian navigator must often take and plot them himself.<ref name="bow105"/> While the military navigator will have a bearing book and someone to record entries for each fix, the civilian navigator will simply plot the bearings on the chart as they are taken and not record them at all.<ref name="bow105"/>
If the ship is equipped with an ECDIS, it is reasonable for the navigator to simply monitor the progress of the ship along the chosen track, visually ensuring that the ship is proceeding as desired, checking the compass, sounder and other indicators only occasionally.<ref name="bow105"/> If a [[harbour pilot|pilot]] is aboard, as is often the case in the most restricted of waters, his judgement can generally be relied upon, further easing the workload.<ref name="bow105"/> But should the ECDIS fail, the navigator will have to rely on his skill in the manual and time-tested procedures.<ref name="bow105"/>
===Celestial navigation===
{{main|Celestial navigation}}
[[Image:Sun-Moon path.PNG|thumb|right|A celestial fix will be at the intersection of two or more circles.]]
Celestial navigation systems are based on observation of the positions of the [[Sun]], [[Moon]], [[Planet]]s and [[navigational stars]]. Such systems are in use as well for terrestrial navigating as for interstellar navigating. By knowing which point on the rotating earth a celestial object is above and measuring its height above the observer's horizon, the navigator can determine his distance from that subpoint. A [[Nautical almanac]] and a [[chronometer]] are used to compute the subpoint on earth a celestial body is over, and a [[sextant]] is used to measure the body's angular height above the horizon. That height can then be used to compute distance from the subpoint to create a circular line of position. A navigator shoots a number of stars in succession to give a series of overlapping lines of position. Where they intersect is the celestial fix. The moon and sun may also be used. The sun can also be used by itself to shoot a succession of lines of position (best done around local noon) to determine a position. <ref name="bow269"/>
====Marine chronometer====
{{see|Marine chronometer}}
[[Image:Chrono marine2.jpg|thumb|right|A traditional [[marine chronometer]].]]
In order to accurately measure longitude, the precise time of a sextant sighting (down to the second, if possible) must be recorded.
The spring-driven marine chronometer is a precision timepiece used aboard ship to provide accurate time for celestial observations.<ref name="bow269">Bowditch, 2002:269.</ref> A chronometer differs from a spring-driven watch principally in that it contains a variable lever device to maintain even pressure on the mainspring, and a special balance designed to compensate for temperature variations.<ref name="bow269"/>
A spring-driven chronometer is set approximately to Greenwich mean time (GMT) and is not reset until the instrument is overhauled and cleaned, usually at three-year intervals.<ref name="bow269"/> The difference between GMT and chronometer time is carefully determined and applied as a correction to all chronometer readings.<ref name="bow269"/> Spring-driven chronometers must be wound at about the same time each day.<ref name="bow269"/>
Quartz crystal marine chronometers have replaced spring-driven chronometers aboard many ships because of their greater accuracy.<ref name="bow269"/> They are maintained on GMT directly from radio time signals.<ref name="bow269"/> This eliminates chronometer error and watch error corrections.<ref name="bow269"/> Should the second hand be in error by a readable amount, it can be reset electrically.<ref name="bow269"/>
The basic element for time generation is a quartz crystal oscillator.<ref name="bow269"/> The quartz crystal is temperature compensated and is hermetically sealed in an evacuated envelope.<ref name="bow269"/> A calibrated adjustment capability is provided to adjust for the aging of the crystal.<ref name="bow269"/>
The chronometer is designed to operate for a minimum of 1 year on a single set of batteries.<ref name="bow269"/> Observations may be timed and ship’s clocks set with a comparing watch, which is set to chronometer time and taken to the bridge wing for recording sight times.<ref name="bow269"/> In practice, a wrist watch coordinated to the nearest second with the chronometer will be adequate.<ref name="bow269"/>
A stop watch, either spring wound or digital, may also be used for celestial observations.<ref name="bow269"/> In this case, the watch is started at a known GMT by chronometer, and the elapsed time of each sight added to this to obtain GMT of the sight.<ref name="bow269"/>
All chronometers and watches should be checked regularly with a radio time signal.<ref name="bow269"/> Times and frequencies of radio time signals are listed in publications such as [[Radio Navigational Aids]].<ref name="bow269"/>
====The marine sextant====
[[Image:Marine sextant.svg|thumb|right|The marine [[sextant]] is used to measure the elevation of celestial bodies above the horizon.]]
{{detail|Sextant}}
The second critical component of celestial navigation is to measure the angle formed at the observer's eye between the celestial body and the sensible horizon. The sextant, an optical instrument, is used to perform this function. The sextant consists of two primary assemblies. The frame is a rigid triangular structure with a pivot at the top and a graduated segment of a circle, referred to as the "arc", at the bottom. The second component is the index arm, which is attached to the pivot at the top of the frame. At the bottom is an endless vernier which clamps into teeth on the bottom of the "arc". The optical system consists of two mirrors and, generally, a low power telescope. One mirror, referred to as the "index mirror" is fixed to the top of the index arm, over the pivot. As the index arm is moved, this mirror rotates, and the graduated scale on the arc indicates the measured angle ("altitude").
The second mirror, referred to as the "horizon glass", is fixed to the front of the frame. One half of the horizon glass is silvered and the other half is clear. Light from the celestial body strikes the index mirror and is reflected to the silvered portion of the horizon glass, then back to the observer's eye through the telescope. The observer manipulates the index arm so the reflected image of the body in the horizon glass is just resting on the visual horizon, seen through the clear side of the horizon glass.
Adjustment of the sextant consists of checking and aligning all the optical elements to eliminate "index correction". Index correction should be checked, using the horizon or more preferably a star, each time the sextant is used. The practice of taking celestial observations from the deck of a rolling ship, often through cloud cover and with a hazy horizon, is by far the most challenging part of celestial navigation.
===Inertial navigation===
{{see|Inertial navigation}}
[[Inertial navigation]] is a [[dead reckoning]] type of navigation system that computes its position based on motion sensors. Once the initial latitude and longitude is established, the system receives impulses from motion detectors that measure the acceleration along three or more axes enabling it continually and accurately to calculate the current latitude and longitude. Its advantages over other navigation systems are that, once the starting position is set, it does not require outside information, it is not affected by adverse weather conditions and it cannot be detected or jammed by the enemy. The US Navy developed a Ships Inertial Navigation System (SINS) during the [[Polaris missile]] program to insure a safe, reliable and accurate navigation system for its missile submarines. Inertial navigation systems were in wide use until [[satellite navigation]] systems (GPS) became available.
===Electronic navigation===
[[Image:Accuracy of Navigation Systems.svg|thumb]]
====Radio navigation====
{{detail|Radio navigation}}
A [[radio direction finder]] or RDF is a device for finding the direction to a [[radio]] source. Due to radio's ability to travel very long distances "over the horizon", it makes a particularly good navigation system for ships and aircraft that might be flying at a distance from land.
RDFs works by rotating a directional [[Antenna (electronics)|antenna]] and listening for the direction in which the signal from a known station comes through most strongly. This sort of system was widely used in the 1930s and 1940s. RDF antennas are easy to spot on [[Germany|German]] [[World War II]] aircraft, as loops under the rear section of the fuselage, whereas most [[United States|US]] aircraft enclosed the antenna in a small teardrop-shaped fairing.
In navigational applications, RDF signals are provided in the form of ''radio beacons'', the radio version of a [[lighthouse]]. The signal is typically a simple [[Amplitude modulation|AM]] broadcast of a [[morse code]] series of letters, which the RDF can tune in to see if the beacon is "on the air". Most modern detectors can also tune in any commercial radio stations, which is particularly useful due to their high power and location near major cities.
[[Decca Navigator System|Decca]], [[OMEGA Navigation System|OMEGA]], and [[LORAN-C]] are three similar hyperbolic navigation systems. Decca was a [[hyperbola|hyperbolic]] [[low frequency]] [[radio navigation]] system (also known as [[multilateration]]) that was first deployed during [[World War II]] when the Allied forces needed a system which could be used to achieve accurate landings. As was the case with [[Loran C]], its primary use was for ship navigation in coastal waters. Fishing vessels were major post-war users, but it was also used on aircraft, including a very early (1949) application of moving-map displays. The system was deployed in the North Sea and was used by helicopters operating to [[oil platform]]s. After being shut down in the spring of 2000, it has been superseded by systems such as the American [[Global Positioning System|GPS]] and the planned European [[Galileo positioning system]].
The OMEGA Navigation System was the first truly global [[radio navigation]] system for aircraft, operated by the [[United States]] in cooperation with six partner nations. OMEGA was developed by the United States Navy for military aviation users. It was approved for development in 1968 and promised a true worldwide oceanic coverage capability with only eight transmitters and the ability to achieve a four mile accuracy when fixing a position. Initially, the system was to be used for navigating nuclear bombers across the North Pole to Russia. Later, it was found useful for submarines.[http://www.jproc.ca/hyperbolic/omega.html] Due to the success of the [[Global Positioning System]] the use of Omega declined during the 1990s, to a point where the cost of operating Omega could no longer be justified. Omega was terminated on [[September 30]], [[1997]] and all stations ceased operation.
LORAN is a terrestrial [[radio-navigation|navigation]] system using [[low frequency]] radio transmitters that use the time interval between radio signals received from three or more stations to determine the position of a ship or aircraft. The current version of LORAN in common use is LORAN-C, which operates in the [[low frequency]] portion of the EM spectrum from 90 to 110 [[Hertz|kHz]]. Many nations are users of the system, including the [[United States]], [[Japan]], and several European countries. Russia uses a nearly exact system in the same frequency range, called [[CHAYKA]]. LORAN use is in steep decline, with [[Global Positioning System|GPS]] being the primary replacement. However, there are attempts to enhance and re-popularize LORAN.
====Radar navigation====
{{see|Radar navigation}}
[[Image:Radar screen.JPG|thumb|right|Radar ranges and bearings can be very useful navigation.]]
When a vessel is within radar range of land or special radar aids to navigation, the navigator can take distances and angular bearings to charted objects and use these to establish arcs of position and lines of position on a chart.<ref name="chap744">Maloney, 2003:744.</ref> A fix consisting of only radar information is called a radar fix.<ref name="bow816">Bowditch, 2002:816.</ref>
Types of radar fixes include "range and bearing to a single object,"<ref name="nima163">National Imagery and Mapping Agency, 2001:163.</ref> "two or more bearings,"<ref name="nima163"/> "tangent bearings,"<ref name="nima163"/> and "two or more ranges."<ref name="nima163"/>
Parallel indexing is a technique defined by William Burger in the 1957 book ''The Radar Observer's Handbook''.<ref name="nima169">National Imagery and Mapping Agency, 2001:169.</ref> This technique involves creating a line on the screen that is parallel to the ship's course, but offset to the left or right by some distance.<ref name="nima169"/> This parallel line allows the navigator to maintain a given distance away from hazards.<ref name="nima169"/>
Some techniques have been developed for special situations. One, known as the "contour method," involves marking a transparent plastic template on the radar screen and moving it to the chart to fix a position.<ref name="nima164">National Imagery and Mapping Agency, 2001:164.</ref>
Another special technique, known as the Franklin Continuous Radar Plot Technique, involves drawing the path a radar object should follow on the radar display if the ship stays on its planned course.<ref name="nima182">National Imagery and Mapping Agency, 2001:182.</ref> During the transit, the navigator can check that the ship is on track by checking that the pip lies on the drawn line.<ref name="nima182"/>
====Satellite navigation====
{{see|Satellite navigation}}
Global Navigation Satellite System or GNSS is the term for satellite navigation systems that provide positioning with global coverage. A GNSS allow small [[electronics|electronic]] receivers to determine their location ([[longitude]], [[latitude]], and [[altitude]]) to within a few [[metre]]s using [[time signal]]s transmitted along a [[line of sight]] by [[radio]] from [[satellite]]s. Receivers on the ground with a fixed position can also be used to calculate the precise time as a reference for scientific experiments.
[[As of 2007]], the [[United States]] NAVSTAR [[Global Positioning System]] (GPS) is the only fully operational GNSS. The [[Russia]]n [[GLONASS]] is a GNSS in the process of being restored to full operation. The [[European Union|European Union's]] [[Galileo positioning system]] is a next generation GNSS in the initial deployment phase, scheduled to be operational in 2010. [[China]] has indicated it may expand its regional [[Beidou navigation system]] into a global system.
More than two dozen GPS satellites are in [[medium Earth orbit]], transmitting signals allowing GPS receivers to determine the receiver's [[geographic location|location]], speed and direction.
Since the first experimental satellite was launched in 1978, GPS has become an indispensable aid to navigation around the world, and an important tool for [[cartography|map-making]] and [[surveying|land surveying]]. GPS also provides a precise [[time transfer|time reference]] used in many applications including scientific study of [[earthquake]]s, and [[synchronization]] of telecommunications networks.
Developed by the [[United States Department of Defense]], GPS is officially named NAVSTAR GPS (NAVigation Satellite Timing And Ranging Global Positioning System). The [[satellite constellation]] is managed by the [[United States Air Force]] [[50th Space Wing]]. The cost of maintaining the system is approximately [[United States dollar|US$]]750 million per year,<ref name="GPS overview from JPO">[http://gps.losangeles.af.mil/jpo/gpsoverview.htm GPS Overview from the NAVSTAR Joint Program Office]. Accessed [[December 15]], [[2006]].</ref> including the replacement of aging satellites, and research and development. Despite this fact, GPS is free for civilian use as a [[public good]].
==Navigation processes==
===Day's work in navigation===
The Day's work in navigation is a minimal set of tasks consistent with prudent navigation. The definition will vary on military and civilian vessels, and from ship to ship, but takes a form resembling<ref name="mmoh6-18">Turpin and McEwen, 1980:6-18.</ref>:
# Maintain continuous dead reckoning plot.
#Take two or more star observations at morning twilight for a celestial fix. (prudent to observe 6 stars)
#Morning sun observation. Can be taken on or near prime vertical for longitude, or at any time for a line of position.
#Determine compass error by azimuth observation of the sun.
#Computation of the interval to noon, watch time of local apparent noon, and constants for meridian or ex-meridian sights.
#Noontime meridian or ex-meridian observation of the sun for noon latitude line. Running fix or cross with Venus line for noon fix.
#Noontime determination the day's run and day's set and drift.
#At least one afternoon sun line, in case the stars are not visible at twilight.
#Determine compass error by azimuth observation of the sun.
#Take two or more star observations at evening twilight for a celestial fix. (prudent to observe 6 stars)
===Passage planning===
{{main|Passage planning}}
[[Image:Exval.jpeg|thumb|right|Poor passage planning and deviation from the plan can lead to groundings and oil spills.]]Passage planning or voyage planning is a procedure to develop a complete description of vessel's voyage from start to finish. The plan includes leaving the dock and harbor area, the enroute portion of a voyage, approaching the destination, and [[Mooring (watercraft)|mooring]]. According to international law, a vessel's [[captain (nautical)|captain]] is legally responsible for passage planning,<ref name="reg34">{{cite web
| title = Regulation 34 - Safe Navigation
| url = https://mcanet.mcga.gov.uk/public/c4/solas/solas_v/Regulations/regulation34.htm
| work = IMO RESOLUTION A.893(21) adopted on 25 November 1999
| accessdate=March 26| accessyear=2007}}</ref> however on larger vessels, the task will be delegated to the ship's [[navigator]].<ref name="annex24">{{cite web
| title = ANNEX 24 – MCA Guidance Notes for Voyage Planning
| url = https://mcanet.mcga.gov.uk/public/c4/solas/solas_v/Annexes/Annex24.htm
| work = IMO RESOLUTION A.893(21) adopted on 25 November 1999
| accessdate=March 26| accessyear=2007}}</ref>
Studies show that human error is a factor in 80 percent of navigational accidents and that in many cases the human making the error had access to information that could have prevented the accident.<ref name="annex24"/> The practice of voyage planning has evolved from penciling lines on [[nautical chart]]s to a process of [[risk management]].<ref name="annex24"/>
Passage planning consists of four stages: appraisal, planning, execution, and monitoring,<ref name="annex24"/> which are specified in ''[[International Maritime Organization]] Resolution A.893(21), Guidelines For Voyage Planning,''<ref name="annex25">{{cite web
| title = Guidelines For Voyage Planning
| url = https://mcanet.mcga.gov.uk/public/c4/solas/solas_v/Annexes/Annex25.htm
| work = IMO RESOLUTION A.893(21) adopted on 25 November 1999
| accessdate=March 26| accessyear=2007}}</ref> and these guidelines are reflected in the local laws of IMO signatory countries (for example, Title 33 of the U.S. [[Code of Federal Regulations]]), and a number of professional books and publications. There are some fifty elements of a comprehensive passage plan depending on the size and type of vessel.
The appraisal stage deals with the collection of information relevant to the proposed voyage as well as ascertaining risks and assessing the key features of the voyage. In the next stage, the written plan is created. The third stage is the execution of the finalised voyage plan, taking into account any special circumstances which may arise such as changes in the weather, which may require the plan to be reviewed or altered. The final stage of passage planning consists of monitoring the vessel's progress in relation to the plan and responding to deviations and unforeseen circumstances.
==Integrated bridge systems==
Electronic integrated bridge concepts are driving future navigation system planning.<ref name="bow1"/> Integrated systems take inputs from various ship sensors, electronically display positioning information, and provide control signals required to maintain a vessel on a preset course.<ref name="bow1"/> The navigator becomes a system manager, choosing system presets, interpreting system output, and monitoring vessel response.<ref name="bow1"/>
== See also ==
{{nautical portal}}
{{multicol}}
*[[Air navigation]]
*[[American Practical Navigator]]
*[[Astrogation]]
*[[Austronesian navigation]]
*[[Automotive navigation system]]
*[[Cammenga]]
*[[Franz Xaver, Baron Von Zach]], a scientific editor and astronomer, who first located many places geographically.
*[[Galileo positioning system]]
{{multicol-break}}
*[[Geodetic system]]
*[[Great-circle distance]] explains how to find that quantity if two latitudes and longitudes are known.
*[[History of navigation]]
*[[Intermodal Journey Planner]]
*[[Karl Ramsayer]], German inventor of auto guided navigation
*[[Ma Jun]] (invention of the South Pointing Chariot)
*[[Map database management]]
*[[Marshall Islands stick chart]]
{{multicol-break}}
*[[Polynesian navigation]]
*[[Port Revel Shiphandling Training Centre]]
*[[Robotic mapping]]
*[[Shen Kuo]]
*[[SIGI]]
*[[South Pointing Chariot]]
*[[Spherical trig]]
*[[Surgical navigation|Surgical navigation in medicine]]
*[[Wind triangle]]
{{multicol-end}}
==Notes==
{{Reflist|2}}
==References==
*{{cite book
| first = Nathaniel
| last = Bowditch
| authorlink = Nathaniel Bowditch
| title = The American Practical Navigator
| publisher = [[National Imagery and Mapping Agency]]
| url = http://www.irbs.com/bowditch/
| location= Bethesda, MD
| year = 2002
| isbn = 0939837544 }}
* {{cite book
| last =Cutler
| first = Thomas J.
| authorlink =
| coauthors =
| editor =
| others =
| title = Dutton's Nautical Navigation
| url =
| format =
| accessdate =
| accessyear =
| accessmonth =
| edition = 15th
| series =
| date =
| year = 2003
| month = December
| publisher = Naval Institute Press
| location = Annapolis, MD
| language =
| isbn =978-1557502483
}}
*{{cite book
| author = Department of the Air Force
| authorlink = United States Air Force
| coauthors =
| editor =
| others =
| title = Air Navigation
| origdate =
| origyear =
| origmonth =
| url = http://www.e-publishing.af.mil/pubfiles/af/11/afpam11-216/afpam11-216.pdf
| format = PDF
| accessdate=2007-04-17
| edition =
| series =
| year = 2001
| month = March
| publisher = Department of the Air Force
| location =
| language =
| isbn =
| oclc =
| doi =
| id =
| pages =
| chapter =
| chapterurl =
| quote =
}}
*{{cite book
| last = Great Britain Ministry of Defence (Navy)
| authorlink =
| title = Admiralty Manual of Seamanship
| publisher = [[The Stationery Office]]
| year = 1995
| isbn = 0117726966 }}
* {{cite book
| last =Maloney
| first = Elbert S.
| authorlink =
| coauthors =
| editor =
| others =
| title = Chapman Piloting and Seamanship
| url =
| format =
| accessdate =
| accessyear =
| accessmonth =
| edition = 64th
| series =
| date =
| year = 2003
| month = December
| publisher = Hearst Communications Inc.
| location = New York, NY
| language =
| isbn =1-58816-098-0
}}
*{{cite book
| author = National Imagery and Mapping Agency
| authorlink = National Imagery and Mapping Agency
| coauthors =
| editor =
| others =
| title = Publication 1310: Radar Navigation and Maneuvering Board Manual
| origdate =
| origyear =
| origmonth =
| url = http://www.nga.mil/portal/site/maritime/
| format = PDF
| accessdate =
| accessyear =
| accessmonth =
| edition = 7th edition
| series =
| date =
| year = 2001
| month =
| publisher = U.S. Government Printing Office
| location = Bethesda, MD
| language =
| isbn =
| oclc =
| doi =
| id =
| pages =
| chapter =
| chapterurl =
| quote =
}}
* {{cite book
| last = Turpin
| first = Edward A.
| authorlink =
| coauthors = McEwen, William A.
| editor =
| others =
| title = Merchant Marine Officers' Handbook
| origdate =
| origyear =
| origmonth =
| url =
| format =
| accessdate =
| accessyear =
| accessmonth =
| edition = 4th
| series =
| date =
| year = 1980
| month =
| publisher =Cornell Maritime Press
| location = Centreville, MD
| language =
| isbn = 0-87038-056-X
| oclc =
| doi =
| id =
| pages =
| chapter =
| chapterurl =
| quote =
}}
*{{cite encyclopedia
| last =
| first =
| author = Encyclopædia Britannica
| authorlink = Encyclopædia Britannica
| coauthors =
| editor = Chisholm, Hugh
| encyclopedia = Encyclopædia Britannica
| title = Navigation
| url = http://en.wikisource.org/wiki/User:Tim_Starling/ScanSet_TIFF_demo
| accessdate = 2007-04-17
| accessyear =
| accessmonth =
| edition = 11th edition
| date =
| year = 1911
| month =
| publisher =
| volume =19
| location =
| id =
| doi =
| pages =
| quote =
}}
*{{cite encyclopedia
| last =
| first =
| author = Encyclopædia Britannica
| authorlink = Encyclopædia Britannica
| coauthors =
| editor = Chisholm, Hugh
| encyclopedia = Encyclopædia Britannica
| title = Pytheas
| url = http://en.wikisource.org/wiki/User:Tim_Starling/ScanSet_TIFF_demo
| accessdate = 2007-04-17
| accessyear =
| accessmonth =
| edition = 11th edition
| date =
| year = 1911
| month =
| publisher =
| volume =22
| location =
| id =
| doi =
| pages =
| quote =
}}
==External links==
{{commons}}
* [http://www.wildernessmanuals.com/manual_6/chpt_2/index.html Navigation] - U.S. Army Manual
* [http://www.celestialnavigation.net Celestial navigation]
* [http://www.irbs.com/bowditch Bowditch Online] - complete online edition of [[Nathaniel Bowditch]]'s ''American Practical Navigator''
* [http://www.geocities.com/andresruizgonzalez Navigational algorithms]
* [http://gge.unb.ca/Research/GRL/GeodesyGroup/tutorial/precision_navigation.htm Precision navigation tutorial] at University of New Brunswick
*{{Dk icon}} [http://www.fiduusen.dk/navigation traditional compass navigation]
* [http://alsworld.topcities.com/bwgg/index.html How to navigate with less than a compass or GPS]
* [http://www.locus.org.uk/ LOCUS] research project about mobile navigation using a digital compass and a GPS.
*[http://www.iacs.org.uk/document/public/Publications/Unified_requirements/PDF/UR_N_pdf156.PDF IACS Unified Requirement N: Navigation]
{{Satellite navigation systems}}
[[Category:Navigation]]
[[Category:Geodesy]]
[[Category:GPS]]
<!-- interwiki -->
[[af:Navigasie]]
[[ar:ملاحة]]
[[zh-min-nan:Tō-hâng]]
[[be-x-old:Навігацыя]]
[[bg:Навигация]]
[[ca:Navegació marítima]]
[[cs:Navigace]]
[[da:Navigation]]
[[de:Navigation]]
[[el:Ναυσιπλοΐα]]
[[es:Navegación marítima]]
[[fa:ناوبری]]
[[fr:Navigation]]
[[gl:Navegación marítima]]
[[hi:दिक्चालन]]
[[id:Navigasi]]
[[it:Navigazione]]
[[he:ניווט]]
[[lt:Navigacija]]
[[nl:Navigatie]]
[[ja:航海]]
[[no:Navigasjon]]
[[nn:Navigasjon]]
[[nds:Navigatschoon]]
[[pl:Nawigacja]]
[[pt:Navegação]]
[[ru:Навигация]]
[[simple:Navigation]]
[[sl:Navigacija]]
[[fi:Navigointi]]
[[sv:Navigation]]
[[tr:Seyir]]
[[uk:Навігація]]
[[zh:导航]]