Neuroscience 21245 226066926 2008-07-16T18:01:42Z Dwayne Reed 7262504 /* Overview */ {{portalpar|Neuroscience|Neuro logo.png}} '''Neuroscience''' is a field devoted to the scientific study of the nervous system. Such studies span the [[neuroanatomy|structure]], [[Behavioral neuroscience|function]], [[evolutionary neuroscience|evolutionary history]], [[neural development|development]], [[genetics]], [[biochemistry]], [[physiology]], [[pharmacology]], [[Neuroinformatics|informatics]], [[computational neuroscience]] and [[pathology]] of the [[nervous system]]. Traditionally it is seen as a branch of [[biological sciences]]. However, recently there has been a surge in the convergence of interest from many allied disciplines, including [[cognitive psychology|cognitive]] and [[neuropsychology|neuro-psychology]], [[computer science]], [[statistics]], [[physics]], and [[medicine]]. The scope of neuroscience has now broadened to include any systematic scientific experimental and theoretical investigation of the central and peripheral nervous system of biological organisms. The empirical methodologies employed by [[neuroscientist]]s have been enormously expanded, from biochemical and genetic analysis of dynamics of individual [[nerve cells]] and their molecular constituents to [[brain mapping|imaging]] representations of perceptual and motor tasks in the brain. Many recent theoretical advances in neuroscience have been aided by the use of computational modeling. [[Image:CajalCerebellum.jpg|right|thumb|200px|Drawing of the cells in the [[chicken]] cerebellum by [[Santiago Ramón y Cajal|S. Ramón y Cajal]]]] == Overview == The [[scientific study]] of the [[nervous system]]s underwent a significant increase in the second half of the twentieth century, principally due to revolutions in [[molecular biology]], [[electrophysiology]] and [[computational neuroscience]]. It has become possible to understand, in much detail, the complex processes occurring within a single [[neuron]]. However, understanding of how networks of neurons produce intellectual behavior, cognition, emotion and physiological responses is still poorly understood. [[Image:neuron colored.jpg|right|thumb|200px|stained neuron]] {{cquote|The task of neural science is to explain behavior in terms of the activities of the brain. How does the brain marshal its millions of individual nerve cells to produce behavior, and how are these cells influenced by the environment...? The last frontier of the biological sciences--their ultimate challenge--is to understand the biological basis of consciousness and the mental processes by which we perceive, act, learn, and remember. — [[Eric Kandel]], ''Principles of Neural science'', fourth edition}} The nervous system is composed of a network of [[neuron]]s and other supportive cells (such as [[glial cell]]s). Neurons form functional circuits, each responsible for specific tasks to the behaviors at the organism level. Thus, neuroscience can be studied at many different levels, ranging from molecular level to cellular level to systems level to cognitive level. At the molecular level, the basic questions addressed in [[molecular neuroscience]] include the mechanisms by which neurons express and respond to molecular signals and how [[axons]] form complex connectivity patterns. At this level, tools from [[molecular biology]] and [[genetics]] are used to understand how neurons develop and die, and how genetic changes affect biological functions. The [[morphology (biology)|morphology]], molecular identity and physiological characteristics of neurons and how they relate to different types of behavior are also of considerable interest. (The ways in which neurons and their connections are modified by experience are addressed at the physiological and cognitive levels.) At the cellular level, the fundamental questions addressed in [[Neurobiology|cellular neuroscience]] are the mechanisms of how neurons process signals physiologically and electrochemically. They address how signals are processed by the [[dendrite]]s, [[soma (biology)|soma]]s and [[axon]]s, and how [[neurotransmitter]]s and electrical signals are used to process signals in a neuron. At the systems level, the questions addressed in [[systems neuroscience]] include how the circuits are formed and used anatomically and physiologically to produce the physiological functions, such as [[reflex]]es, [[sensory integration]], [[motor coordination]], [[circadian rhythm]]s, [[emotional response]]s, [[learning]] and [[memory]], et cetera. In other words, they address how these neural circuits function and the mechanisms through which behaviors are generated. For example, systems level analysis addresses questions concerning specific sensory and motor modalities: how does [[Visual perception|vision]] work? How do [[songbirds]] learn new songs and [[bats]] localize with [[ultrasound]]? The related field of [[neuroethology]], in particular, addresses the complex question of how neural substrates underlies specific animal behavior. [[Image:Structural.gif|thumb|left|Para-sagittal MRI of the head in a patient with benign familial macrocephaly.]] At the cognitive level, [[cognitive neuroscience]] addresses the questions of how psychological/cognitive functions are produced by the neural circuitry. The emergence of powerful new measurement techniques such as [[neuroimaging]] (e.g.,[[fMRI]], [[Positron emission tomography|PET]], [[SPECT]]), [[electrophysiology]] and [[Human genome|human genetic analysis]] combined with sophisticated experimental techniques from cognitive psychology allows neuroscientists and psychologists to address abstract questions such as how human cognition and emotion are mapped to specific neural circuitries. <!--Many mental processes previously thought to be beyond scientific understanding have been shown to have robust neural correlates. DISPUTED: 'previously thought to be beyond scientific understanding' suggests that there was general consensus on this, but in fact a whole disciplines have been thinking throughout that mental processes were accessible to scientific understanding, namely cognitive psychology/cognitive science and artificial intelligence--> Neuroscience is also beginning to become allied with [[social science]]s, and burgeoning interdisciplinary fields of [[neuroeconomics]], [[decision theory]], [[social neuroscience]] are starting to address some of the most complex questions involving interactions of brain with environment. '''Neuroscience''' generally includes all scientific studies involving the nervous system. '''Psychology''', as the scientific study of mental processes, may be considered a sub-field of neuroscience, although some mind/body theorists argue that the definition goes the other way — that psychology is a study of mental processes that can be modeled by many other abstract principles and theories, such as behaviorism and traditional cognitive psychology, that are independent of the underlying neural processes. The term '''[[neurobiology]]''' is sometimes used interchangeably with '''neuroscience''', though the former refers to the [[biology]] of [[nervous system]], whereas the latter refers to [[science]] of mental functions that form the foundation of the constituent neural circuitries. In ''Principles of Neural Science'', nobel laureate Eric Kandel contends that cognitive psychology is one of the pillar disciplines for understanding the brain in neuroscience. '''[[Neurology]]''' and '''[[Psychiatry]]''' are medical specialties and are generally considered, in academic research, subfields of neuroscience that specifically address the diseases of the nervous system. These terms also refer to clinical disciplines involving diagnosis and treatment of these diseases. Neurology deals with diseases of the central and peripheral nervous systems such as [[amyotrophic lateral sclerosis]] (ALS) and [[stroke]], while psychiatry focuses on [[mental illnesses]]. The boundaries between the two have been blurring recently and physicians who specialize in either generally receive training in both. Both neurology and psychiatry are heavily involved in and influenced by basic research in neuroscience. ==History of Neuroscience== {{see also|History of the brain}} Evidence of [[trepanation]], the surgical practice of either drilling or scraping a hole into the skull with the aim of curing headaches or mental disorders or relieving cranial pressure, being performed on patients dates back to [[Neolithic]] times and has been found in various cultures throughout the world. Manuscripts dating back to 5000BC{{Fact|date=March 2008}} indicated that the [[Egyptians]] had some knowledge about symptoms of brain damage. Early views on the function of the brain regarded it to be a "cranial stuffing" of sorts. In Egypt, from the late [[Middle Kingdom]] onwards, the brain was regularly removed in preparation for [[Mummy|mummification]]. It was believed at the time that the [[heart]] was the seat of intelligence. According to [[Herodotus]], during the first step of mummification: 'The most perfect practice is to extract as much of the brain as possible with an iron hook, and what the hook cannot reach is mixed with drugs.'{{Fact|date=February 2007}} The view that the heart was the source of consciousness was not challenged until the time of [[Hippocrates]]. He believed that the brain was not only involved with sensation, since most specialized organs (e.g., eyes, ears, tongue) are located in the head near the brain, but was also the seat of intelligence. [[Aristotle]], however, believed that the heart was the center of intelligence and that the brain served to cool the blood. This view was generally accepted until the Roman physician [[Galen]], a follower of Hippocrates and physician to Roman gladiators, observed that his patients lost their mental faculties when they had sustained damage to their brains. In [[al-Andalus]], [[Abu al-Qasim|Abulcasis]], the father of modern [[surgery]], developed material and technical designs which are still used in [[neurosurgery]]. [[Averroes]] suggested the existence of [[Parkinson's disease]] and attributed [[photoreceptor]] properties to the [[retina]]. [[Ibn Zuhr|Avenzoar]] described [[meningitis]], intracranial [[thrombophlebitis]], [[Mediastinal germ cell tumor|mediastinal tumours]] and made contributions to modern [[neuropharmacology]]. [[Maimonides]] wrote about [[Neuropsychiatry|neuropsychiatric]] disorders and described [[rabies]] and [[Deadly nightshade|belladonna]] intoxication.<ref>Martin-Araguz, A.; Bustamante-Martinez, C.; Fernandez-Armayor, Ajo V.; Moreno-Martinez, J. M. (2002). "Neuroscience in al-Andalus and its influence on medieval scholastic medicine", ''Revista de neurología'' '''34''' (9), p. 877-892.</ref> Elsewhere in [[Middle Ages|medieval Europe]], [[Vesalius]] (1514-1564) and [[René Descartes]] (1596-1650) also made several contributions to neuroscience. Studies of the brain became more sophisticated after the invention of the [[microscope]] and the development of a staining procedure by [[Camillo Golgi]] during the late 1890s that used a silver chromate salt to reveal the intricate structures of single neurons. His technique was used by [[Santiago Ramón y Cajal]] and led to the formation of the [[neuron doctrine]], the hypothesis that the functional unit of the brain is the neuron. Golgi and Ramón y Cajal shared the [[Nobel Prize in Physiology or Medicine]] in 1906 for their extensive observations, descriptions and categorizations of neurons throughout the brain. The hypotheses of the neuron doctrine were supported by experiments following [[Galvani]]'s pioneering work in the electrical excitability of muscles and neurons. In the late 19th century, [[DuBois-Reymond]], [[Johannes Peter Müller|Müller]], and [[von Helmholtz]] showed neurons were electrically excitable and that their activity predictably affected the electrical state of adjacent neurons. In parallel with this research, work with brain-damaged patients by [[Paul Broca]] suggested that certain regions of the brain were responsible for certain functions. This hypothesis was supported by observations of [[epilepsy|epileptic]] patients conducted by [[John Hughlings Jackson]], who correctly deduced the organization of [[motor cortex]] by watching the progression of seizures through the body. [[Wernicke]] further developed the theory of the specialization of specific brain structures in language comprehension and production. Modern research still uses the [[Brodmann]] cytoarchitectonic (referring to study of cell structure) anatomical definitions from this era in continuing to show that distinct areas of the cortex are activated in the execution of specific tasks.<ref>Principles of Neural Science, 4th ed. Eric R. Kandel, James H. Schwartz, Thomas M. Jessel, eds. McGraw-Hill:New York, NY. 2000.</ref> ==Major branches == Current neuroscience education and research activities can be very roughly categorized into the following major branches, based on the subject and scale of the system in examination as well as distinct experimental or curricular approaches. Individual neuroscientists, however, often work on questions that span several distinct subfields. {| class="wikitable" !Branch|| Major topics || Experimental and theoretical methods |- | [[Molecular neuroscience|Molecular]] and [[Cell (biology)|Cellular]] neuroscience | [[behavioral genetics]], [[neurocytology]], [[glial cells|glia]], [[protein trafficking]], [[ion channel]], [[synapse]], [[action potential]], [[neurotransmitters]], [[neuroimmunology]] | [[PCR]], [[immunohistochemistry]], [[patch clamp]], [[voltage clamp]], [[clone (genetics)|molecular cloning]], [[gene knockout]], [[biochemical assays]], [[linkage analysis]], [[fluorescent in situ hybridization]], [[Southern blot]]s, [[DNA microarray]], [[green fluorescent protein]], [[calcium imaging]], [[two-photon microscopy]], [[HPLC]], [[microdialysis]] |- | [[Behavioral neuroscience]] | [[biological psychology]], [[circadian rhythms]], [[neuroendocrinology]], [[hypothalamic-pituitary-gonadal axis]], [[hypothalamic-pituitary-adrenal axis]], [[neurotransmitters]], [[homeostasis]], [[dimorphic sexual-behavior]], [[motor control]], [[sensory processing]], [[photo reception]], [[organizational/activational effects of hormones]], [[drug/alcohol effects]] | [[animal models]] ([[gene knockout]]), [[in situ hybridization]], [[golgi stain]], [[fMRI]], [[immunohistochemistry]], [[functional genomics]], [[Positron emission tomography|PET]], [[pattern recognition]], [[EEG]], [[MEG]] |- | [[Systems neuroscience]] | [[primary visual cortex]], [[perception]], [[hearing (sense)|audition]], [[sensory integration]], [[population coding]], [[Pain]] and [[nociception]], [[Spontaneous activity|spontaneous and evoked activity]], [[color vision]], [[olfaction]], [[taste]], [[motor system]], [[spinal cord]], [[sleep]], [[homeostasis]], [[arousal]], [[attention]] | [[single-unit recording]], [[intrinsic signal imaging]], [[microstimulation]], [[voltage sensitive dyes]], [[fMRI]], [[patch clamp]], [[genomics]], [[behavior|training awake behaving animals]], [[local field potential]], [[ROC]], [[cortical cooling]], [[calcium imaging]], [[two-photon microscopy]] |- | [[Developmental neuroscience]] | [[axon guidance]], [[neural crest]], [[growth factors]], [[growth cone]], [[neuromuscular junction]], [[cell proliferation]], neuronal [[differentiation]], cell survival and [[apoptosis]], synaptic formation, motor differentiation, injury and regeneration | ''[[Xenopus]]'' [[oocyte]], [[biochemistry|protein chemistry]], [[genomics]], ''[[Drosophila]]'', [[Hox gene]] |- | [[Cognitive neuroscience]] | [[attention]], [[cognitive control]], [[behavioral genetics]], [[decision making]], [[emotion]], [[language]], [[memory]], [[motivation]], [[motor learning]], [[perception]], [[sexual behavior]], [[social neuroscience]] | experimental designs from [[cognitive psychology]], [[psychometrics]], [[EEG]], [[MEG]], [[fMRI]], [[Positron emission tomography|PET]], [[SPECT]], [[single-unit recording]], [[human genetics]] |- | Theoretical and [[computational neuroscience]] | [[cable theory]], [[Hodgkin–Huxley model]], [[neural network]]s, [[voltage-gated currents]], [[Hebbian learning]] | [[Markov chain Monte Carlo]], [[simulated annealing]], [[high performance computing]], [[partial differential equations]], [[self-organizing nets]], [[pattern recognition]], [[swarm intelligence]] |- | Diseases and aging | [[dementia]], [[peripheral neuropathy]], [[spinal cord injury]], [[autonomic nervous system]], [[clinical depression|depression]], [[anxiety]], [[Parkinson's disease]], [[addiction]], [[memory loss]] | [[clinical trials]], [[neuropharmacology]], [[deep brain stimulation]], [[neurosurgery]] |- | [[Neural engineering]] | [[Neuroprosthetic]], [[brain-computer interface]] |- | [[Neurolinguistics]] | [[language]], [[Broca's area]], [[generative grammar]], [[language acquisition]], [[syntax]] |- | [[Neuroscience Studies]] | [[Neuroscience education: undergraduate models, best practices]], [[interface of neuroscience with all liberal arts disciplines]], [[neuroscience and society]], [[philosophy of neuroscience]], [[interdisciplinary research]], [[neuroscience and popular culture]], [[neuroscience and the media]] |} Note: In 1990s, neuroscientist Jaak Panksepp coined the term "affective neuroscience"<ref>Panksepp, J., 1990 - A role for “affective neuroscience” in understanding stress: The case of separation distress circuitry. In: Puglisi-Allegra, S. and Oliverio, A., Editors, 1990, ''Psychobiology of stress'', Kluwer, Dordrecht, pp. 41–58.</ref> to emphasize that emotion research should be a branch of neurosciences, distinguishable from the nearby fields like cognitive neuroscience or behavioral neuroscience. More recently, the social aspect of the emotional brain has been integrated in what is called "social-affective neuroscience" or simply social neuroscience. There has also been some research published arguing that some of fair play and the Golden Rule may be stated and rooted in terms of neuroscientific and [[Neuroethics|neuroethical]] principles.<ref>Pfaff, Donald W., "The Neuroscience of Fair Play: Why We (Usually) Follow the Golden Rule", Dana Press, The Dana Foundation, New York, 2007. ISBN 9781932594270</ref> ==Major Themes of Research== Neuroscience research from different areas can also be seen as focusing on a set of specific themes and questions. (Some of these are taken from http://www.northwestern.edu/nuin/fac/index.htm) {{col-begin}} {{col-2}} * Behavior/Cognition/Language * [[Biological Rhythms]] * Brain Imaging or [[neuroimaging]] * [[Cell Biology]] * Cell Imaging & [[Electrophysiology]] * [[Computational neuroscience]] * Development * Hearing Sciences * [[Language]] * [[Learning]]/[[Memory]] * Mechanisms of Drug Action * [[Molecular Neuroscience]] * [[Motor Control]] {{col-2}} * [[Neurobiology]] of Disease * [[Neuroethology]] * [[Neuroendocrinology]] * [[Neuroimmunology]] * [[Signal transduction]] * [[Systems Neuroscience]] * [[Universal Grammar]] * [[Vision Sciences]] * Neurobiology of the neuron * [[Sensation]] and [[perception]] * [[Sleep]] * Autonomic systems and homeostasis * Arousal, attention and emotion * Genetics of the nervous system * Injury of the nervous systems {{col-end}} ==Allied and Overlapping Fields== Neuroscience, by its very interdiciplinary nature, overlaps with and encompasses many different subjects. Below is a list of related subjects and fields. {{col-begin}} {{col-4}} * [[Aphasiology]] * [[Biological psychology]] * [[Cognitive Science]] * [[Evolutionary neuroscience]] * [[Generative grammar]] * [[Machine Learning]] * [[Metaplasticity]] * [[Neural Networks]] * [[Neural engineering]] * [[Neuroanatomy]] * [[Neurobiology]] {{col-4}} * [[Neurochemistry]] * [[Neuroeconomics]] * [[Neuroergonomics]] * [[Neuroendocrinology]] * [[Neuroesthetics]] * [[Neuroethics]] * [[Neuroethology]] * [[Neurogenetics]] * [[Neurogenomics]] * [[Neuroheuristic]] {{col-4}} * [[Neuroimaging]] * [[Neurolinguistics]] * [[Neuromarketing]] * [[Neuropharmacology]] * [[Neurophenomenology]] * [[Neurophilosophy]] * [[Neurophysics]] * [[Neurophysiology]] * [[Neuroproteomics]] * [[Neuroprosthetics]] {{col-4}} * [[Neuropsychiatry]] * [[Neuropsychology]] * [[Neuropsychopharmacology]] * [[Neurotheology]] (also Biotheology) * [[Psychiatry]] * [[Psychoneuroimmunology]] * [[Psychopharmacology]] * [[Psychobiology]] * [[Visual perception|Vision]] {{col-end}} ==Future directions== {{main|Unsolved problems in neuroscience}} ==See also== {{Wiktionarypar|neuroscience}} {{Wikibooks|Consciousness studies}} {{Wikibooks|Neuroscience}} * [[Brain types]] * [[List of neuroscience topics]] * [[List of neuroscientists]] * [[List of publications in biology#Neurobiology|Important publications in neuroscience]] * [[:Category:Neuroscience journals|Neuroscience journals]] * Neuroscience [[research institutes]], such as [[Monell Chemical Senses Center]] ==References== ===Citations=== {{reflist}} ===Textbooks=== *{{cite book |last = Bear | first = M.F. |coauthors = B.W. Connors, and M.A. Paradiso |title = Neuroscience: Exploring the Brain |location = Baltimore | publisher = Lippincott |year = 2001 |id = ISBN 0-7817-3944-6 }} *{{cite book |authorlink = Eric R. Kandel | last = Kandel | first = ER |coauthors = Schwartz JH, Jessell TM |title = [[Principles of Neural Science]] |edition = 4th ed. |publisher = McGraw-Hill | location = New York |year = 2000 |id = ISBN 0-8385-7701-6 }} *Squire, L. ''et al.'' (2003). ''Fundamental Neuroscience, 2nd edition''. Academic Press; ISBN 0-12-660303-0 *Byrne and Roberts (2004). ''From Molecules to Networks''. Academic Press; ISBN 0-12-148660-5 *Sanes, Reh, Harris (2005). ''Development of the Nervous System, 2nd edition''. Academic Press; ISBN 0-12-618621-9 *Siegel ''et al.'' (2005). ''Basic Neurochemistry, 7th edition''. Academic Press; ISBN 0-12-088397-X *Rieke, F. ''et al.'' (1999). ''Spikes: Exploring the Neural Code''. [[The MIT Press]]; Reprint edition ISBN 0-262-68108-0 ====Online textbooks==== *[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=books&doptcmdl=GenBookHL&term=The+Cellular+Components+of+the+Nervous+System+AND+neurosci%5Bbook%5D+AND+231002%5Buid%5D&rid=neurosci.section.47 Neuroscience] 2nd ed. Dale Purves, George J. Augustine, David Fitzpatrick, Lawrence C. Katz, Anthony-Samuel LaMantia, James O. McNamara, S. Mark Williams. Published by Sinauer Associates, Inc., 2001. *[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=books&doptcmdl=GenBookHL&term=Characteristics+of+the+Neuron+AND+bnchm%5Bbook%5D+AND+160014%5Buid%5D&rid=bnchm.section.18 Basic Neurochemistry: Molecular, Cellular, and Medical Aspects] 6th ed. by George J. Siegel, Bernard W. Agranoff, R. Wayne Albers, Stephen K. Fisher, Michael D. Uhler, editors. Published by Lippincott, Williams & Wilkins, 1999. ===Popular works=== * {{cite book |last =Andreasen |first =Nancy C. |authorlink =Nancy_C._Andreasen |title =Brave New Brain: Conquering Mental Illness in the Era of the Genome |publisher =Oxford University Press |year =2004 |month =March 4 |location = |url =http://www.oup.com/uk/catalogue/?ci=9780195145090 |id =ISBN 9780195145090 }} * Damasio, A. R. (1994). ''Descartes' Error: Emotion, Reason, and the Human Brain.'' New York, Avon Books. ISBN 0-399-13894-3 (Hardcover) ISBN 0-380-72647-5 (Paperback) * Gardner, H. (1976). ''The Shattered Mind: The Person After Brain Damage.'' New York, Vintage Books, 1976 ISBN 0-394-71946-8 * Goldstein, K. (2000). ''The Organism.'' New York, Zone Books. ISBN 0-942299-96-5 (Hardcover) ISBN 0-942299-97-3 (Paperback) * Llinas R. (2001). ''I of the Vortex: From Neurons to Self'' MIT Press. ISBN 0-262-12233-2 (Hardcover) ISBN 0-262-62163-0 (Paperback) * Luria, A. R. (1997). ''The Man with a Shattered World: The History of a Brain Wound.'' Cambridge, Massachusetts, Harvard University Press. ISBN 0-224-00792-0 (Hardcover) ISBN 0-674-54625-3 (Paperback) * Luria, A. R. (1998). ''The Mind of a Mnemonist: A Little Book About A Vast Memory.'' New York, Basic Books, Inc. ISBN 0-674-57622-5 * Medina, J. (2008). ''Brain Rules: 12 Principles for Surviving and Thriving at Work, Home, and School.''Seattle, Pear Press. ISBN 0-979-777704 (Hardcover with DVD) * Pinker, S. (1999). ''How the Mind Works.'' W. W. Norton & Company. ISBN 0-393-31848-6 * Pinker, S. (2002). ''The Blank Slate: The Modern Denial of Human Nature.'' Viking Adult. ISBN 0-670-03151-8 * Ramachandran, V.S. (1998). ''Phantoms in the Brain.'' New York, New York Harper Collins. ISBN 0-688-15247-3 (Paperback) * Rose, S. (2006). ''21st Century Brain: Explaining, Mending & Manipulating the Mind'' ISBN 0099429772 (Paperback) * Sacks, O. ''[[The Man Who Mistook His Wife for a Hat]]''. Summit Books ISBN 0-671-55471-9 (Hardcover) ISBN 0-06-097079-0 (Paperback) * Sacks, O. (1990). ''Awakenings.'' New York, Vintage Books. (See also [[Oliver Sacks]]) ISBN 0-671-64834-9 (Hardcover) ISBN 0-06-097368-4 (Paperback) * Sternberg, E. (2007) ''Are You a Machine? The Brain, the Mind and What it Means to be Human.'' Amherst, NY: Prometheus Books. == Notes From Online Courses == * [http://azintaria.freespaces.com/index.htm Intro to Neuroscience]{{ndash}} [[Smith College]] Spring 2005 == External links == {{commonscat|neuroscience}} * [http://www.thehumanbrainproject.org The Human Brain Project Homepage] * [http://brainmaps.org High-Resolution Cytoarchitectural Primate Brain Atlases] * [http://www.sfn.org Society for Neuroscience] * [http://www.neuroscientists.org Neuroscientists] * [http://www.hindawi.com/journals/np/ Neural Plasticity-Open Access Journal] (Hindawi Publishing) * [http://www.ncbi.nlm.nih.gov:80/books/bv.fcgi?call=bv.View..ShowTOC&rid=neurosci.TOC&depth=2 Neuroscience. 2nd ed.] by Purves et al (online textbook) * [http://www.neurosciencenews.com Neuroscience News, Books, Links, Forum and Gifts] * [http://faculty.washington.edu/chudler/neurok.html Neuroscience for Kids] * [http://cerebralhealth.com/neuroscienceresearch.php Brain Research and Information Network B.R.A.I.N.] * [http://neuroscience-forum.net Neuroscience Forum] * [http://www.ucl.ac.uk/neuroscience UCL Neuroscience] * [http://www.bna.org.uk/ British Neuroscience Association] {{Neuroscience}} [[Category:Neuroscience| ]] [[Category:Interdisciplinary fields]] [[Category:Biology]] [[Category:Amherst College]] [[ar:علوم عصبية]] [[bn:স্নায়ুবিজ্ঞান]] [[de:Neurowissenschaften]] [[es:Neurociencia]] [[eo:Neŭrologio]] [[fa:عصب‌شناسی]] [[fr:Neurosciences]] [[is:Taugavísindi]] [[it:Neuroscienze]] [[he:מדעי המוח]] [[lt:Neuromokslai]] [[hu:Idegtudomány]] [[nl:Neurowetenschap]] [[ja:神経科学]] [[oc:Neurosciéncia]] [[pl:Neurobiologia]] [[pt:Neurociência]] [[ru:Нейробиология]] [[fi:Neurotiede]] [[sv:Neurovetenskap]] [[ta:நரம்பணுவியல்]] [[th:ประสาทวิทยาศาสตร์]] [[ur:علم الاعصاب]] [[zh:神经科学]]