Radioactive waste 37257 225479436 2008-07-13T22:24:49Z 71.202.174.12 /* Radioactive waste in fiction and popular culture */ {{uspov}} '''Radioactive wastes''' are [[waste types]] containing [[radioactive decay|radioactive]] [[chemical element]]s that do not have a practical purpose. They are sometimes the products of nuclear processes, such as [[nuclear fission]]. However, industries not directly connected to the nuclear industry can produce large quantities of radioactive waste. It has been estimated, for instance, that the past 20 years the oil-producing endeavors of the [[United States]] have accumulated eight million tons of radioactive wastes.<ref>Krivtsov, A.I., 2006, Geoenvironmental Problems of Mineral Resources Development, in ''Geology and Ecosystems'', Zekster (Ru), Marker (UK), Ridgeway (UK), Rogachevskayarochmaninoff (Ru), & Vartanyan (Ru), 2006 Springer Inc.,</ref> The majority of radioactive waste is "[[low-level waste]]", meaning it contains low levels of radioactivity per [[mass]] or [[volume]]. This type of waste often consists of used protective clothing, which is only slightly contaminated but still dangerous in case of [[radioactive contamination]] of a human body through [[ingestion]], [[inhalation]], [[absorption (skin)|absorption]], or [[injection (medicine)|injection]]. In the United States alone, the [[United States Department of Energy|Department of Energy]] states that there are "millions of gallons of radioactive waste" as well as "thousands of tons of [[spent nuclear fuel]] and material" and also "huge quantities of contaminated soil and water".<ref name="usemdoefyp">[http://www.em.doe.gov U.S. Department of Energy Environmental Management] - "[http://www.em.doe.gov/PDFs/170016EM_FYP_Final_3-6-06.pdf Department of Energy Five Year Plan FY 2007-FY 2011 Volume II]." Retrieved on [[8 April]] [[2007]].</ref> Despite these copious quantities of waste, the DOE has a goal of cleaning all presently contaminated sites successfully by 2025.<ref name="usemdoefyp"/> The [[Fernald, Ohio]] site for example had "31 million pounds of uranium product", "2.5 billion pounds of waste", "2.75 million cubic yards of contaminated soil and debris", and a "223 acre portion of the underlying Great Miami Aquifer had uranium levels above drinking standards".<ref name="usemdoefyp"/> The United States currently has at least 108 sites it currently designates as areas that are contaminated and unusable, sometimes many thousands of acres<ref>American Scientist Jan/Feb 2007</ref><ref name="usemdoefyp"/> The DOE wishes to try and clean or mitigate many or all by 2025, however the task can be difficult and it acknowledges that some will never be completely remediated, and just in one of these 108 larger designations, [[Oak Ridge National Laboratory]], there were for example at least "167 known contaminant release sites" in one of the three subdivisions of the {{convert|37000|acre|km2|0|sing=on|lk=on}} site.<ref name="usemdoefyp"/> Some of the U.S. sites were smaller in nature, however, and cleanup issues were simpler to address, and the DOE has successfully completed cleanup, or at least closure, of several sites.<ref name="usemdoefyp"/> The issue of disposal methods for nuclear waste was one of the most pressing current problems the international nuclear industry faced when trying to establish a long term energy production plan, yet there was hope it could be safely solved. A recent research report on the Nuclear Industry perspective of the current state of scientific knowledge in predicting the extent that waste would find its way from the deep burial facility - back to soil and drinking water (such that it presents a direct threat to the health of human beings - as well as to other forms of life) is presented in a document from the [[IAEA]] (The International Atomic Energy Agency) - which was published in October 2007 This document states "The capacity to model all the effects involved in the dissolution of the waste form, in conditions similar to the disposal site, is the final goal of all the research undertaken by many research groups over many years. As we will see in this report, this kind of investigation is far from being finished" [http://www-pub.iaea.org/MTCD/publications/PDF/te_1563_web.pdf]. In the United States, the DOE acknowledges much progress in addressing the waste problems of the industry, and successful remediation of some contaminated sites, yet also major uncertainties and sometimes complications and setbacks in handling the issue properly, cost effectively, and in the projected time frame.<ref name="usemdoefyp"/> In other countries with lower ability or will to maintain environmental integrity the issue would be even more problematic. ==The nature and significance of radioactive waste== Radioactive waste typically comprises a number of [[radioisotopes]]: unstable configurations of elements that [[radioactive decay|decay]], emitting [[ionizing radiation]] which can be harmful to human health and to the environment. Those isotopes emit different types and levels of radiation, which last for different periods of time. === Physics === {{Medium-lived fission products}} {{Long-lived fission products}} The radioactivity of all nuclear waste diminishes with time. All radioisotopes contained in the waste have a [[half-life]] - the time it takes for any radionuclide to lose half of its radioactivity and eventually all radioactive waste decays into non-radioactive elements. Certain radioactive elements (such as plutonium-239) in “spent” fuel will remain hazardous to humans and other living beings for hundreds of thousands of years. Other radioisotopes will remain hazardous for millions of years. Thus, these wastes must be shielded for centuries and isolated from the living environment for hundreds of millennia.<ref>Nuclear Information and Resource Service,[http://www.nirs.org/radwaste/radwaste.htm Radioactive Waste Project], retrieved September 2007</ref> Some elements, such as [[Iodine-131]], have a short half-life (around 8 days in this case) and thus they will cease to be a problem much more quickly than other, longer-lived, decay products but their activity is much greater initially. The two tables show some of the major radioisotopes, their half-lives, and their [[fission product yield|radiation yield]] as a proportion of the yield of fission of Uranium-235. The faster a [[radioisotope]] decays, the more radioactive it will be. The energy and the type of the [[ionizing radiation]] emitted by a pure radioactive substance are important factors in deciding how dangerous it will be. The chemical properties of the radioactive [[chemical element|element]] will determine how mobile the substance is and how likely it is to spread into the environment and contaminate human bodies. This is further complicated by the fact that many radioisotopes do not decay immediately to a stable state but rather to a radioactive [[decay product]] leading to [[decay chain]]s. === Chemistry === The chemical properties of the radioactive substance and the other substances found within (and near) the waste store has a great effect upon the ability of the waste to cause harm to humans or other organisms. For instance [[pertechnate|TcO<sub>4</sub><sup>-</sup>]] tends to [[Adsorption|adsorb]] on the surfaces of steel objects which reduces its ability to move out of the waste store in water. === Pharmacokinetics === Exposure to high levels of radioactive waste may cause serious harm or [[death]]. Treatment of an [[adult]] animal with [[radiation]] or some other [[mutation]]-causing effect, such as a cytotoxic anti-[[cancer]] [[drug]], may cause cancer in the animal. In humans it has been calculated that a 1 [[sievert]] dose has a 5% chance of causing cancer and a 1% chance of causing a mutation in a [[gamete]] which can be passed to the next generation. If a developing organism such as an [[unborn child]] is irradiated, then it is possible to induce a [[birth defect]] but it is unlikely that this defect will be in a gamete or a gamete forming [[cell (biology)|cell]]. Depending on the decay mode and the [[pharmacokinetics]] of an element (how the body processes it and how quickly), the threat due to exposure to a given activity of a [[radioisotope]] will differ. For instance [[Iodine-131]] is a short-lived [[beta decay|beta]] and [[gamma decay|gamma]] emitter but because it concentrates in the [[thyroid]] gland, it is more able to cause injury than [[cesium]]-137 which, being water soluble, is rapidly excreted in urine. In a similar way, the [[alpha decay|alpha]] emitting actinides and [[radium]] are considered very harmful as they tend to have long [[Biological half-life|biological half-lives]] and their radiation has a high linear energy transfer value. Because of such differences, the rules determining biological injury differ widely according to the radioisotope, and sometimes also the nature of the chemical compound which contains the radioisotope. === Philosophy === The main objective in managing and disposing of radioactive (or other) waste is to protect people and the environment. This means isolating or diluting the waste so that the rate or concentration of any radionuclide returned to the [[biosphere]] is harmless. To achieve this the preferred technology to date has been deep and secure burial for the more dangerous wastes; [[nuclear transmutation|transmutation]], long-term retrievable storage, and removal to space have also been suggested. Management options for waste are discussed below. Radioactivity by definition reduces over time, so in principle the waste needs to be isolated for a particular period of time until its components have decayed such that it no longer poses a threat. In practice this can mean periods of hundreds of thousands of years, depending on the nature of the waste involved. Though an affirmative answer is often taken for granted, the question as to whether or not we should endeavor to avoid causing harm to remote future generations, perhaps thousands upon thousands of years hence, is essentially one which must be dealt with by philosophy. ==Sources of waste== Radioactive waste comes from a number of sources. The majority originates from the nuclear fuel cycle and nuclear weapon reprocessing. However, other sources include medical and industrial wastes, as well as naturally occurring radioactive materials (NORM) that can be concentrated as a result of the processing or consumption of coal, oil and gas, and some minerals. === Nuclear fuel cycle === {{main|Nuclear fuel cycle|Spent nuclear fuel}} ====Front end==== Waste from the front end of the [[nuclear fuel cycle]] is usually alpha emitting waste from the extraction of uranium. It often contains [[radium]] and its decay products. [[Uranium dioxide]] (UO<sub>2</sub>) concentrate from mining is not very radioactive - only a thousand or so times as radioactive as the [[granite]] used in buildings. It is refined from [[yellowcake]] (U<sub>3</sub>O<sub>8</sub>), then converted to [[uranium hexafluoride]] gas (UF<sub>6</sub>). As a gas, it undergoes [[enriched uranium|enrichment]] to increase the [[U-235]] content from 0.7% to about 4.4% (LEU). It is then turned into a hard [[ceramic]] oxide (UO<sub>2</sub>) for assembly as reactor fuel elements. The main by-product of enrichment is [[depleted uranium]] (DU), principally the [[U-238]] isotope, with a U-235 content of ~0.3%. It is stored, either as UF<sub>6</sub> or as U<sub>3</sub>O<sub>8</sub>. Some is used in applications where its extremely high density makes it valuable, such as the keels of yachts, and [[anti-tank]] [[KE-penetrator|shell]]s. It is also used (with recycled plutonium) for making [[mixed oxide fuel]] (MOX) and to dilute highly enriched uranium from weapons stockpiles which is now being redirected to become reactor fuel. This dilution, also called [[enriched uranium#Downblending|downblending]], means that any nation or group that acquired the finished fuel would have to repeat the (very expensive and complex) enrichment process before assembling a weapon. ==== Back end==== The back end of the nuclear fuel cycle, mostly spent [[fuel rod]]s, contains [[fission product]]s that emit beta and gamma radiation, and [[actinide]]s that emit [[alpha particle]]s, such as [[uranium-234]], [[neptunium-237]], [[plutonium-238]] and [[americium-241]], and even sometimes some neutron emitters such as [[californium]] (Cf). These isotopes are formed in [[nuclear reactor]]s. It is important to distinguish the processing of uranium to make fuel from the [[nuclear reprocessing|reprocessing]] of used fuel. Used fuel contains the highly radioactive products of fission (see high level waste below). Many of these are neutron absorbers, called [[neutron poison]]s in this context. These eventually build up to a level where they absorb so many neutrons that the chain reaction stops, even with the control rods completely removed. At that point the fuel has to be replaced in the reactor with fresh fuel, even though there is still a substantial quantity of [[uranium-235]] and [[plutonium]] present. In the United States, this used fuel is stored, while in countries such as the [[United Kingdom]], [[France]], and [[Japan]], the fuel is reprocessed to remove the fission products, and the fuel can then be re-used. This reprocessing involves handling highly radioactive materials, and the fission products removed from the fuel are a concentrated form of high-level waste as are the chemicals used in the process. ==== Proliferation concerns ==== {{main|nuclear proliferation}} When dealing with uranium and plutonium, the possibility that they may be used to build [[nuclear weapon]]s is often a concern. Active nuclear reactors and nuclear weapons stockpiles are very carefully safeguarded and controlled. However, high-level waste from nuclear reactors may contain plutonium. Ordinarily, this plutonium is [[Plutonium#Manufacture|reactor-grade plutonium]], containing a mixture of [[plutonium-239]] (highly suitable for building nuclear weapons), [[plutonium-240]] (an undesirable contaminant and highly radioactive), [[plutonium-241]], and [[plutonium-238]]; these isotopes are difficult to separate. Moreover, high-level waste is full of highly radioactive [[fission products]]. However, most fission products are relatively short-lived. This is a concern since if the waste is stored, perhaps in [[deep geological repository|deep geological storage]], over many years the fission products decay, decreasing the radioactivity of the waste and making the plutonium easier to access. Moreover, the undesirable contaminant Pu-240 decays faster than the Pu-239, and thus the quality of the bomb material increases with time (although its quantity decreases during that time as well). Thus, some have argued, as time passes, these deep storage areas have the potential to become "plutonium mines", from which material for nuclear weapons can be acquired with relatively little difficulty. Critics of the latter idea point out that the half-life of Pu-240 is 6,560 years and Pu-239 is 24,110 years, and thus the relative enrichment of one isotope to the other with time occurs with a half-life of 9,000 years (that is, it takes 9000 years for the ''fraction'' of Pu-240 in a sample of mixed plutonium isotopes, to spontaneously decrease by half-- a typical enrichment needed to turn reactor-grade into weapons-grade Pu). Thus "weapons grade plutonium mines" would be a problem for the very far future (>9,000 years from now), so that there remains a great deal of time for technology to advance to solve this problem, before it becomes acute. Pu-239 decays to [[U-235]] which is suitable for weapons and which has a very long half life (roughly 10<sup>9</sup> years). Thus plutonium may decay and leave uranium-235. However, modern reactors are only moderately enriched with U-235 relative to U-238, so the U-238 continues to serve as denaturation agent for any U-235 produced by plutonium decay. One solution to this problem is to recycle the plutonium and use it as a fuel e.g. in [[fast reactor]]s. But in the minds of some, the very existence of the [[nuclear fuel reprocessing plant]] needed to separate the plutonium from the other elements represents a proliferation concern. In [[Integral Fast Reactor|pyrometallurgical fast reactors]], the waste generated is an actinide compound that cannot be used for nuclear weapons. === Nuclear weapons reprocessing === Waste from [[nuclear weapon]]s reprocessing (as opposed to production, which requires primary processing from reactor fuel) is unlikely to contain much beta or gamma activity other than [[tritium]] and [[americium]]. It is more likely to contain alpha emitting actinides such as Pu-239 which is a fissile material used in bombs, plus some material with much higher specific activities, such as Pu-238 or Po. In the past the neutron trigger for a bomb tended to be [[beryllium]] and a high activity alpha emitter such as [[polonium]]; an alternative to polonium is [[Pu-238]]. For reasons of national security, details of the design of modern bombs are normally not released to the open literature. It is likely however that a D-T [[Nuclear fusion|fusion]] reaction in either an electrically driven device or a D-T fusion reaction driven by the chemical explosives would be used to start up a modern device. Some designs might well contain a [[radioisotope thermoelectric generator]] using Pu-238 to provide a longlasting source of electrical power for the electronics in the device. It is likely that the fissile material of an old bomb which is due for refitting will contain decay products of the plutonium isotopes used in it, these are likely to include alpha-emitting [[Np-236]] from Pu-240 impurities, plus some U-235 from decay of the Pu-239; however, due to the relatively long half-life of these Pu isotopes, these wastes from radioactive decay of bomb core material would be very small, and in any case, far less dangerous (even in terms of simple radioactivity) than the Pu-239 itself. The beta decay of [[Pu-241]] forms [[Am-241]]; the in-growth of americium is likely to be a greater problem than the decay of Pu-239 and Pu-240 as the americium is a gamma emitter (increasing external-exposure to workers) and is an alpha emitter which can cause the generation of [[heat]]. The plutonium could be separated from the americium by several different processes; these would include [[Nuclear reprocessing#Non aqueous methods|pyrochemical]] processes and aqueous/organic [[solvent extraction]]. A truncated [[PUREX]] type extraction process would be one possible method of making the separation. === Medical === Radioactive [[medical waste]] tends to contain [[beta particle]] and [[gamma ray]] emitters. It can be divided into two main classes. In diagnostic [[nuclear medicine]] a number of short-lived gamma emitters such as [[technetium-99m]] are used. Many of these can be disposed of by leaving it to decay for a short time before disposal as normal trash. Other isotopes used in medicine, with half-lives in parentheses: *[[Yttrium|Y-90]], used for treating [[lymphoma]] (2.7 days) *[[radioiodine|I-131]], used for [[thyroid]] function tests and for treating [[thyroid cancer]] (8.0 days) *[[strontium|Sr-89]], used for treating [[bone cancer]], [[intravenous injection]] (52 days) *[[iridium|Ir-192]], used for [[brachytherapy]] (74 days) *[[cobalt|Co-60]], used for brachytherapy and external radiotherapy (5.3 years) *[[Cs-137]], used for brachytherapy, external radiotherapy (30 years) === Industrial === [[Industry|Industrial]] source waste can contain [[alpha decay|alpha]], [[beta decay|beta]], [[neutron emission|neutron]] or gamma emitters. Gamma emitters are used in [[radiography]] while neutron emitting sources are used in a range of applications, such as [[oil well]] logging.[http://www.logwell.com/tech/nuclear/index.html] ===Naturally occurring radioactive material (NORM)=== Processing of substances containing natural radioactivity; this is often known as NORM. A lot of this waste is [[alpha particle]]-emitting matter from the decay chains of [[uranium]] and [[thorium]]. The main source of radiation in the human body is [[potassium]]-40 ([[potassium-40|<sup>40</sup>K]]). ==== Coal ==== [[Coal]] contains a small amount of radioactive uranium, barium, thorium and potassium, but, in the case of pure coal, this is significantly less than the average concentration of those elements in the [[Earth's crust]]. However, the surrounding strata, if shale or mudstone, often contains slightly more than average and this may also be reflected in the ash content of 'dirty' coals <ref>[http://www.uic.com.au/nip78.htm Cosmic origins of Uranium<!-- Bot generated title -->]</ref><ref name="ornl">[http://www.ornl.gov/info/ornlreview/rev26-34/text/colmain.html Coal Combustion - ORNL Review Vol. 26, No. 3&4, 1993<!-- Bot generated title -->]</ref>. The more active ash minerals become concentrated in the [[fly ash]] precisely because they do not burn well <ref name="ornl" />. However, the radioactivity of fly ash is still very low. It is about the same as black [[shale]] and is less than [[phosphate]] rocks, but is more of a concern because a small amount of the fly ash ends up in the atmosphere where it can be inhaled.<ref>U.S. Geological Survey, [http://geology.cr.usgs.gov/energy/factshts/163-97/FS-163-97.html Radioactive Elements in Coal and Fly Ash: Abundance, Forms, and Environmental Significance], ''Fact Sheet'' FS-163-1997, October 1997, retrieved September 2007</ref> ==== Oil and gas ==== Residues from the [[petroleum|oil]] and [[natural gas|gas]] industry often contain [[radium]] and its daughters. The sulphate scale from an oil well can be very radium rich, while the water, oil and gas from a well often contains [[radon]]. The radon decays to form solid radioisotopes which form coatings on the inside of pipework. In an oil processing plant the area of the plant where [[propane]] is processed is often one of the more contaminated areas of the plant as radon has a similar boiling point as propane.<ref>[http://www.enprotec-inc.com/Presentations/NORM.pdf Survey & Identification of NORM Contaminated Equipment]</ref> == Types of radioactive waste == [[Image:Fort-greely-low-level-waste.jpg|thumb|right|Removal of very low-level waste]] Although not significantly radioactive, '''uranium mill tailings''' are waste. They are byproduct material from the rough processing of uranium-bearing ore. They are sometimes referred to as 11(e)2 wastes, from the section of the U.S. Atomic Energy Act that defines them. Uranium mill tailings typically also contain chemically-hazardous heavy metals such as [[lead]] and [[arsenic]]. Vast mounds of uranium mill tailings are left at many old mining sites, especially in [[Colorado]], [[New Mexico]], and [[Utah]]. '''[[Low level waste]] (LLW)''' is generated from hospitals and industry, as well as the [[nuclear fuel cycle]]. It comprises paper, rags, tools, clothing, filters, etc., which contain small amounts of mostly short-lived radioactivity. Commonly, LLW is designated as such as a precautionary measure if it originated from any region of an 'Active Area', which frequently includes offices with only a remote possibility of being contaminated with radioactive materials. Such LLW typically exhibits no higher radioactivity than one would expect from the same material disposed of in a non-active area, such as a normal office block. Some high activity LLW requires shielding during handling and transport but most LLW is suitable for shallow land burial. To reduce its volume, it is often compacted or incinerated before disposal. Low level waste is divided into four classes, class A, B, C and GTCC, which means "Greater Than Class C". '''Intermediate level waste (ILW)''' contains higher amounts of radioactivity and in some cases requires shielding. ILW includes [[resin]]s, chemical [[sludge]] and metal reactor [[nuclear fuel|fuel]] cladding, as well as contaminated materials from reactor decommissioning. It may be solidified in concrete or bitumen for disposal. As a general rule, short-lived waste (mainly non-fuel materials from reactors) is buried in shallow repositories, while long-lived waste (from fuel and fuel-reprocessing) is deposited in [[geological repository|deep underground facilities]]. U.S. regulations do not define this category of waste; the term is used in Europe and elsewhere. [[Image:Nuclear waste flask train at Bristol Temple Meads 02.jpg|thumb|right|[[Nuclear flask|High Level Waste flask]]s are transported by train in the United Kingdom. Each flask is constructed of {{convert|14|in|mm|abbr=on}} thick solid steel and weighs in excess of 50 tons]] '''[[High level waste]] (HLW)''' is produced by [[nuclear reactor]]s. It contains [[fission products]] and [[transuranic]] elements generated in the [[reactor core]]. It is highly radioactive and often thermally hot. LLW and ILW accounts for over 95% of the total radioactivity produced in the process of nuclear [[electricity generation]]. The amount of HLW worldwide is currently increasing by about 12,000 metric tons every year, which is the equival to about 100 double-decker busses or a two-story structure built on top of a basketball court.<ref>[http://www.marathonresources.com.au/nuclearwaste.asp Marathon Resources Ltd :: Our Business :: Uranium Industry :: Nuclear Waste<!-- Bot generated title -->]</ref> '''Transuranic waste (TRUW)''' as defined by U.S. regulations is, without regard to form or origin, waste that is contaminated with alpha-emitting transuranic radionuclides with half-lives greater than 20 years, and concentrations greater than 100 [[curie|nCi]]/g (3.7 [[becquerel|MBq]]/kg), excluding High Level Waste. Elements that have an [[atomic number]] greater than uranium are called transuranic ("beyond uranium"). Because of their long half-lives, TRUW is disposed more cautiously than either low level or intermediate level waste. In the U.S. it arises mainly from weapons production, and consists of clothing, tools, rags, residues, debris and other items contaminated with small amounts of radioactive elements (mainly plutonium). Under U.S. law, TRUW is further categorized into "contact-handled" (CH) and "remote-handled" (RH) on the basis of radiation dose measured at the surface of the waste container. CH TRUW has a surface dose rate not greater than 200 [[Röntgen equivalent man|mrem]] per hour (2 [[millisievert|mSv]]/h), whereas RH TRUW has a surface dose rate of 200 [[Röntgen equivalent man|mrem]] per hour (2 mSv/h) or greater. CH TRUW does not have the very high radioactivity of high level waste, nor its high heat generation, but RH TRUW can be highly radioactive, with surface dose rates up to 1000000 [[Röntgen equivalent man|mrem]] per hour (10000 mSv/h). The United States currently permanently disposes of TRUW generated from nuclear power plants and military facilities at the [[Waste Isolation Pilot Plant]].<ref>[http://www.wipp.energy.gov/fctshts/whywipp.pdf Why WIPP?]</ref> == Management of waste == [[Image:Nuclear waste locations USA.jpg|right|350px|thumb|Nuclear waste locations in USA]] Nuclear waste requires sophisticated treatment and management in order to successfully isolate it from interacting with the [[biosphere]]. This usually necessitates treatment, followed by a long-term management strategy involving storage, disposal or transformation of the waste into a non-toxic form<ref>M. I. Ojovan, W.E. Lee. ''An Introduction to Nuclear Waste Immobilisation'', Elsevier Science Publishers B.V., Amsterdam, 315pp. (2005)</ref>. ===Initial treatment of waste=== ====Vitrification==== Long-term storage of radioactive waste requires the stabilization of the waste into a form which will not react, nor degrade, for extended periods of time. One way to do this is through [[vitrification]]. Currently at [[Sellafield]] the high-level waste ([[PUREX]] first cycle [[raffinate]]) is mixed with [[sugar]] and then calcined. [[Calcination]] involves passing the waste through a heated, rotating tube. The purposes of calcination are to evaporate the water from the waste, and de-nitrate the fission products to assist the stability of the glass produced. The 'calcine' generated is fed continuously into an induction heated furnace with fragmented [[glass]][http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=6510132]. The resulting glass is a new substance in which the waste products are bonded into the glass matrix when it solidifies. This product, as a molten fluid, is poured into [[stainless steel]] cylindrical containers ("cylinders") in a batch process. When cooled, the fluid solidifies ("vitrifies") into the glass. Such glass, after being formed, is very highly resistant to water. <ref>{{citation|url=http://isl.group.shef.ac.uk/papers/MIOCorrosionICG2004paper.pdf|accessdate=2008-06-30|title=Corrosion of nuclear waste glasses in non-saturated conditions: Time-Temperature behaviour|Author=Ojovanm M.I. et al.|year=2006}}</ref> After filling a cylinder, a seal is [[weld]]ed onto the cylinder. The cylinder is then washed. After being inspected for external contamination, the steel cylinder is stored, usually in an underground repository. In this form, the waste products are expected to be immobilized for a very long period of time (many thousands of years). The glass inside a cylinder is usually a black glossy substance. All this work (in the [[United Kingdom]]) is done using [[hot cell]] systems. The sugar is added to control the [[ruthenium]] chemistry and to stop the formation of the volatile RuO<sub>4</sub> containing [[Ru-106|radio ruthenium]]. In the west, the glass is normally a [[borosilicate glass]] (similar to [[Pyrex]]), while in the former [[Soviet]] bloc it is normal to use a [[phosphate]] glass. The amount of fission products in the glass must be limited because some ([[palladium]], the other Pt group metals, and [[tellurium]]) tend to form metallic phases which separate from the glass. In Germany a vitrification plant is in use; this is treating the waste from a small demonstration reprocessing plant which has since been closed down. ====Ion exchange==== It is common for medium active wastes in the nuclear industry to be treated with [[ion exchange]] or other means to concentrate the radioactivity into a small volume. The much less radioactive bulk (after treatment) is often then discharged. For instance, it is possible to use a [[ferric]] [[hydroxide]] [[floc]] to remove radioactive metals from aqueous mixtures [http://www.euronuclear.org/info/encyclopedia/w/waste-processing.htm]. After the radioisotopes are absorbed onto the ferric hydroxide, the resulting sludge can be placed in a metal drum before being mixed with cement to form a solid waste form.<!-- Dead links: [http://www.shef.ac.uk/isl/papers/NCCLeeds2003ExAbs.pdf][http://www.shef.ac.uk/isl/papers/NCCCSS2004ExAbs.pdf] --><ref>[http://sti.srs.gov/fulltext/ms2003759/ms2003759.pdf Removal of Silicon from High Level Waste Streams via Ferric Flocculation]</ref> In order to get better long-term performance (mechanical stability) from such forms, they may be made from a mixture of [[fly ash]], or [[blast furnace]] [[slag]], and [[portland cement]], instead of normal [[concrete]] (made with [[portland cement]], gravel and sand). ==== Synroc ==== The Australian [[Synroc]] (synthetic rock) is a more sophisticated way to immobilize such waste, and this process may eventually come into commercial use for civil wastes (it is currently being developed for U.S. military wastes). Synroc was invented by the late Prof Ted Ringwood (a [[geochemist]]) at the [[Australian National University]].<ref>Uranium Information Centre, [http://www.uic.com.au/nip21.htm Synroc], ''Nuclear Issues Briefing Paper'' 21, retrieved September 2007</ref> The Synroc contains [[pyrochlore]] and [[cryptomelane]] type minerals. The original form of Synroc (Synroc C) was designed for the liquid high level waste (PUREX raffinate) from a [[light water reactor]]. The main minerals in this Synroc are [[hollandite]] (BaAl<sub>2</sub>Ti<sub>6</sub>O<sub>16</sub>), [[zirconolite]] (CaZrTi<sub>2</sub>O<sub>7</sub>) and [[perovskite]] (CaTiO<sub>3</sub>). The zirconolite and perovskite are hosts for the [[actinides]]. The [[strontium]] and [[barium]] will be fixed in the perovskite. The [[caesium]] will be fixed in the hollandite. ===Long term management of waste=== The timeframe in question when dealing with radioactive waste ranges from 10,000 to 1,000,000 years<ref>{{cite book |title=Technical Bases for Yucca Mountain Standards |last=[[National Research Council]] |year=1995 |publisher=National Academy Press |location=Washington, D.C.}} cited in in {{cite web|title=The Status of Nuclear Waste Disposal|publisher=The [[American Physical Society]] |url=http://www.aps.org/units/fps/newsletters/2006/january/article1.html|accessdate=2008-06-06|date=January 2006}}.</ref>, according to studies based on the effect of estimated radiation doses<ref>{{cite web| title=Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada; Proposed Rule| date=2005-08-22| publisher=[[Environmental Protection Agency]]| accessdate=2008-06-06| url=http://www.epa.gov/radiation/docs/yucca/70fr49013.pdf}}.</ref>. It is worthwhile noting that state of the art only allows geological considerations for such long periods. Researchers suggest that forecasts of health detriment for such periods ''should be examined critically''<ref>{{cite web| title=Issues relating to safety standards on the geological disposal of radioactive waste| date=2001-06-22| publisher=[[International Atomic Energy Agency]]| accessdate=2008-06-06| url=http://www-pub.iaea.org/MTCD/publications/PDF/te_1282_prn/t1282_part1.pdf}}.</ref>. Practical studies only consider up to 100 years as far as effective planning<ref>{{cite web| title=IAEA Waste Management Database: Report 3 - L/ILW-LL| date=2000-03-28| publisher=[[International Atomic Energy Agency]]| accessdate=2008-06-06| url=http://www-pub.iaea.org/MTCD/publications/PDF/rwmp-3/Report_3.pdf}}.</ref> and cost evaluations<ref>{{cite web| title=Decommissioning costs of WWER-440 nuclear power plants| year=2002| month=November| publisher=[[International Atomic Energy Agency]]| accessdate=2008-06-06| url=http://www-pub.iaea.org/MTCD/publications/PDF/te_1322_web.pdf}}.</ref> are concerned. ==== Storage ==== High-level radioactive waste is stored temporarily in [[spent fuel pool]]s and in [[dry cask storage]] facilities. This allows the shorter-lived isotopes to decay before further handling. In 1997, in the 20 countries which account for most of the world's nuclear power generation, spent fuel storage capacity at the reactors was 148,000 tonnes, with 59% of this utilized. However, a number of nuclear power plants in countries that do not reprocess had nearly filled their spent fuel pools, and resorted to Away-from-reactor storage (AFRS). AFRS capacity in 1997 was 78,000 tonnes, with 44% utilized, and annual additions of about 12,000 tonnes. AFRS cannot be expanded forever, and the lead times for final disposal sites have proven to be unpredictable (see below). In 1989 and 1992, France commissioned commercial plants to [[vitrification|vitrify]] HLW left over from reprocessing oxide fuel, although there are adequate facilities elsewhere, notably in the United Kingdom and [[Belgium]]. The capacity of these western European plants is 2,500 canisters (1000 t) a year, and some have been operating for 18 years. ==== Geological disposal ==== The process of selecting appropriate [[Deep geological repository|deep final repositories]] for high level waste and spent fuel is now under way in several countries with the first expected to be commissioned some time after 2010. However, many people remain uncomfortable with the immediate [[stewardship cessation]] of this management system. In Switzerland, the Grimsel Test Site is an international research facility investigating the open questions in radioactive waste disposal ([http://www.grimsel.com]). [[Sweden]] is well advanced with plans for direct disposal of spent fuel, since its Parliament decided that this is acceptably safe, using the [[KBS-3]] technology. In [[Germany]], there is a political discussion about the search for an ''Endlager'' (final repository) for radioactive waste, accompanied by loud protests especially in the [[Gorleben]] village in the [[Lüchow-Dannenberg|Wendland]] area, which was seen ideal for the final repository until 1990 because of its location next to the border to the former [[German Democratic Republic]]. Gorleben is presently being used to store radioactive waste non-permanently, with a decision on final disposal to be made at some future time. The U.S. has opted for a final repository at [[Yucca Mountain]] in Nevada, but this project is widely opposed and is a hotly debated topic, with some of the main concerns being the long distance transportation of the waste from across the United States to this area, and the possibility of accidents over time that could occur. The [[Waste Isolation Pilot Plant]] in the United States is the world's first underground repository for transuranic waste. There is also a proposal for an international HLW repository in optimum geology, with Australia or Russia as possible locations, although the proposal for a global repository for Australia has raised fierce domestic political objections. The Canadian government, for example, is seriously considering this method of disposal, known as the ''Deep Geological Disposal'' concept. Under the current plan, a vault is to be dug 500 to 1000 meters below ground, under the [[Canadian Shield]], one of the most stable landforms on the planet. The vaults are to be dug inside geological formations known as ''[[batholith]]s'', formed about a billion years ago. The used fuel bundles will be encased in a corrosion-resistant container, and further surrounded by a layer of ''buffer material'', possibly of a special kind of clay ([[bentonite|bentonite clay]]). The case itself is designed to last for thousands of years, while the clay would further slow the corrosion rates of the container. The batholiths themselves are chosen for their low ground-water movement rates, geological stability, and low economic value.<ref name="NuclearFAQ">{{cite web|title=How is high-level nuclear waste managed in Canada?|work=The Canadian Nuclear FAQ|url=http://www.nuclearfaq.ca/cnf_sectionE.htm#v|accessdate=June 28|accessyear=2006}}</ref> The Finnish government has already started building a vault to store nuclear waste 500 to 1000 meters below ground, not far from the [[Olkiluoto Nuclear Power Plant]]. In the EU, [http://nl.wikipedia.org/wiki/COVRA Covra] is negotiating about a European-wide waste disposal system with single disposal sites that can be used by several EU-countries.<ref>[http://www.covra.nl/1024x768/index1.html EU-wide centralised geological waste disposal sites]</ref> This EU-wide storage possibility is being researched under the [[SAPIERR-2]] program.<ref>[http://projects-2007.jrc.ec.europa.eu/show.gx?Object.object_id=PROJECTS000000000300CD58 SAPIERR-2 program]</ref> Storing high level nuclear waste above ground for a century or so is considered appropriate by many scientists. This allows for the material to be more easily observed and any problems detected and managed, while the decay over this time period significantly reduces the level of radioactivity and the associated harmful effects to the container material. It is also considered likely that over the next century newer materials will be developed which will not break down as quickly when exposed to a high neutron flux thus increasing the longevity of the container once it is permanently buried. Sea-based options for disposal of radioactive waste <ref>[http://www.scientiapress.com/findings/sea-based.htm Sea-based Nuclear Waste Solutions]</ref> include burial beneath a stable [[abyssal plain]], burial in a [[subduction]] zone that would slowly carry the waste downward into the [[mantle (geology)|Earth's mantle]], and burial beneath a remote natural or human-made island. While these approaches all have merit and would facilitate an international solution to the vexing problem of disposal of radioactive waste, they are currently not being seriously considered because of the legal barrier of the [[United Nations Convention on the Law of the Sea|Law of the Sea]] and because in [[North America]] and [[Europe]] sea-based burial has become taboo from fear that such a repository could leak and cause widespread damage. Dumping of radioactive waste from ships has reinforced this concern, as has contamination of islands in the Pacific. However, sea-based approaches might come under consideration in the future by individual countries or groups of countries that cannot find other acceptable solutions. Article 1 (Definitions), 7., of the 1996 Protocol to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, (the London Dumping Convention) states: “Sea” means all marine waters other than the internal waters of States, as well as the seabed and the subsoil thereof; it does no include sub-seabed repositories accessed only from land.” A subduction zone accessed from land as is the embodiment of the subductive waste disposal method http://www3.telus.net/subductionservices/ is not nor ever has been prohibited by international agreement. This method has been described as the most viable means of disposing of radioactive <ref>http://www.cppa.utah.edu/publications/environment/nuclear_waste_summary.pdf</ref> and the state-of-the-art in nuclear waste disposal technology. <ref>http://www.ias.ac.in/currsci/dec252001/1534.pdf</ref> Another approach termed Remix & Return <ref>[http://www.scientiapress.com/findings/r&r.htm Remix & Return]</ref> would blend high-level waste with [[uranium mining|uranium mine]] and mill tailings down to the level of the original radioactivity of the [[uraninite|uranium ore]], then replace it in empty uranium mines. This approach has the merits of totally eliminating the problem of high-level waste, of providing jobs for miners who would double as disposal staff, and of facilitating a cradle-to-grave cycle for all radioactive materials. ==== Transmutation ==== {{main|Nuclear transmutation}} There have been proposals for reactors that consume nuclear waste and transmute it to other, less-harmful nuclear waste. In particular, the [[Integral Fast Reactor]] was a proposed nuclear reactor with a [[nuclear fuel cycle]] that produced no transuranic waste and in fact, could consume transuranic waste. It proceeded as far as large-scale tests but was then canceled by the U.S. Government. Another approach, considered safer but requiring more development, is to dedicate [[subcritical reactor]]s to the [[Nuclear transmutation|transmutation]] of the left-over transuranic elements. Transmutation was banned in the [[US]] on April 1977 by President Carter due to the danger of plutonium proliferation <ref>[http://ohioneighbors.org/SONIC.aspx Transmutation being banned in the US since 1977]</ref>however, President Reagan rescinded the ban in 1981 <ref>[http://www.nationalcenter.org/NPA396.html National Policy Analysis #396: The Separations Technology and Transmutation Systems (STATS) Report: Implications for Nuclear Power Growth and Energy Sufficiency - February 2002<!-- Bot generated title -->]</ref>. Due to the economic losses and risks, construction of reprocessing plants during this time did not resume. Due to high energy demand, work on the method has continued in the [[EU]]. This has resulted in a practical nuclear research reactor called [http://www.sckcen.be/myrrha Myrrha] in which transmutation is possible. Additionally, a new research program called [http://www.actinet-network.org/ ACTINET] has been started in the [[EU]] to make transmutation possible on a large, industrial scale. According to President Bush's Global Nuclear Energy Partnership (GNEP) of 2007, the [[US]] is now actively promoting research on transmutation technologies needed to markedly reduce the problem of nuclear waste treatment. <ref>http://www.gnep.energy.gov/pdfs/GNEP_SOP.pdf</ref> There have also been theoretical studies involving the use of [[fusion reactor]]s as so called "actinide burners" where a fusion reactor [[plasma (physics)|plasma]] such as in a [[tokamak]], could be "doped" with a small amount of the "minor" transuranic atoms which would be transmuted (meaning fissioned in the actinide case) to lighter elements upon their successive bombardment by the very high energy neutrons produced by the fusion of [[deuterium]] and [[tritium]] in the reactor. It was recently found by a study done at [[MIT]], that only 2 or 3 fusion reactors with parameters similar to that of the [[International Thermonuclear Experimental Reactor]] (ITER) could transmute the entire annual [[minor actinide]] production from all of the [[light water reactor]]s presently operating in the [[List of nuclear reactors#Power station reactors 18|United States fleet]] while simultaneously generating approximately 1 [[gigawatt]] of power from each reactor[http://web.mit.edu/annualreports/pres01/13.07.html]. ==== Reuse of waste ==== Another option is to find applications of the isotopes in nuclear waste so as to [[reuse]] them. [http://www.heritage.org/Research/EnergyandEnvironment/upload/86845_1.pdf] <!-- (archived PDF document, with a few errors in it) -->. Already, [[caesium-137]], [[strontium-90]] and a few other isotopes are extracted for certain industrial applications such as [[food irradiation]] and [[radioisotope thermoelectric generators]]. While re-use does not eliminate the need to manage radioisotopes, it may reduce the quantity of waste produced. ==== Space disposal==== Space disposal is an attractive notion because it permanently removes nuclear waste from the environment. However, it has significant disadvantages, not least of which is the potential for catastrophic failure of a [[launch vehicle]]. Furthermore, the high number of launches that would be required — due to the fact that no individual rocket would be able to carry very much of the material relative to the material needed to be disposed of—makes the proposal impractical (for both economic and risk-based reasons). To further complicate matters, international agreements on the regulation of such a program would need to be established.[http://www.ocrwm.doe.gov/factsheets/doeymp0017.shtml] It has been suggested that through the use of a stationary launch system many of the risks of catastrophic launch failure could be avoided. A promising concept is the use of high power lasers to launch "indestructible" containers from the ground into space. Such a system would require no rocket propellant, with the launch vehicle's payload making up a near entirety of the vehicle's mass. Without the use of rocket fuel on board there would be little chance of the vehicle exploding.[http://www.thespacereview.com/article/437/1] Another form of safe removal would possibly be the [[space elevator]]. Encasing the waste in glassified form inside a steel shell {{convert|9|in|mm}} thick, which in turn is tiled with shuttle tile to its exterior. If the launch vehicle fails just before reaching orbit, the waste ball will safely re-enter the earth's atmosphere. The steel shell would deform on impact, but would not rupture due to the density of the shell. Also, this would potentially allow the waste to be shot into the Sun.<ref>Space Disposal of Nuclear Wastes Eric E. Rice [[Battelle Memorial Institute]]</ref> == Accidents involving radioactive waste == A number of incidents have occurred when radioactive material was disposed of improperly, shielding during transport was defective, or when it was simply abandoned or even stolen from a waste store.<ref>http://www.iaea.org/Publications/Magazines/Bulletin/Bull413/article1.pdf</ref> In the former Soviet Union, waste stored in [[Lake Karachay]] was blown over the area during a dust storm after the lake had partly dried out.<ref>GlobalSecurity.org, [http://www.globalsecurity.org/wmd/world/russia/chelyabinsk-65_nuc.htm Chelyabinsk-65/Ozersk], retrieved September 2007</ref> At [[Maxey Flat]], a low-level radioactive waste facility located in [[Kentucky]], containment trenches covered with dirt, instead of steel or cement, collapsed under heavy rainfall into the trenches and filled with water. The water that invaded the trenches became radioactive and had to be disposed of at the [[Maxey Flat]] facility itself. In other cases of radioactive waste accidents, lakes or ponds with radioactive waste accidentally overflowed into the rivers during exceptional storms.{{Fact|date=February 2007}} Scavenging of abandoned radioactive material has been the cause of several other cases of [[radiation exposure]], mostly in [[developing nation]]s, which may have less regulation of dangerous substances (and sometimes less general education about radioactivity and its hazards) and a market for scavenged goods and scrap metal. The scavengers and those who buy the material are almost always unaware that the material is radioactive and it is selected for its [[aesthetics]] or scrap value.<ref>International Atomic Energy Agency, [http://www-pub.iaea.org/MTCD/publications/PubDetAR.asp?pubId=3684 ''The radiological accident in Goiânia''], 1988, retrieved September 2007</ref> Irresponsibility on the part of the radioactive material's owners, usually a hospital, university or military, and the absence of regulation concerning radioactive waste, or a lack of enforcement of such regulations, have been significant factors in radiation exposures. For an example of an accident involving radioactive scrap originating from a hospital see the [[Goiânia accident]].<ref>International Atomic Energy Agency, [http://www-pub.iaea.org/MTCD/publications/PubDetAR.asp?pubId=3684 ''The radiological accident in Goiânia''], 1988, retrieved September 2007</ref> Transportation accidents involving spent nuclear fuel from power plants are unlikely to have serious consequences due to the strength of the [[spent nuclear fuel shipping cask]]s.<!-- Citation? --> ==Radioactive waste in fiction and popular culture== In [[fiction]], radioactive waste is often cited as the reason for gaining [[super-human]] powers and abilities. An example of this fictional scenario is the 1981 movie "[[Modern Problems]]" in which actor [[Chevy Chase]] portrays a jealous, harried air traffic controller Max Fiedler. Fiedler, recently dumped by his girlfriend, comes into contact with nuclear waste and is granted the power of telekinesis, which he uses to not only win her back, but to gain a little revenge. In reality, of course, exposure to radioactive waste instead would lead to illness and/or death. In the science fiction television series, "[[Space: 1999]]," a massive nuclear waste dump on the [[Moon]] explodes, hurtling the [[Moon]], and the inhabitants of "[[Moonbase Alpha]]" out of the [[Solar System]] at interstellar speeds. In the television comedy series [[Family Guy]], the Griffin family all get super-human powers from toxic waste. When the local mayor Adam West tries to do the same thing, he gets [[lymphoma]]. In [[The Simpsons]], many [[mutation|mutant]] three-eyed fish live near the Springfield Nuclear Power Plant. The owner of the plant, Mr Burns, is also repeatedly shown disposing of his plant's waste in an improper manner, either dumping it in the river or hiding it in trees at the local park. ==See also== {{EnergyPortal}} <div style="-moz-column-count:3; column-count:3;"> *[[Agency of Nuclear Projects]] *[[Deep geological repository]] *[[Depleted uranium]] *[[Ducrete]] *[[Eileen Kampakuta Brown]] *[[Eileen Wani Wingfield]] *[[Geomelting]] *[[Global Nuclear Energy Partnership]] *[[Hot cell]] *[[List of nuclear accidents]] *[[List of solid waste treatment technologies]] *[[List of Superfund sites in the United States]] *[[List of topics dealing with environmental issues]] *[[List of waste management companies]] *[[List of waste management topics]] *[[Mixed waste (radioactive/hazardous)]] *[[Nuclear power]] *[[Off-Site Source Recovery Project]] (OSRP) *[[Pollution]] *[[Radioactive scrap metal]] *[[Recycling]] *[[Remediation]] *[[Stored Waste Examination Pilot Plant]] *[[Superfund]] *[[Toxic waste]] *[[Waste Isolation Pilot Plant]] *[[Waste management]] *[[Waste types]] *[[Yucca Mountain]] proposed nuclear-waste storage facility </div> ==References== {{reflist}} Fentiman, Audeen W. and James H. Saling. ''Radioactive Waste Management''. New York: Taylor & Francis, 2002. Second ed. An overview of waste from the nuclear fuel cycle was written by B.V. Babu and S. Karthik, ''Energy Education Science and Technology'', 2005, '''14''', 93-102. ==External links== {{Too many links}} * [http://web.em.doe.gov/lowlevel/llw_apxc.html Key Radionuclides and Generation Processes] ([[United States Department of Energy|DOE]]) * [http://alsos.wlu.edu/qsearch.aspx?browse=science/Nuclear+Waste Alsos Digital Library - Radioactive Waste] (bibliography) * [http://www.sckcen.be/sckcen_en/activities/index.shtml Belgian Nuclear Research Centre - Activities] (documents and links) * [http://www.sckcen.be/sckcen_en/publications/scientrep/ Belgian Nuclear Research Centre - Scientific Reports] (documents) * [http://www.earthhealing.info/CH.pdf Critical Hour: Three Mile Island, The Nuclear Legacy, And National Security] (PDF) * [http://www.epa.gov/radiation/yucca/index.html Environmental Protection Agency - Yucca Mountain] (documents) * [http://www.grist.org/news/maindish/2006/08/08/stang/ Grist.org - How to tell future generations about nuclear waste] (article) * [http://www.thefirstpost.co.uk/index.php?menuID=1&subID=848 A discussion on the secrecy surrounding plans for radioactive waste in the UK ] (article) *[http://www.iaea.org/worldatom/Programmes/Nuclear_Energy/NEFW/index.html International Atomic Energy Agency - Nuclear Fuel Cycle and Waste Technology Program] (program objectives) *[http://www.iaea.org/inis/ws/subjects/nuclear_facilities.html International Atomic Energy Agency - Internet Directory of Nuclear Resources] (links) * [http://www.nuclearfiles.org/menu/key-issues/nuclear-energy/issues/yucca-mountain/index.htm Nuclear Files.org - Yucca Mountain] (documents) *[http://www.nrc.gov/waste.html Nuclear Regulatory Commission - Radioactive Waste] (documents) * [http://www.nrc.gov/reading-rm/doc-collections/reg-guides/fuels-materials/active/03-054/ Nuclear Regulatory Commission - Spent Fuel Heat Generation Calculation] (guide) * [http://www.ornl.gov/info/ornlreview/rev26-34/text/colmain.html Oak Ridge National Laboratory - Coal Combustion: Nuclear Resource or Danger] (document) * [http://radwaste.org Radwaste.org] (links) * [http://radwaste.blogspot.com Radwaste Blog] (weblog) * [http://www.ans.org/pubs/magazines/rs/ Radwaste Solutions] (magazine) * [http://samvak.tripod.com/brief-nuclearwaste01.html Surviving on Nuclear Waste] (book) *[http://www.phyast.pitt.edu/~blc/book/chapter11.html The Nuclear Energy Option - Hazards of High-Level Radioactive Waste] (book) * [http://earthwatch.unep.net/radioactivewaste/index.php UNEP Earthwatch - Radioactive Waste] (documents and links) * [http://www.uic.com.au/nip.htm#Radioactive%20Wastes Uranium Information Center - Radioactive Waste] (briefing papers) * [http://greenwood.cr.usgs.gov/energy/factshts/163-97/FS-163-97.html United States Geological Survey - Radioactive Elements in Coal and Fly Ash] (document) * [http://world-nuclear.org/info/info.htm#radioactivewastes World Nuclear Association - Radioactive Waste] (briefing papers) * [http://www.uic.com.au/wast.htm Radioactive Waste Management, by UIC] * [http://www.plazm.com/magazine/features/archive/nuclear-time; Nuclear Time: On Markers to Deter Inadvertent Human Intrusion into the Waste Isolation Pilot Plant Storage Facility; Plazm magazine] * [http://www.guardian.co.uk/uk_news/story/0,3604,1191376,00.html Guardian article on Waste Disposal] *[http://www-pub.iaea.org/MTCD/publications/PDF/te_1563_web.pdf Ability to Predict the Extent that Waste would find it way from the Deep Burial Facility- "this investigation is far from being finished"] === Accidents === * [http://www.planetark.com/dailynewsstory.cfm/newsid/43145/story.htm Nuclear Waste Drums Lose Lids in Japan Quake - Kyodo]. == Further reading == *Bedinger, M.S. (1989). ''Geohydrologic aspects for siting and design of low-level radioactive-waste disposal'' [U.S. Geological Survey Circular 1034]. Washington, D.C.: U.S. Department of the Interior, U.S. Geological Survey. *Going the Distance? The Safe Transport of Spent Nuclear Fuel and High-Level Radioactive Waste in the United States [http://www.nap.edu/catalog.php?record_id=11538#orgs] by the Nuclear and Radiation Studies Board ([http://dels.nas.edu/nrsb/index.shtml NRSB]) ISBN-10: 0-309-10004-6 {{waste}} {{Nuclear Technology}} {{Glass science}} <!--Categories--> [[Category:Radioactive waste]] [[Category:Waste]] [[Category:Environmental economics]] [[Category:Glass engineering and science]] <!--Interwiki--> [[br:Lastez nukleel]] [[bg:Радиоактивни отпадъци]] [[cv:Радиоактивлă каяш]] [[da:Radioaktivt affald]] [[de:Radioaktiver Abfall]] [[es:Residuo radiactivo]] [[fa:ضایعات هسته‌ای]] [[fr:Déchet radioactif]] [[id:Limbah radioaktif]] [[it:Scorie radioattive]] [[ml:ആണവ അവശിഷ്ടം]] [[nl:Radioactief afval]] [[ja:放射性廃棄物]] [[pl:Odpady promieniotwórcze]] [[pt:Lixo nuclear]] [[ru:Радиоактивные отходы]] [[fi:Ydinjätehuolto]] [[sv:Radioaktivt avfall]] [[tr:Radyoaktif atık]] [[uk:Радіоактивні відходи]]