Spacecraft propulsion
28506
225174638
2008-07-12T08:06:57Z
Dashpool
1153438
/* Effectiveness of propulsion systems */ Energy is proportional to square of velocity, but energy over impulse is proportional to velocity
[[Image:NASA-SSME-test-firing.jpg|thumb|A remote camera captures a close-up view of a Space Shuttle Main Engine during a test firing at the [[John C. Stennis Space Center]] in [[Hancock County, Mississippi]]]]
'''Spacecraft propulsion''' is any method used to change the velocity of [[spacecraft]] and artificial [[satellite]]s. There are many different methods. Each method has drawbacks and advantages, and spacecraft propulsion is an active area of research. However, most spacecraft today are propelled by exhausting a gas from the back/rear of the vehicle at very high speed through a [[rocket engine nozzle|supersonic de Laval nozzle]]. This sort of [[engine]] is called a [[rocket engine]].
All current spacecraft use chemical rockets ([[bipropellant rocket|bipropellant]] or [[solid rocket|solid-fuel]]) for launch, though some (such as the [[Pegasus rocket]] and [[SpaceShipOne]]) have used [[air-breathing]] engines on their [[Multistage rocket|first stage]]. Most satellites have simple reliable chemical thrusters (often [[monopropellant rocket]]s) or [[resistojet rocket]]s for [[orbital station-keeping]] and some use [[momentum wheel]]s for [[attitude control]]. Soviet bloc satellites have used [[electric propulsion]] for decades, and newer Western geo-orbiting spacecraft are starting to use them for north-south stationkeeping. Interplanetary vehicles mostly use chemical rockets as well, although a few have experimentally used [[ion thruster]]s (a form of electric propulsion) to great success.
==The necessity for propulsion system ==
Artificial satellites must be [[Rocket launch|launched]] into [[orbit]], and once there they must be placed in their nominal orbit. Once in the desired orbit, they often need some form of [[attitude control]] so that they are correctly pointed with respect to the [[Earth]], the [[Sun]], and possibly some [[astronomy|astronomical]] object of interest.<ref>{{cite news
| author=Hess, M.; Martin, K. K.; Rachul, L. J.
| title=Thrusters Precisely Guide EO-1 Satellite in Space First
| publisher=NASA | date=February 7, 2002
| url=http://www.gsfc.nasa.gov/news-release/releases/2002/02-020.htm
| accessdate=2007-07-30 }}</ref> They are also subject to [[Atmospheric drag|drag]] from the thin [[Earth's atmosphere|atmosphere]], so that to stay in orbit for a long period of time some form of propulsion is occasionally necessary to make small corrections ([[orbital stationkeeping]]).<ref>{{cite web
| last=Phillips | first=Tony | date=May 30, 2000
| url=http://science.nasa.gov/headlines/y2000/ast30may_1m.htm
| title=Solar S'Mores | publisher=NASA
| accessdate=2007-07-30 }}</ref> Many satellites need to be moved from one orbit to another from time to time, and this also requires propulsion.<ref>{{cite web
| last=Olsen | first=Carrie | date=September 21, 1995
| url=http://liftoff.msfc.nasa.gov/academy/rocket_sci/satellites/hohmann.html
| title=Hohmann Transfer & Plane Changes | publisher=NASA
| accessdate=2007-07-30 }}</ref> When a satellite has exhausted its ability to adjust its orbit, its useful life is over.
Spacecraft designed to travel further also need propulsion methods. They need to be launched out of the Earth's atmosphere just as satellites do. Once there, they need to leave orbit and move around.
For [[interplanetary travel]], a spacecraft must use its engines to leave Earth orbit. Once it has done so, it must somehow make its way to its destination. Current interplanetary spacecraft do this with a series of short-term trajectory adjustments.<ref>{{cite web
| author=Staff | date=April 24, 2007
| url=http://mars.jpl.nasa.gov/odyssey/mission/cruise.html
| title=Interplanetary Cruise | publisher=NASA
| work=2001 Mars Odyssey | accessdate=2007-07-30 }}</ref> In between these adjustments, the spacecraft simply [[freefall|falls freely]] along its orbit. The simplest fuel-efficient means to move from one circular orbit to another is with a [[Hohmann transfer orbit]]: the spacecraft begins in a roughly circular orbit around the Sun. A short period of [[thrust]] in the direction of motion accelerates or decelerates the spacecraft into an elliptical orbit around the Sun which is tangential to its previous orbit and also to the orbit of its destination. The spacecraft falls freely along this elliptical orbit until it reaches its destination, where another short period of thrust accelerates or decelerates it to match the orbit of its destination.<ref>{{cite news
| first=Dave | last=Doody
| title=Chapter 4. Interplanetary Trajectories
| work=Basics of Space Flight | publisher=NASA JPL | date=February 7, 2002
| url=http://www2.jpl.nasa.gov/basics/bsf4-1.html
| accessdate=2007-07-30 }}</ref> Special methods such as [[aerobraking]] are sometimes used for this final orbital adjustment.<ref>{{cite conference
| first=S. | last=Hoffman
| title=A comparison of aerobraking and aerocapture vehicles for interplanetary missions
| booktitle =AIAA and AAS, Astrodynamics Conference
| pages=25 p.
| publisher=American Institute of Aeronautics and Astronautics
| date=August 20-22, 1984
| location=Seattle, Washington
| url=http://www.aiaa.org/content.cfm?pageid=406&gTable=mtgpaper&gID=44030
| accessdate = 2007-07-31 }}</ref>
[[Image:Ssunsail.jpg|thumb|250pix|right|Artist's conception of a solar sail]]
Some spacecraft propulsion methods such as [[solar sail]]s provide very low but inexhaustible thrust;<ref>{{cite web
| author=Anonymous | year=2007
| url=http://www.planetary.org/programs/projects/innovative_technologies/solar_sailing/facts.html
| title=Basic Facts on Cosmos 1 and Solar Sailing
| publisher=The Planetary Society | accessdate=2007-07-26 }}</ref> an interplanetary vehicle using one of these methods would follow a rather different trajectory, either constantly thrusting against its direction of motion in order to decrease its distance from the Sun or constantly thrusting along its direction of motion to increase its distance from the Sun.
Spacecraft for [[interstellar travel]] also need propulsion methods. No such spacecraft has yet been built, but many designs have been discussed. Since interstellar distances are very great, a tremendous velocity is needed to get a spacecraft to its destination in a reasonable amount of time. Acquiring such a velocity on launch and getting rid of it on arrival will be a formidable challenge for spacecraft designers.<ref>{{cite web
| last=Rahls | first=Chuck | date=December 07, 2005
| url=http://www.physorg.com/news8817.html
| title=Interstellar Spaceflight: Is It Possible?
| publisher=Physorg.com | accessdate=2007-07-31 }}</ref>
==Effectiveness of propulsion systems==
When in space, the purpose of a propulsion system is to change the velocity, or ''v'', of a spacecraft. Since this is more difficult for more massive spacecraft, designers generally discuss [[momentum]], ''mv''. The amount of change in momentum is called [[impulse]].<ref>{{cite web
| last=Zobel | first=Edward A. | year=2006
| url=http://id.mind.net/~zona/mstm/physics/mechanics/momentum/introductoryProblems/momentumSummary2.html
| title=Summary of Introductory Momentum Equations
| publisher=Zona Land | accessdate=2007-08-02 }}</ref> So the goal of a propulsion method in space is to create an impulse.
When launching a spacecraft from the Earth, a propulsion method must overcome a higher [[gravity drag|gravitational]] pull to provide a net positive acceleration.<ref name="beginners_guide">{{cite web
| last = Benson | first = Tom
| url=http://exploration.grc.nasa.gov/education/rocket/guided.htm
| title=Guided Tours: Beginner's Guide to Rockets
| publisher=NASA | accessdate = 2007-08-02 }}</ref>
In orbit, <!-- the spacecraft tangential velocity provides a centrifugal --><!--- it's centrifugal here because the spacecraft is in a non-inertial reference frame which rotates around the center of the planet and the force is *outwards*- the only centripetal force is *inwards* and is *gravity* here---> <!--acceleration that counteracts the acceleration due to gravity at a given path (which is actually the orbit path) so that --> any additional impulse, even very tiny, will result in a change in the orbit path.
The rate of change of velocity is called [[acceleration]], and the rate of change of momentum is called [[force]]. To reach a given velocity, one can apply a small acceleration over a long period of time, or one can apply a large acceleration over a short time. Similarly, one can achieve a given impulse with a large force over a short time or a small force over a long time. This means that for maneuvering in space, a propulsion method that produces tiny accelerations but runs for a long time can produce the same impulse as a propulsion method that produces large accelerations for a short time. When launching from a planet, tiny accelerations cannot overcome the planet's gravitational pull and so cannot be used.
The Earth's surface is situated fairly deep in a [[gravity well]] and it takes a velocity of 11.2 kilometers/second ([[escape velocity]]) or more to escape from it. As human beings evolved in a gravitational field of 1g (9.8 m/s²), an ideal propulsion system would be one that provides a continuous acceleration of '''1g''' (though human bodies can tolerate much larger accelerations over short periods). The occupants of a rocket or spaceship having such a propulsion system would be free from all the ill effects of [[free fall]], such as nausea, muscular weakness, reduced sense of taste, or leaching of calcium from their bones.
The law of [[conservation of momentum]] means that in order for a propulsion method to change the momentum of a space craft it must change the momentum of something else as well. A few designs take advantage of things like magnetic fields or light pressure in order to change the spacecraft's momentum, but in free space the rocket must bring along some mass to accelerate away in order to push itself forward. Such mass is called reaction mass.
In order for a rocket to work, it needs two things: reaction mass and energy. The impulse provided by launching a particle of reaction mass having mass ''m'' at velocity ''v'' is ''mv''. But this particle has kinetic energy ''mv''²/2, which must come from somewhere. In a conventional [[solid rocket|solid]], [[liquid rocket|liquid]], or [[hybrid rocket]], the fuel is burned, providing the energy, and the reaction products are allowed to flow out the back, providing the reaction mass. In an [[ion thruster]], electricity is used to accelerate ions out the back. Here some other source must provide the electrical energy (perhaps a [[Photovoltaic module|solar panel]] or a [[nuclear reactor]]), while the ions provide the reaction mass.<ref name="beginners_guide" />
When discussing the efficiency of a propulsion system, designers often focus on effectively using the reaction mass. Reaction mass must be carried along with the rocket and is irretrievably consumed when used. One way of measuring the amount of impulse that can be obtained from a fixed amount of reaction mass is the [[specific impulse]], the impulse per unit weight-on-Earth (typically designated by <math>I_{sp}</math>). The unit for this value is seconds. Since the weight on Earth of the reaction mass is often unimportant when discussing vehicles in space, specific impulse can also be discussed in terms of impulse per unit mass. This alternate form of specific impulse uses the same units as velocity (e.g. m/s), and in fact it is equal to the effective exhaust velocity of the engine (typically designated <math>v_{e}</math>). Confusingly, both values are sometimes called specific impulse. The two values differ by a factor of [[standard gravity|''g''<sub>n</sub>]], the standard acceleration due to gravity 9.80665 m/s² (<math>I_{sp} g_\mathrm{n} = v_{e}</math>).
A rocket with a high exhaust velocity can achieve the same impulse with less reaction mass. However, the energy required for that impulse is proportional to the exhaust velocity, so that more mass-efficient engines require much more energy, and are typically less energy efficient. This is a problem if the engine is to provide a large amount of thrust. To generate a large amount of impulse per second, it must use a large amount of energy per second. So highly (mass) efficient engines require enormous amounts of energy per second to produce high thrusts. As a result, most high-efficiency engine designs also provide very low thrust.
===Delta-v and propellant use===
[[Image:Rocket mass ratio versus delta-v.png|thumb|right|Rocket [[mass ratio]]s versus final velocity, as calculated from the rocket equation.]]
Burning the entire usable propellant of a spacecraft through the engines in a straight line in free space would produce a net velocity change to the vehicle; this number is termed '[[delta-v]]' (<math>\Delta v</math>).
If the exhaust velocity is constant then the total <math>\Delta v</math> of a vehicle can be calculated using the rocket equation, where ''M'' is the mass of propellant, ''P'' is the mass of the payload (including the rocket structure), and <math>v_e</math> is the [[effective exhaust velocity|velocity of the rocket exhaust]]. This is known as the [[Tsiolkovsky rocket equation]]:
:<math> \Delta v = -v_e \ln \left(\frac{M+P}{P}\right). </math>
For historical reasons, as discussed above, <math>v_e</math> is sometimes written as
:<math> v_e = I_{sp} g_{o} </math>
where <math>I_{sp}</math> is the [[specific impulse]] of the rocket, measured in seconds, and <math>g_{o}</math> is the [[gravitational acceleration]] at sea level.
For a high delta-v mission, the majority of the spacecraft's mass needs to be reaction mass. Since a rocket must carry all of its reaction mass, most of the initially-expended reaction mass goes towards accelerating reaction mass rather than payload. If the rocket has a payload of mass ''P'', the spacecraft needs to change its velocity by
<math>\Delta v</math>, and the rocket engine has exhaust velocity ''v<sub>e</sub>'', then the mass ''M'' of reaction mass which is needed can be calculated using the rocket equation and the formula for <math>I_{sp}</math>:
:<math> M = P \left(e^{\Delta v/v_e}-1\right).</math>
For <math>\Delta v</math> much smaller than ''v<sub>e</sub>'', this equation is roughly [[linear]], and little reaction mass is needed. If <math>\Delta v</math> is comparable to ''v<sub>e</sub>'', then there needs to be about twice as much fuel as combined payload and structure (which includes engines, fuel tanks, and so on). Beyond this, the growth is exponential; speeds much higher than the exhaust velocity require very high ratios of fuel mass to payload and structural mass.
For a mission, for example, when launching from or landing on a planet, the effects of gravitational attraction and any atmospheric drag must be overcome by using fuel. It is typical to combine the effects of these and other effects into an effective mission [[delta-v]]. For example a launch mission to low Earth orbit requires about 9.3-10 km/s delta-v. These mission delta-vs are typically numerically integrated on a computer.
===Power use and propulsive efficiency===
Although [[solar energy|solar power]] and nuclear power are virtually unlimited sources of ''energy'', the maximum ''power'' they can supply is substantially proportional to the mass of the powerplant. For fixed power, with a large <math>v_{e}</math> which is desirable to save propellant mass, it turns out that the maximum acceleration is inversely proportional to <math>v_{e}</math>. Hence the time to reach a required delta-v is proportional to <math>v_{e}</math>. Thus the latter should not be too large. It might be thought that adding power generation is helpful, however this takes mass away from payload, and ultimately reaches a limit as the payload fraction tends to zero.
For all [[reaction engine]]s (such as rockets and ion drives) some energy must go into accelerating the reaction mass.
Every engine will waste some energy, but even assuming 100% efficiency, to accelerate a particular mass of exhaust the engine will need energy amounting to
:<math>\begin{matrix} \frac{1}{2} \end{matrix} Mv_e^2</math>
which is simply the energy needed to accelerate the exhaust. This energy is not necessarily lost- some of it usually ends up as kinetic energy of the vehicle, and the rest is wasted in residual motion of the exhaust.
[[Image:PropulsiveEfficiency.GIF|thumb|right|Due to energy carried away in the exhaust the energy efficiency of a reaction engine varies with the speed of the exhaust relative to the speed of the vehicle, this is called [[propulsive efficiency]]]]
Comparing the rocket equation (which shows how much energy ends up in the final vehicle) and the above equation (which shows the total energy required) shows that even with 100% engine efficiency, certainly not all energy supplied ends up in the vehicle - some of it, indeed usually most of it, ends up as kinetic energy of the exhaust.
The exact amount depends on the design of the vehicle, and the mission. However there are some useful fixed points:
*if the <math>I_{sp}</math> is fixed, for a mission delta-v, there is a particular <math>I_{sp}</math> that minimises the overall energy used by the rocket. This comes to an exhaust velocity of about ⅔ of the mission delta-v (see [[Tsiolkovsky rocket equation#Energy|the energy computed from the rocket equation]]). Drives with a specific impulse that is both high and fixed such as Ion thrusters have exhaust velocities that can be enormously higher than this ideal for many missions.
*if the exhaust velocity can be made to vary so that at each instant it is equal and opposite to the vehicle velocity then the absolute minimum energy usage is achieved. When this is achieved, the exhaust stops in space {{note|frames||}} and has no kinetic energy; and the propulsive efficiency is 100%- all the energy ends up in the vehicle (in principle such a drive would be 100% efficient, in practice there would be thermal losses from within the drive system and residual heat in the exhaust). However in most cases this uses an impractical quantity of propellant, but is a useful theoretical consideration. Another complication is that unless the vehicle is moving initially, it cannot accelerate, as the exhaust velocity is zero at zero speed.
Some drives (such as [[Variable specific impulse magnetoplasma rocket|VASIMR]] or [[Electrodeless plasma thruster]] ) actually can significantly vary their exhaust velocity. This can help reduce propellant usage or improve acceleration at different stages of the flight. However the best energetic performance and acceleration is still obtained when the exhaust velocity is close to the vehicle speed. Proposed ion and plasma drives usually have exhaust velocities enormously higher than that ideal (in the case of VASIMR the lowest quoted speed is around 15000 m/s compared to a mission delta-v from high Earth orbit to Mars of about [[Delta-v#Delta-vs around the Solar System|4000m/s]]).
===Example===
Suppose we want to send a 10,000 kg space probe to Mars. The required <math>\Delta v</math> from [[Low Earth orbit|LEO]] is approximately 3000 m/s, using a [[Hohmann transfer orbit]]. (A manned craft would need to take a faster route and use more fuel). For the sake of argument, let us say that the following thrusters may be used:
{| class="wikitable"
|-
!Engine
![[Specific impulse|Effective Exhaust Velocity]]<br>(km/s)
!Specific impulse<br>(s)
!Fuel mass<br>(kg)
!Energy required<br>(GJ)
!Energy per kg<br>of propellant
!minimum power/thrust<!-- i.e. assumes 100% energetic efficiency- in practice 50% is more typical... --->
!Power generator mass/thrust*
|-
|[[Solid rocket]]<br />
|1
|100
|190,000
|95
|500 kJ
|0.5 kW/N
|N/A
|-
|[[Bipropellant rocket]]<br />
|5
|500
|8,200
|103
|12.6 MJ
|2.5 kW/N
|N/A
|-
|[[Ion thruster]]
|50
|5,000
|620
|775
|1.25 GJ
|25 kW/N
|25 kg/N
|-
|Advance electrically powered drive
|1,000
|100,000
|30
|15,000
|500 GJ
|500 kW/N
|500 kg/N
|}
:*- assumes a specific power of 1kW
Observe that the more fuel-efficient engines can use far less fuel; its mass is almost negligible (relative to the mass of the payload and the engine itself) for some of the engines. However, note also that these require a large total amount of energy. For Earth launch, engines require a thrust to weight ratio of more than unity. To do this they would have to be supplied with Gigawatts of power — equivalent to a major metropolitan [[electricity generation|generating station]]. From the table it can be seen that this is clearly impractical with current power sources.
Instead, a much smaller, less powerful generator may be included which will take much longer to generate the total energy needed. This lower power is only sufficient to accelerate a tiny amount of fuel per second, and would be insufficient for launching from the Earth but in orbit, where there is no friction, over long periods the velocity will be finally achieved. For example. it took the [[Smart 1]] more than a year to reach the Moon, while with a chemical rocket it takes a few days. Because the ion drive needs much less fuel, the total launched mass is usually lower, which typically results in a lower overall cost.
Mission planning frequently involves adjusting and choosing the propulsion system according to the mission delta-v needs, so as to minimise the total cost of the project, including trading off greater or lesser use of fuel and launch costs of the complete vehicle.
==Space propulsion methods==
{{Prose|date=July 2007}}
Propulsion methods can be classified based on their means of accelerating the reaction mass. There are also some special methods for launches, planetary arrivals, and landings.
===Reaction engines===
{{main|Reaction engine}}
====Rocket engines====
{{main|Rocket engine}}
[[Image:SpaceX_engine_test_fire.jpg|thumb|right|[[SpaceX]]'s [[Kestrel (rocket engine)|Kestrel engine]] is tested]]
Most rocket engines are [[internal combustion engine|internal combustion]] [[heat engines]] (although non combusting forms exist). Rocket engines generally produce a high temperature reaction mass, as a hot gas. This is achieved by combusting a solid, liquid or gaseous fuel with an oxidiser within a combustion chamber. The extremely hot gas is then allowed to escape through a high-expansion ratio [[de Laval nozzle|nozzle]]. This bell-shaped nozzle is what gives a rocket engine its characteristic shape. The effect of the nozzle is to dramatically accelerate the mass, converting most of the thermal energy into kinetic energy. Exhaust speeds as high as 10 times the speed of sound at sea level are common.
Ion propulsion rockets can heat a plasma or charged gas inside a [[magnetic bottle]] and release it via a [[magnetic nozzle]], so that no solid matter need come in contact with the plasma. Of course, the machinery to do this is complex, but research into [[nuclear fusion]] has developed methods, some of which have been proposed to be used in propulsion systems, and some have been tested in a lab.
See [[rocket engine]] for a listing of various kinds of rocket engines using different heating methods, including chemical, electrical, solar, and nuclear.
====Electromagnetic acceleration of reaction mass====
[[Image:Ion-engine-NASA.jpg|thumb|right|250pix|This test engine accelerates ions using electrostatic forces]]
Rather than relying on high temperature and [[fluid dynamics]] to accelerate the reaction mass to high speeds, there are a variety of methods that use electrostatic or [[electromagnetism|electromagnetic]] forces to accelerate the reaction mass directly. Usually the reaction mass is a stream of [[ion]]s. Such an engine very typically uses electric power, first to ionise atoms, and then uses a voltage gradient to accelerate the ions to high exhaust velocities.
For these drives, at the highest exhaust speeds, energetic efficiency and thrust are all inversely proportional to exhaust velocity. Their very high exhaust velocity means they require huge amounts of energy and thus with practical power sources provide low thrust, but use hardly any fuel.
For some missions, particularly reasonably close to the Sun, [[solar energy]] may be sufficient, and has very often been used, but for others further out or at higher power, nuclear energy is necessary; engines drawing their power from a nuclear source are called [[nuclear electric rocket]]s.
With any current source of electrical power, chemical, nuclear or solar, the maximum amount of power that can be generated limits the amount of thrust that can be produced to a small value. Power generation adds significant mass to the spacecraft, and ultimately the weight of the power source limits the performance of the vehicle.
Current nuclear power generators are approximately half the weight of solar panels per watt of energy supplied, at terrestrial distances from the Sun. Chemical power generators are not used due to the far lower total available energy. Beamed power to the spacecraft shows some potential. However, the dissipation of waste heat from any power plant may make any propulsion system requiring a separate power source infeasible for interstellar travel.
Some electromagnetic methods:
* [[Ion thrusters]] (accelerate ions first and later neutralize the ion beam with an electron stream emitted from a cathode called a neutralizer)
**[[Electrostatic ion thruster]]
**[[Field Emission Electric Propulsion]]
**[[Hall effect thruster]]
**[[Colloid thruster]]
* [[Plasma thrusters]] (where both ions and electrons are accelerated simultaneously, no neutralizer is required)
**[[Magnetoplasmadynamic thruster]]
**[[Helicon Double Layer Thruster]]
**[[Electrodeless plasma thruster]]
**[[Pulsed plasma thruster]]
**[[Pulsed inductive thruster]]
**[[Variable specific impulse magnetoplasma rocket|Variable specific impulse magnetoplasma rocket (VASIMR)]]
*[[Mass driver]]s (for propulsion)
===Systems without reaction mass carried within the spacecraft===
[[Image:Solarsail msfc.jpg|right|thumb|NASA study of a solar sail. The sail would be half a kilometer wide.]]
The [[conservation law|law of conservation]] of [[momentum]] states that any engine which uses no reaction mass cannot move the center of mass of a spaceship (changing orientation, on the other hand, is possible). But space is not empty, especially space inside the Solar System; there are gravitation fields, [[magnetic field]]s, [[solar wind]] and solar radiation. Various propulsion methods try to take advantage of these. However, since these phenomena are diffuse in nature, corresponding propulsion structures need to be proportionately large.
There are several different space drives that need little or no reaction mass to function. A [[tether propulsion]] system employs a long cable with a high tensile strength to change a spacecraft's orbit, such as by interaction with a planet's magnetic field or through momentum exchange with another object.<ref>{{cite news
| first=Dave | last=Drachlis
| title=NASA calls on industry, academia for in-space propulsion innovations
| publisher=NASA | date=October 24, 2002
| url=http://www.msfc.nasa.gov/news/news/releases/2002/02-269.html
| accessdate=2007-07-26 }}</ref> [[Solar sail]]s rely on [[radiation pressure]] from electromagnetic energy, but they require a large collection surface to function effectively. The [[magnetic sail]] deflects charged particles from the [[solar wind]] with a magnetic field, thereby imparting momentum to the spacecraft. A variant is the [[mini-magnetospheric plasma propulsion]] system, which uses a small cloud of plasma held in a magnetic field to deflect the Sun's charged particles.
For changing the orientation of a satellite or other space vehicle, [[conservation of angular momentum]] does not pose a similar constraint. Thus many satellites use [[momentum wheel]]s to control their orientations. These cannot be the only system for controlling satellite orientation, as the angular momentum built up due to torques from external forces such as solar, magnetic, or tidal forces eventually needs to be "bled off" using a secondary system.
[[Gravitational slingshot]]s can also be used to carry a probe onward to other destinations.
==Planetary and atmospheric spacecraft propulsion==
===Launch mechanisms===
{{main|space launch}}
[[Image:Lunar base concept drawing s78 23252.jpg|right|thumb|225pix|An artist's conception of an electromagnetic catapult on the Moon]]
High thrust is of vital importance for Earth launch, thrust has to be greater than weight (see also [[gravity drag]]). Many of the propulsion methods above give a thrust/weight ratio of much less than 1, and so cannot be used for launch.
All current spacecraft use chemical rocket engines ([[bipropellant rocket|bipropellant]] or [[solid rocket|solid-fuel]]) for launch. Other power sources such as nuclear have been proposed, and tested, but safety, environmental and political considerations have so far curtailed their use.
One advantage that spacecraft have in launch is the availability of infrastructure on the ground to assist them. Proposed [[non-rocket spacelaunch]] ground-assisted launch mechanisms include:
*[[Space elevator]] (a geostationary tether to orbit)
*[[Launch loop]] (a very fast enclosed rotating loop about 80km tall)
*[[Space fountain]] (a very tall building held up by a stream of masses fired from base)
*[[Orbital ring]] (a ring around the Earth with spokes hanging down off bearings)
*[[Hypersonic skyhook]] (a fast spinning orbital tether)
*[[mass driver|Electromagnetic catapult]] ([[railgun]], [[coilgun]]) (an electric gun)
*[[Space gun]] ([[Project HARP]], [[ram accelerator]]) (a chemically powered gun)
*[[Laser propulsion]] ([[Lightcraft]]) (rockets powered from ground-based lasers)
=== Airbreathing engines for orbital launch===
{{main|Jet engine}}
Studies generally show that conventional air-breathing engines, such as [[ramjets]] or [[turbojets]] are basically too heavy (have too low a thrust/weight ratio) to give any significant performance improvement when installed on a launch vehicle itself. However, launch vehicles can be [[air launch]]ed from separate lift vehicles (e.g. [[B-29 Superfortress|B-29]], [[Pegasus rocket|Pegasus Rocket]] and [[Scaled Composites White Knight|White Knight]]) which do use such propulsion systems.
On the other hand, very lightweight or very high speed engines have been proposed that take advantage of the air during ascent:
* [[SABRE]] - a lightweight hydrogen fuelled turbojet with precooler<ref>{{cite web
| author=Anonymous | year=2006
| url=http://www.reactionengines.co.uk/sabre.html
| title=The Sabre Engine
| publisher=Reaction Engines Ltd.
| accessdate=2007-07-26 }}</ref>
* [[ATREX]] - a lightweight hydrogen fuelled turbojet with precooler<ref>{{cite journal
| author=Harada, K.; Tanatsugu, N.; Sato, T.
| title=Development Study on ATREX Engine
| journal=Acta Astronautica
| year=1997 | volume=41 | issue=12 | pages=851–862
| doi=10.1016/S0094-5765(97)00176-8 }}</ref>
* [[Liquid air cycle engine]] - a hydrogen fuelled jet engine that liquifies the air before burning it in a rocket engine
* [[Scramjet]] - jet engines that use supersonic combustion
Normal rocket launch vehicles fly almost vertically before rolling over at an altitude of some tens of kilometers before burning sideways for orbit; this initial vertical climb wastes propellant but is optimal as it greatly reduces airdrag. Airbreathing engines burn propellant much more efficiently and this would permit a far flatter launch trajectory, the vehicles would typically fly approximately tangentially to the earth surface until leaving the atmosphere then perform a rocket burn to bridge the final [[delta-v]] to orbital velocity.
===Planetary arrival and landing===
[[Image:NASA-pathfinder-airbag-test.jpg|thumb|right|A test version of the MARS Pathfinder airbag system]]
When a vehicle is to enter orbit around its destination planet, or when it is to land, it must adjust its velocity. This can be done using all the methods listed above (provided they can generate a high enough thrust), but there are a few methods that can take advantage of planetary atmospheres and/or surfaces.
* [[Aerobraking]] allows a spacecraft to reduce the high point of an elliptical orbit by repeated brushes with the atmosphere at the low point of the orbit. This can save a considerable amount of fuel since it takes much less delta-V to enter an elliptical orbit compared to a low circular orbit. Since the braking is done over the course of many orbits, heating is comparatively minor, and a heat shield is not required. This has been done on several Mars missions such as [[Mars Global Surveyor]], [[2001 Mars Odyssey|Mars Odyssey]] and [[Mars Reconnaissance Orbiter]], and at least one Venus mission, [[Magellan probe|Magellan]].
* [[Aerocapture]] is a much more aggressive manoeuver, converting an incoming hyperbolic orbit to an elliptical orbit in one pass. This requires a heat shield and much trickier navigation, since it must be completed in one pass through the atmosphere, and unlike aerobraking no preview of the atmosphere is possible. If the intent is to remain in orbit, then at least one more propulsive maneuver is required after aerocapture—otherwise the low point of the resulting orbit will remain in the atmosphere, resulting in eventual re-entry. Aerocapture has not yet been tried on a planetary mission, but the [[Skip reentry|re-entry skip]] by [[Zond 6]] and [[Zond 7]] upon lunar return were aerocapture maneuvers, since they turned a hyperbolic orbit into an elliptical orbit. On these missions, since there was no attempt to raise the perigee after the aerocapture, the resulting orbit still intersected the atmosphere, and re-entry occurred at the next perigee.
* [[Parachute]]s can land a probe on a planet with an atmosphere, usually after the atmosphere has scrubbed off most of the velocity, using a [[Atmospheric reentry|heat shield]].
* [[Airbag]]s can soften the final landing.
* [[Lithobraking]], or stopping by simply smashing into the target, is usually done by accident. However, it may be done deliberately with the probe expected to survive (see, for example, [[Deep Space 2]]). Very sturdy probes and low approach velocities are required.
==Proposed spacecraft methods that may violate the laws of physics==
[[Image:Wormhole travel as envisioned by Les Bossinas for NASA.jpg|thumb|right|Artist's conception of a warp drive design]]
In addition, a variety of hypothetical propulsion techniques have been considered that would require entirely new principles of physics to realize and that may not actually be possible. To date, such methods are highly speculative and include:
*[[Breakthrough Propulsion Physics Program#Diametric drive|Diametric drive]]
*[[Breakthrough Propulsion Physics Program#Pitch drive and bias drive|Pitch drive]]
*[[Breakthrough Propulsion Physics Program#Pitch drive and bias drive|Bias drive]]
*[[Breakthrough Propulsion Physics Program#Disjunction drive|Disjunction drive]]
*[[Alcubierre drive]] (a form of [[Warp drive]])
*[[Breakthrough Propulsion Physics Program#Differential sail|Differential sail]]
*[[Wormhole]]s - theoretically possible, but impossible in practice with current technology
*[[Reactionless drive]]s - breaks the law of [[conservation of momentum]]; theoretically impossible
*[[EmDrive]] - tries to circumvent the law of conservation of momentum; may be theoretically impossible
*A "hyperspace" drive based upon [[Heim theory]]
==Table of methods and their specific impulse==
Below is a summary of some of the more popular, proven technologies, followed by increasingly speculative methods.
Four numbers are shown. The first is the [[specific impulse|effective exhaust velocity]]: the equivalent speed that the propellant leaves the vehicle. This is not necessarily the most important characteristic of the propulsion method, thrust and power consumption and other factors can be, however:
*if the delta-v is much more than the exhaust velocity, then exorbitant amounts of fuel are necessary (see the section on calculations, above)
*if it is much more than the delta-v, then, proportionally more energy is needed; if the power is limited, as with solar energy, this means that the journey takes a proportionally longer time
The second and third are the typical amounts of thrust and the typical burn times of the method. Outside a gravitational potential small amounts of thrust applied over a long period will give the same effect as large amounts of thrust over a short period. (This result does not apply when the object is significantly influenced by gravity.)
The fourth is the maximum delta-v this technique can give (without staging). For rocket-like propulsion systems this is a function of mass fraction and exhaust velocity. Mass fraction for rocket-like systems is usually limited by propulsion system weight and tankage weight. For a system to achieve this limit, typically the payload may need to be a negligible percentage of the vehicle, and so the practical limit on some systems can be much lower.
{| border="0" cellspacing="0" cellpadding="2"
|+ Propulsion methods
|-
!Method !![[Specific impulse|Effective Exhaust Velocity]]<br>(km/s)!![[Thrust]]<br>(N)!! Firing Duration !! Maximum Delta-v (km/s)
|-
|- style="background-color: lightgray"
!Propulsion methods in current use || || || ||
|-
|align="right"|[[Solid rocket]] ||align="center"| 1 - 4 || 10<sup>3</sup> - 10<sup>7</sup> || minutes || ~ 7
|-
|align="right"|[[Hybrid rocket]] ||align="center"| 1.5 - 4.2 || <0.1 - 10<sup>7</sup> || minutes || > 3
|-
|align="right"|[[Monopropellant rocket]] ||align="center"| 1 - 3 || 0.1 - 100 || milliseconds - minutes || ~ 3
|-
|align="right"|[[Bipropellant rocket]] ||align="center"| 1 - 4.7 || 0.1 - 10<sup>7</sup> || minutes || ~ 9
|-
|align="right"|[[Tripropellant rocket]] ||align="center"| 2.5 - 5.3 || || minutes || ~ 9
|-
|align="right"|[[Resistojet rocket]] ||align="center"| 2 - 6 || 10<sup>-2</sup> - 10 || minutes ||
|-
|align="right"|[[Arcjet rocket]] ||align="center"| 4 - 16 || 10<sup>-2</sup> - 10 || minutes
||
|-
|align="right"|[[Hall effect thruster]] (HET) ||align="center"| 8 - 50 || 10<sup>-3</sup> - 10 || months/years || > 100
|-
|align="right"|[[Electrostatic ion thruster]] ||align="center"| 15 - 80 || 10<sup>-3</sup> - 10 || months/years || > 100
|-
|align="right"|[[Field Emission Electric Propulsion]] (FEEP) ||align="center"| 100 - 130 || 10<sup>-6</sup> - 10<sup>-3</sup> || months/years ||
|-
|align="right"|[[Pulsed plasma thruster]] (PPT) ||align="center"| ~ 20 || ~ 0.1 || ~ 2,000 - ~ 10,000 hours ||
|-
|align="right"|[[Pulsed inductive thruster]] (PIT) ||align="center"| 50 || 20 || months ||
|-
|align="right"|[[Nuclear electric rocket]]
|colspan="3" align="center"|As electric propulsion method used
|- style="background-color: lightgray"
!Currently feasible propulsion methods ||align="center"| || || ||
|-
|align="right"|[[Solar sail]]s ||align="center"| N/A || 9 per km²<br> (at 1 [[astronomical unit|AU]]) || Indefinite || > 40
|-
|align="right"|[[Tether propulsion]] ||align="center"| N/A || 1 - 10<sup>12</sup> || minutes || ~ 7
|-
|align="right"|[[Mass driver]]s (for propulsion) ||align="center"| 30 - ? || 10<sup>4</sup> - 10<sup>8</sup> || months ||
|-
|align="right"|[[Launch loop]] ||align="center"| N/A || ~10<sup>4</sup> || minutes || >> 11
|-
|align="right"|[[Project Orion (nuclear propulsion)|Orion Project]] (Near term nuclear pulse propulsion) ||align="center"| 20 - 100 || 10<sup>9</sup> - 10<sup>12</sup> <!-- (not a misprint) --> || several days || ~30-60
|-
|align="right"|[[Magnetic field oscillating amplified thruster]] ||align="center"|10 - 130 || 0,1 - 1 || days - months || > 100
|-
|align="right"|[[Variable specific impulse magnetoplasma rocket]] (VASIMR) ||align="center"| 10 - 300 || 40 - 1,200 || days - months || > 100
|-
|align="right"|[[Magnetoplasmadynamic thruster]] (MPD) ||align="center"| 20 - 100 || 100 || weeks ||
|-
|align="right"|[[Nuclear thermal rocket]] ||align="center"| 9 || 10<sup>5</sup> || minutes || > ~ 20
|-
|align="right"|[[Solar thermal rocket]] ||align="center"| 7 - 12 || 1 - 100 || weeks || > ~ 20
|-
|align="right"|[[Radioisotope rocket]] ||align="center"| 7 - 8 || || months ||
|-
|align="right"|[[Air-augmented rocket]] ||align="center"| 5 - 6 || 0.1 - 10<sup>7</sup> || seconds-minutes || > 7?
|-
|align="right"|[[Liquid air cycle engine]] ||align="center"| 4.5 || 1000 - 10<sup>7</sup> || seconds-minutes || ?
|-
|align="right"|[[SABRE]]<ref>[http://www.reactionengines.co.uk/sabre.html Reaction Engines Limited :: The Sabre Engine<!-- Bot generated title -->]</ref> ||align="center"| 30/4.5 || 0.1 - 10<sup>7</sup> || minutes || 9.4
|-
|align="right"|[[Dual mode propulsion rocket]] ||align="center"| || || ||
|- style="background-color: lightgray"
!Technologies requiring further research || ||align="center"| || ||
|-
|align="right"|[[Magnetic sail]]s ||align="center"| N/A || Indefinite || Indefinite ||
|-
|align="right"|[[Mini-magnetospheric plasma propulsion]] ||align="center"| 200 || ~1 N/kW || months ||
|-
|align="right"|[[Nuclear pulse propulsion]] ([[Project Daedalus]]' drive) ||align="center"| 20 - 1,000 || 10<sup>9</sup> - 10<sup>12</sup> <!-- (not a misprint) --> || years || ~15,000
|-
|align="right"|[[Gas core reactor rocket]] ||align="center"| 10 - 20 || 10³ - 10<sup>6</sup> || ||
|-
|align="right"|[[Nuclear salt-water rocket]] ||align="center"| 100 || 10³ - 10<sup>7</sup> || half hour ||
|-
|align="right"|[[Beam-powered propulsion]]
|colspan="3" align="center"|As propulsion method powered by beam
|-
|align="right"|[[Fission sail]] ||align="center"| || || ||
|-
|align="right"|[[Fission-fragment rocket]] ||align="center"| 1,000 || || ||
|-
|align="right"|[[Nuclear photonic rocket]] ||align="center"| 300,000 || 10<sup>-5</sup> - 1 || years-decades ||
|-
|-
|align="right"|[[Fusion rocket]] ||align="center"| 100 - 1,000
|| || ||
|-
|align="right"|[[Space Elevator]] ||align="center"| N/A || N/A || Indefinite || > 12
|- style="background-color: lightgray"
!Significantly beyond current engineering || ||align="center"| || ||
|-
|align="right"|[[Antimatter catalyzed nuclear pulse propulsion]] ||align="center"| 200 - 4,000 || || days-weeks ||
|-
|align="right"|[[Antimatter rocket]] ||align="center"| 10,000 - 100,000 || || ||
|-
|align="right"|[[Bussard ramjet]] ||align="center"| 2.2 - 20,000 || || indefinite || ~30,000
<!--This next one is obscure. It's a toroid that spins inside out at about the speed of light and causes GR frame dragging effects that can accelerate things without any apparent g-force. The toroid stays put and stuff goes whizzing out from the middle at up to a significant fraction of the speed of light. Cute physics, but *really* hard to build.--->
|-
|align="right"|[[Gravitoelectromagnetism#Higher-order effects|Gravitoelectromagnetic toroidal launchers]]||align="center"| || || || <300,000
|}
==Testing spacecraft propulsion==
Spacecraft propulsion systems are often first statically tested on the Earth's surface, within the atmosphere but many systems require a vacuum chamber to test fully. Rockets are usually tested at a [[rocket engine test facility]] well away from habitation and other buildings for safety reasons. [[Ion drive]]s are far less dangerous and require much less stringent safety, usually only a large-ish vacuum chamber is needed.
Famous static test locations can be found at [[Rocket_engine_test_facility#Rocket_ground_test_facilities|Rocket Ground Test Facilities]]
Some systems cannot be adequately tested on the ground and test launches may be employed at a [[rocket launch site|Rocket Launch Site]].
==See also==
{{Portal | Spaceflight | RocketSunIcon.svg}}
* [[Interplanetary travel]]
* [[Interstellar travel]]
* [[List of aerospace engineering topics]]
* [[Magnetic sail]]
* [[Orbital maneuver]]
* [[Orbital mechanics]]
* [[Pulse detonation engine]]
* [[Rocket]]
* [[Rocket engine nozzles]]
* [[Satellite]]
* [[Solar sail]]
* [[Specific impulse]]
* [[Tsiolkovsky rocket equation]]
==Notes==
#{{note|frames}} With things moving around in orbits and nothing staying still, the question may be quite reasonably asked, stationary relative to what? The answer is for the energy to be zero (and in the absence of gravity which complicates the issue somewhat), the exhaust must stop relative to the ''initial'' motion of the rocket before the engines were switched on. It is possible to do calculations from other reference frames, but consideration for the kinetic energy of the exhaust and propellant needs to be given. In Newtonian mechanics the initial position of the rocket is the centre of mass frame for the rocket/propellant/exhaust, and has the minimum energy of any frame.
==References==
<div class="references-small">
<references/>
</div>
15. Bolonkin A.A., '''Non-Rocket Space Launch and Flight,''' Elsevier, 2006, 488 pgs.
==External links==
* [http://www.grc.nasa.gov/WWW/K-12/airplane/bgp.html NASA Beginner's Guide to Propulsion]
* [http://www.grc.nasa.gov/WWW/bpp/ NASA Breakthrough Propulsion Physics project]
* [http://www.braeunig.us/space/propuls.htm Rocket Propulsion]
* [http://www.transtatorindustries.org/JOATP.html Journal of Advanced Theoretical Propulsion]
* [http://www.projectrho.com/rocket/rocket3c2.html Different Rockets]
* [http://www.islandone.org/LEOBiblio/ Earth-to-Orbit Transportation Bibliography]
* [http://www.vectorsite.net/tarokt.html Spaceflight Propulsion] - a detailed survey by Greg Goebel, in the public domain
* [http://www.howstuffworks.com/rocket1.htm Rocket motors on howstuffworks.com]
* [http://www.cpia.jhu.edu/ Johns Hopkins University, Chemical Propulsion Information Analysis Center]
[[Category:Spacecraft propulsion]]
[[Category:Spacecraft components]]
[[Category:Aerospace engineering]]
[[de:Antriebsmethoden für die Raumfahrt]]
[[fr:Propulsion spatiale]]
[[id:Propulsi pesawat angkasa]]
[[it:Propulsione spaziale]]
[[he:שיטות הנעה של חללית]]
[[lv:Kosmosa kuģa virzīšana]]
[[pt:Propulsão de naves espaciais]]
[[zh:航天器推进]]