Stainless steel
27059
226168120
2008-07-17T03:26:53Z
Vsmith
84417
Reverted edits by [[Special:Contributions/203.208.92.162|203.208.92.162]] ([[User talk:203.208.92.162|talk]]) to last version by Wizard191
{{Steels}}[[Image:gateway arch.jpg|thumb|right|The 630-foot (192 m) high, stainless-clad (type 304) [[Jefferson National Expansion Memorial#The Gateway Arch|Gateway Arch]] defines [[St. Louis, Missouri|St. Louis's]] skyline.]]
In [[metallurgy]], '''stainless steel''' is defined as a [[steel]] [[alloy]] with a minimum of 11.5 wt% [[chromium]] content.<ref>{{cite web|url=http://www.steel.org |title=Steel Glossary |accessmonthday=July 30 |accessyear=2006 |publisher= [[American Iron and Steel Institute]] (AISI)}}</ref> Stainless steel does not stain, corrode or rust as easily as ordinary steel (it "stains less"), but it is not stain-proof. It is also called '''corrosion resistant steel''' when the alloy type and grade are not detailed, particularly in the aviation industry. There are different grades and surface finishes of stainless steel to suit the environment to which the material will be subjected in its lifetime. Common uses of stainless steel are [[cutlery]] and [[watch]] straps.
Stainless steel differs from carbon steel by amount of chromium present. Carbon steel rusts when exposed to air and moisture. This iron oxide film is active and accelerates corrosion by forming more iron oxide. Stainless steels have sufficient amount of chromium present so that a passive film of chromium oxide forms which prevents further corrosion.
== History ==
[[Image:Stainless_steel_nyt_1-31-1915.jpg|left|thumb|250px|An announcement, as it appeared in the 1915 ''New York Times'', of the discovery of stainless steel.<ref name="NYT">{{cite journal|journal=New York Times|title=A non-rusting steel|date=31 January 1915}}</ref>]]
A few corrosion-resistant iron artifacts survive from antiquity. A famous (and very large) example is the [[Iron Pillar of Delhi]], erected by order of [[Kumara Gupta I]] around the year [[400|AD 400]]. However, unlike stainless steel, these artifacts owe their durability not to chromium, but to their high [[phosphorus]] content, which together with favorable local weather conditions promotes the formation of a solid protective [[passivation layer]] of [[iron oxide]]s and [[phosphate]]s, rather than the non-protective, cracked [[rust]] layer that develops on most ironwork.
The corrosion resistance of iron-chromium alloys was first recognized in 1821 by the [[France|French]] metallurgist [[Pierre Berthier]], who noted their resistance against attack by some acids and suggested their use in [[cutlery]]. However, the metallurgists of the 19th century were unable to produce the combination of low carbon and high chromium found in most modern stainless steels, and the high-chromium alloys they could produce were too brittle to be of practical interest.
This situation changed in the late 1890s, when [[Hans Goldschmidt]] of [[Germany]] developed an aluminothermic ([[thermite]]) process for producing carbon-free chromium. In the years 1904–1911, several researchers, particularly [[Leon Guillet]] of France, prepared alloys that would today be considered stainless steel.
In Germany, [[Friedrich Krupp Germaniawerft]] built the 366-ton sailing yacht ''Germania'' featuring a chrome-nickel steel hull in 1908.<ref>{{cite web |url=http://dhr.dos.state.fl.us/archaeology/underwater/preserves/HM_Prop3.pdf |format=PDF |title=A Proposal to Establish the Shipwreck Half Moon as a State Underwater Archaeological Preserve |date=May 2000 |publisher=Bureau of Archaeological Research, Division of Historical Resources, Florida Department of State}}</ref> In 1911, [[Philip Monnartz]] reported on the relationship between the chromium content and corrosion resistance. On [[October 17]], [[1912]], [[Krupp]] engineers Benno Strauss and Eduard Maurer patented austenitic stainless steel.<ref>{{cite web |url=http://www.nirosta.de/History.22.0.html?&L=1 |title=ThyssenKrupp Nirosta: History |accessdate=2007-08-13}}</ref>
Similar industrial developments were taking place contemporaneously in the United States, where Christian Dantsizen and Frederick Becket were industrializing ferritic stainless.
[[Harry Brearley]] of the [[Firth Brown Steels|Brown-Firth]] research laboratory in [[Sheffield, England]] is commonly credited as the "inventor" of stainless steel. In 1913, while seeking an erosion-resistant alloy for gun barrels, he discovered and subsequently industrialized a [[martensite|martensitic]] stainless steel alloy. The discovery was announced two years later in a January 1915 newspaper article in the ''[[New York Times]]''.<ref name="NYT"/> This was latter marketed under the "''Staybrite''" brand by [[Vickers|Firth Vickers]] in England and was used for the new entrance canopy for the [[Savoy Hotel]] in 1929 in [[London]].<ref>Sheffield Steel, ISBN 0-7509-2856-5</ref>
==Properties==
High oxidation-resistance in [[earth's atmosphere|air]] at ambient [[temperature]] are normally achieved with additions of a minimum of 13% (by weight) [[chromium]], and up to 26% is used for harsh environments.<ref>{{cite book |last=Ashby |first=Michael F. |coauthors=& David R. H. Jones |title=Engineering Materials 2 |origyear=1986 |edition=with corrections |year=1992 |publisher=Pergamon Press |location=Oxford |language=English |id=ISBN 0-08-032532-7 |pages=p. 119 |chapter=Chapter 12 }}</ref> The chromium forms a [[passivation]] layer of [[chromium(III) oxide]] (Cr<sub>2</sub>O<sub>3</sub>) when exposed to [[oxygen]]. The layer is too thin to be visible, which means that the metal remains lustrous. It is, however, impervious to [[water]] and air, protecting the metal beneath. Also, this layer quickly reforms when the surface is scratched. This phenomenon is called [[passivation]] and is seen in other metals, such as [[aluminium]] and [[titanium]]. When stainless steel parts such as [[Nut (hardware)|nut]]s and [[Screw#bolt|bolt]]s are forced together, the oxide layer can be scraped off causing the parts to [[welding|weld]] together. When disassembled, the welded material may be torn and pitted, an effect that is known as [[galling]]. This destructive galling can be best avoided by the use of dissimilar materials, e.g. bronze to stainless steel, or even different types of stainless steels ([[martensite|martensitic]] against [[austenite|austenitic]], etc.), when metal-to-metal wear is a concern. In addition, Nitronic alloys (trademark of Armco, Inc.) reduce the tendency to gall through selective alloying with manganese and nitrogen.
[[Nickel]] also contributes to passivation, as do other less commonly used ingredients such as [[molybdenum]] and [[vanadium]].
== Commercial value of stainless steel ==
[[Image:Chrysler Building detail.jpg|thumb|right|The pinnacle of New York's [[Chrysler Building]] is clad with type 302 stainless steel.<ref>{{cite web |url=http://www.nickelinstitute.org/index.cfm/ci_id/11021.htm |title=What is Stainless Steel? |publisher=Nickel Institute |accessdate=2007-08-13}}</ref>]]
[[Image:MohawkNiagraFacadeSculpture.jpg|thumb|right|An [[art deco]] sculpture on the [[Niagara-Mohawk]] Power building in [[Syracuse, New York]]]]
[[Image:Piping01.JPG|thumb|Pipes and fittings made of stainless steel]]
Stainless steel's resistance to [[corrosion]] and staining, low maintenance, relative inexpense, and familiar luster make it an ideal base material for a host of commercial applications. There are over 150 grades of stainless steel, of which fifteen are most common. The alloy is [[Steel mill|milled]] into coils, sheets, plates, bars, wire, and tubing to be used in [[cookware]], [[cutlery]], [[hardware]], [[surgical instruments]], major [[appliances]], industrial equipment, a structural alloy in automotive and aerospace assembly and building material in [[skyscrapers]] and other large buildings. [[Orange juice]] tankers (sometimes also other chemical tankers) often have their tanks made of stainless steel.
Stainless steel is also used for jewelry and watches. The most common stainless steel alloy used for jewelry is 316L. It can be re-finished by any jeweler and, unlike silver, will not oxidize and turn black.
Stainless steel is 100% [[recyclable]]. In fact, an average stainless steel object is composed of about 60% recycled material, 25% originating from end-of-life products and 35% coming from manufacturing processes.<ref>{{cite web
| url = http://www.worldstainless.org/ISSF/Files/Recycling/Flash.html
| title = The Recycling of Stainless Steel ("Recycled Content" and "Input Composition" slides)
| accessdate = 2006-11-19| year = 2006| format = Flash| publisher = International Stainless Steel Forum
}}</ref>
==Types of stainless steel==
There are different types of stainless steels: when [[nickel]] is added, for instance, the [[austenite]] structure of iron is stabilized. This crystal structure makes such steels non-[[magnetic]] and less [[brittle]] at low temperatures. For higher [[Hardness (materials science)|hardness]] and strength, [[carbon]] is added. When subjected to adequate [[heat treatment]], these steels are used as [[razor]] blades, [[cutlery]], [[tool]]s, etc.
Significant quantities of [[manganese]] have been used in many stainless steel compositions. Manganese preserves an austenitic structure in the steel as does nickel, but at a lower [[cost]].
Stainless steels are also classified by their [[crystalline structure]]:
*[[Austenite|Austenitic]], or 300 series, stainless steels comprise over 70% of total stainless steel production. They contain a maximum of 0.15% carbon, a minimum of 16% chromium and sufficient nickel and/or manganese to retain an austenitic structure at all temperatures from the [[cryogenic]] region to the melting point of the alloy. A typical composition of 18% chromium and 10% nickel, commonly known as '''18/10 stainless''', is often used in [[flatware]]. Similarly, '''18/0''' and '''18/8''' are also available. Superaustenitic stainless steels, such as alloy [[AL-6XN]] and 254SMO, exhibit great resistance to chloride pitting and crevice corrosion due to high molybdenum contents (>6%) and nitrogen additions, and the higher nickel content ensures better resistance to stress-corrosion cracking over the 300 series. The higher alloy content of superaustenitic steels makes them more expensive. Other steels can offer similar performance at lower cost and are preferred in certain applications.{{Fact|date=August 2007}}
The low carbon version of the Austenitic Stainless Steel, for example 316L or 304L, are used to avoid corrosion problem caused by welding. The "L" means that the carbon content of the Stainless Steel is below 0.03%, this will reduce the sensitization effect, precipitation of Chromium Carbides, due to the high temperature produced by welding operation.
*[[Ferrite (iron)|Ferritic]] stainless steels are highly corrosion-resistant, but less durable than austenitic grades. They contain between 10.5% and 27% chromium and very little nickel, if any, but some types can contain lead. Most compositions include [[molybdenum]]; some, aluminium or [[titanium]]. Common ferritic grades include 18Cr-2Mo, 26Cr-1Mo, 29Cr-4Mo, and 29Cr-4Mo-2Ni.
*[[Martensite|Martensitic]] stainless steels are not as corrosion-resistant as the other two classes but are extremely strong and tough, as well as highly [[Machining|machineable]], and can be hardened by heat treatment. Martensitic stainless steel contains [[chromium]] (12-14%), [[molybdenum]] (0.2-1%), [[nickel]] (0-<2%), and [[carbon]] (about 0.1-1%) (giving it more hardness but making the material a bit more brittle). It is quenched and magnetic. It is also known as series-00 steel.
*Precipitation-hardening martensitic stainless steels have corrosion resistance comparable to austenitic varieties, but can be [[Precipitation hardening|precipitation hardened]] to even higher strengths than the other martensitic grades. The most common, 17-4PH, uses about 17% chromium and 4% nickel. There is a rising trend in defense budgets to opt for an ultra-high-strength stainless steel if possible in new projects, as it is estimated that 2% of the U.S. GDP is spent dealing with corrosion. The Lockheed-Martin [[Joint Strike Fighter]] is the first aircraft to use a precipitation-hardenable stainless steel—Carpenter Custom 465—in its airframe.
*Duplex stainless steels have a mixed microstructure of austenite and ferrite, the aim being to produce a 50/50 mix, although in commercial alloys, the mix may be 40/60 respectively. Duplex steels have improved strength over austenitic stainless steels and also improved resistance to localised corrosion, particularly pitting, crevice corrosion and stress corrosion cracking. They are characterised by high chromium (19–28%) and molybdenum (up to 5%) and lower nickel contents than austenitic stainless steels. The most used Duplex Stainless Steel are the 2205 (22% Chromium, 5% Nickel) and 2507 (25% Chromium, 7% Nickel) sometimes the 2507 is also called "SuperDuplex" due to the higher Corrosion resistance.
===Comparison of standardized steels===
{|class="wikitable"
! EN-standard
Steel no. k.h.s
DIN
! EN-standard
Steel name
! [[ASTM]]/[[AISI]]
Steel type
! [[Unified numbering system|UNS]]
|---
| || ||440A || S44002
|---
| 1.4112 || ||440B || S44003
|---
| 1.4125 || ||440C || S44004
|---
| || ||440F || S44020
|---
| 1.4016 || X6Cr17 ||430 || S43000
|---
| 1.4512 || X6CrTi12 ||409 || S40900
|---
| || ||410 || S41000
|---
| 1.4310 || X10CrNi18-8 ||301 || S30100
|---
| 1.4318 || X2CrNiN18-7 || 301LN || N/A
|---
| 1.4307 || X2CrNi18-9 ||304L || S30403
|---
|1.4306 || X2CrNi19-11 ||304L || S30403
|---
|1.4311 || X2CrNiN18-10 ||304LN || S30453
|---
|1.4301 || X5CrNi18-10 ||304 || S30400
|---
| 1.4948 || X6CrNi18-11 ||304H || S30409
|---
|1.4303 || X5CrNi18 12 ||305 || S30500
|---
| 1.4541 || X6CrNiTi18-10 ||321 || S32100
|---
| 1.4878 || X12CrNiTi18-9 ||321H || S32109
|---
| 1.4404 || X2CrNiMo17-12-2 ||316L || S31603
|---
| 1.4401 || X5CrNiMo17-12-2 ||316 || S31600
|---
| 1.4406 || X2CrNiMoN17-12-2 ||316LN || S31653
|---
| 1.4432 || X2CrNiMo17-12-3 ||316L || S31603
|---
| 1.4435 || X2CrNiMo18-14-3 ||316L || S31603
|---
| 1.4436 || X3CrNiMo17-13-3 ||316 || S31600
|---
| 1.4571 || X6CrNiMoTi17-12-2 ||316Ti || S31635
|---
|1.4429 || X2CrNiMoN17-13-3 ||316LN || S31653
|---
|1.4438 || X2CrNiMo18-15-4 ||317L || S31703
|---
| 1.4539 || X1NiCrMoCu25-20-5 ||904L || N08904
|---
| 1.4547 || X1CrNiMoCuN20-18-7 || N/A || S31254
|---
|}
===Stainless steel grades===
{{expand list}}
*100 Series—austenitic chromium-nickel-manganese alloys
**Type 101—austenitic that is hardenable through cold working for furniture
**Type 102—austenitic general purpose stainless steel working for furniture
*200 Series—austenitic chromium-nickel-manganese alloys
**Type 201—austenitic that is hardenable through cold working
**Type 202—austenitic general purpose stainless steel
*300 Series—austenitic chromium-nickel alloys
**Type 301—highly ductile, for formed products. Also hardens rapidly during mechanical working. Good weldability. Better wear resistance and fatigue strength than 304.
**Type 302—same corrosion resistance as 304, with slightly higher strength due to additional carbon.
**Type 303—[[free machining]] version of 304 via addition of [[sulfur]] and [[phosphorus]]. Also referred to as "A1" in accordance with [[ISO 3506]].<ref name="assda-Stainless_Steel_Fasteners">{{cite web |url=http://www.assda.asn.au/asp/index.asp?pgid=18732 |title=Stainless Steel Fasteners |publisher=Australian Stainless Steel Development Association |accessdate=2007-08-13}}</ref>
**Type 304—the most common grade; the classic 18/8 stainless steel. Also referred to as "A2" in accordance with [[ISO 3506]].<ref name="assda-Stainless_Steel_Fasteners"/>
**Type 304L— same as the 304 grade but contains less carbon to increase weldability. Is slightly weaker than 304.
**Type 304LN—same as 304L, but also nitrogen is added to obtain a much higher yield and tensile strength than 304L.
**Type 308—used as the filler metal when welding 304
**Type 309—better temperature resistance than 304, also sometimes used as filler metal when welding dissimilar steels, along with inconel.
**Type 316—the second most common grade (after 304); for [[food]] and [[surgical stainless steel]] uses; alloy addition of molybdenum prevents specific forms of corrosion. 316 steel is used in the manufacture and handling of food and pharmaceutical products where it is often required in order to [http://www.sandmeyersteel.com/316-316L.html minimize metallic contamination.] It is also known as marine grade stainless steel due to its increased resistance to chloride corrosion compared to type 304. SS316 is often used for building [[nuclear reprocessing]] plants. Most watches that are made of stainless steel are made of Type 316L; Rolex is an exception in that they use Type 904L. Also referred to as "A4" in accordance with [[ISO 3506]].<ref name="assda-Stainless_Steel_Fasteners"/> 316Ti (which includes titanium for heat resistance) is used in flexible chimney liners, and is able to withstand temperatures up to 2000 degrees Fahrenheit, the hottest possible temperature of a chimney fire.
**Type 321—similar to 304 but lower risk of [[weld decay]] due to addition of titanium. See also 347 with addition of niobium for desensitization during welding.
*400 Series—ferritic and martensitic chromium alloys
**Type 405—a ferritic especially made for welding applications
**Type 408—heat-resistant; poor corrosion resistance; 11% chromium, 8% nickel.
**Type 409—cheapest type; used for [[automobile]] [[Exhaust pipe|exhausts]]; ferritic (iron/chromium only).
**Type 410—martensitic (high-strength iron/chromium). Wear-resistant, but less corrosion-resistant.
**Type 416—easy to machine due to additional sulfur
**Type 420—Cutlery Grade martensitic; similar to the Brearley's original rustless steel. Excellent polishability.
**Type 430—decorative, e.g., for automotive trim; ferritic. Good formability, but with reduced temperature and corrosion resistance.
**Type 440—a higher grade of cutlery steel, with more carbon in it, which allows for much better edge retention when the steel is heat-treated properly. It can be hardened to around [[Rockwell_scale|Rockwell 58]] hardness, making it one of the hardest stainless steels. Due to its toughness and relatively low cost, most display-only and replica swords or knives are made of 440 stainless. Also known as razor blade steel. Available in four grades: 440A, 440B, 440C, and the uncommon 440F (free machinable). 440A, having the least amount of carbon in it, is the most stain-resistant; 440C, having the most, is the strongest and is usually considered a more desirable choice in knifemaking than 440A except for diving or other salt-water applications.
**Type 446—For elevated temperature service
*500 Series—heat-resisting chromium alloys
*600 Series—martensitic [[precipitation hardening]] alloys
**601 through 604: Martensitic low-alloy steels.
**610 through 613: Martensitic secondary hardening steels.
**614 through 619: Martensitic chromium steels.
**630 through 635: Semiaustenitic and martensitic precipitation-hardening stainless steels.
***Type 630 is most common PH stainless, better known as 17-4; 17% chromium, 4% nickel.
**650 through 653: Austenitic steels strengthened by hot/cold work.
**660 through 665: Austenitic superalloys; all grades except alloy 661 are strengthened by second-phase precipitation.
**Type 2205— 2205 is the most widely used duplex (ferritic/austenitic) stainless steel grade. It finds applications due to both excellent corrosion resistance and high strength.
== Stainless steel finishes ==
[[Image:316L Stainless Steel Unpolished.jpg|thumb|right|200px|316L stainless steel, with an unpolished, mill finish.]]
Standard mill finishes can be applied to flat rolled stainless steel directly by the rollers and by mechanical abrasives. Steel is first rolled to size and thickness and then [[Annealing (metallurgy)|annealed]] to change the properties of the final material. Any [[oxidation]] that forms on the surface (scale) is removed by [[Pickling (metal)|pickling]], and the [[passivation layer]] is created on the surface. A final finish can then be applied to achieve the desired aesthetic appearance.
* No. 0 - Hot rolled, annealed, thicker plates
* No. 1 - Hot rolled, annealed and passivated
* No. 2D - Cold rolled, annealed, pickled and passivated
* No. 2B - Same as above with additional pass-through highly polished rollers
* No. 2BA - Bright annealed (BA or 2R) same as above then Bright annealed under Oxygen-free atmospheric conditions
* No. 3 - Coarse abrasive finish applied mechanically
* No. 4 - Brushed finish
* No. 5 - Satin finish
* No. 6 - Matte finish
* No. 7 - Reflective finish
* No. 8 - Mirror finish
* No. 9 - Bead blast finish
* No. 10 - heat colored finish-wide range of electropolished & heat colored surfaces
== Uses in sculpture, building facades and building structures ==
* Stainless steel was particularly in vogue during the [[art deco]] period. The most famous example of this is the upper portion of the [[Chrysler Building]] (illustrated above). Diners and fast food restaurants feature large ornamental panels, stainless fixtures and furniture. Owing to the durability of the material, many of these buildings still retain their original and spectacular appearance.
* In recent years, the forging of stainless steel has given rise to a fresh approach to architectural [[blacksmith]]ing.
* Also pictured above, the [[Jefferson National Expansion Memorial|Gateway Arch]] is clad entirely in stainless steel: 886 tons (804 metric [[tonne]]s) of ¼″ (6.3 mm) plate, #3 Finish, Type 304. [http://www.nps.gov/jeff/arch_general_facts.html]
* Type 316 stainless is used on the exterior of both the [[Petronas Twin Towers]] and the [[Jin Mao Building]], two of the world's tallest [[skyscraper]]s. [http://www.nickelinstitute.org/index.cfm/ci_id/11021.htm]
* The [[Parliament House, Canberra|Parliament House of Australia in Canberra]] has a stainless steel flagpole weighing over 220 tonnes.
* The aeration building in the [[Edmonton, Alberta|Edmonton]] Composting Facility, the size of 14 NHL hockey rinks, is the largest stainless steel building in North America. [http://www.edmonton.ca/portal/server.pt/gateway/PTARGS_0_0_271_213_0_43/http%3B/CMSServer/NR/rdonlyres/9D27F2CE-9DE7-479F-983E-762FB499801F/0/Composterforweb.pdf]
* The [[United States Air Force Memorial]] has an austenitic stainless steel structural skin.
==See also==
* [[AISI steel grades]]
* [[Architectural steel]]
* [[Budd Company]] – Historically notable user of stainless steel
* [[Edmonton Composting Facility]]
* [[Surface finishing]]
==References==
{{reflist}}
==External links==
{{commonscat}}
{{Wiktionary}}
*[http://www.specialtysteelsupply.com/glossary.php Glossary of Stainless Steel Related Terms] by Specialty Steel Supply
*[http://www.worldstainless.org/About+stainless/ Articles About Stainless Steel] by International Stainless Steel Forum
*[http://www.corrosionist.com/Materials_Stainless_Steel_Intro.htm Stainless Steel Properties and Corrosion Resistance]
*[http://www.ssina.com/overview/history.html Comprehensive Information About Stainless Steel] by The Stainless Steel Information Center
*[http://www.bssa.org.uk/topics.php Technical Library on Stainless Steel] by BSSA
*[http://www.msm.cam.ac.uk/phase-trans/2005/Stainless_steels/stainless.html Comprehensive Information About Metallurgy of Stainless Steel] by Cambridge University
*[http://www.yacht-steel.com/aisi-en-uns-convert.php?language=en Converter for Stainless Steel Standards]
{{Jewellery Materials}}
[[Category:Building materials]]
[[Category:Chromium]]
[[Category:English inventions]]
[[Category:Recyclable materials]]
[[Category:Steels]]
[[Category:Alloys]]
[[ar:صلب غير قابل للصدأ]]
[[bs:Nehrđajući čelik]]
[[ca:Acer inoxidable]]
[[da:Rustfrit stål]]
[[de:Rostfreier Stahl]]
[[el:Ανοξείδωτος χάλυβας]]
[[es:Acero inoxidable]]
[[eo:Rustorezista ŝtalo]]
[[fa:فولاد ضدزنگ]]
[[fr:Acier inoxydable]]
[[gl:Aceiro inoxidábel]]
[[id:Baja tahan karat]]
[[is:Ryðfrítt stál]]
[[it:Acciaio inox]]
[[he:פלדת אל-חלד]]
[[ms:Keluli tahan karat]]
[[nl:Roestvast staal]]
[[ja:ステンレス鋼]]
[[no:Rustfritt stål]]
[[pl:Stal nierdzewna]]
[[pt:Aço inoxidável]]
[[ru:Нержавеющая сталь]]
[[simple:Stainless steel]]
[[sl:Nerjavno jeklo]]
[[sr:Нерђајући челици]]
[[fi:Ruostumaton teräs]]
[[sv:Rostfritt stål]]
[[th:เหล็กกล้าไร้สนิม]]
[[vi:Thép không gỉ]]
[[zh:不鏽鋼]]