Acier
172
31488044
2008-07-11T09:49:59Z
Loveless
41312
robot Modifie: [[ta:உருக்கு (உலோகம்)]]; changement de type cosmétique
[[Image:Steel wire rope.png|thumb|280px|Câble d'acier (Treuil de mine)]]
[[Image:Mdelacero.jpg|thumb|280px|Musée de l’acier<ref>[http://www.es.5wk.com/viewtopic.php?f=38&t=88771&p=1144488 évolution du chantier], [http://www.aldrichpears.com/museo.html page consacrée au musée]</ref>, Parc Fundidora, [[Monterrey]], [[Mexique]]. ]]
L''''acier''' est un [[alliage]] à base de [[fer]] additionné d'un faible pourcentage de [[carbone]] (de 0,008% à environ 2,14% en masse).
== Aperçu de la composition, des avantages et des inconvénients ==
La teneur en carbone a une influence considérable (et assez complexe) sur les propriétés de l'acier : en dessous de 0,008%, l'alliage est plutôt malléable et on parle de « fer » ; au-delà de 2,14%, les inclusions de carbone sous forme [[graphite]] fragilisent la microstructure et on parle de [[fonte (métallurgie)|fonte]]. Entre ces deux valeurs, l'augmentation de la teneur en carbone a tendance à améliorer la résistance mécanique et la [[Dureté (matériau)|dureté]] de l'alliage ; on parle d'aciers « doux, mi-doux, mi-durs, durs ou extra-durs » (classification traditionnelle).
On modifie également les propriétés des aciers en ajoutant d'autres éléments, principalement métalliques, et on parle d'aciers '''alliés'''. De plus, on peut encore améliorer grandement leurs caractéristiques par des traitements thermiques (notamment les trempes) prenant en surface ou à cœur de la matière ; on parle alors d'aciers '''traités'''.
Outre ces diverses potentialités, et comparativement aux autres alliages métalliques, l'intérêt majeur des aciers réside d'une part dans le cumul de valeurs élevées dans les propriétés mécaniques fondamentales :
* résistance aux efforts : [[module d'élasticité]], [[Limite d'élasticité|limite élastique]], résistance mécanique ;
* [[dureté (matériau)|dureté]] ;
* résistance aux chocs ([[résilience]]).
D'autre part, leur coût d'élaboration reste relativement modéré, car le [[minerai]] de fer est abondant sur terre (environ 5% de l'écorce) et sa [[réduction]] assez simple (par addition de carbone à haute température). Enfin les aciers sont pratiquement entièrement [[recyclage|recyclables]] grâce à la filière ferraille.
On peut néanmoins leur reconnaître quelques inconvénients, notamment leur mauvaise résistance à la [[corrosion]], mais à laquelle on peut remédier, soit par divers traitements de surface ([[peinture]], [[brunissage]], [[zingage]], [[galvanisation à chaud]], etc.), soit par l'addition d'éléments réalisant des nuances dites « [[acier inoxydable|inoxydables]] ». Par ailleurs, les aciers sont difficilement moulables, donc peu recommandés pour les pièces volumineuses de formes complexes (bâtis de machines, par exemple). On leur préfère alors des fontes. Enfin, lorsque leur masse volumique est pénalisante (dans le secteur aéronautique par exemple), on se tourne vers des matériaux plus légers (alliages à base d'[[aluminium]], [[composites]], etc.), mais parfois beaucoup plus chers.
De ce fait, les aciers restent privilégiés dans presque tous les domaines d'application technique : équipements publics (rails, signalisation), industrie chimique, pharmaceutique et nucléaire (cuves, réacteurs, tuyauteries), agro-alimentaire (conditionnement et stockage), bâtiment (armatures, charpentes, ferronnerie, quincaillerie), moyens de transport (automobile, aéronautique, ferroviaire, aérospatial), médical (instruments et appareils), composants mécaniques (visserie, ressorts, câbles, roulements, engrenages), outillage de frappe (marteaux, burins, matrices) et de coupe (fraises, forets, porte-plaquette). Les aciers sont aussi très présents dans des produits destinés au grand public (meubles, ustensiles de cuisine,électroménager) : cette liste est loin d'être exhaustive.
== Histoire de l'acier ==
{{Article détaillé|Histoire de la production de l'acier}}
[[Image:Bas fourneau.png|thumb|280px|Fabrication d'acier au [[Moyen Âge]] dans un bas-fourneau.]]
Les [[Hittites]] sont considérés comme les inventeurs de l'acier. En effet, ce fut le premier peuple à utiliser le fer en remplacement du cuivre ou bronze pour fabriquer des armes (épées, boucliers)<ref>L'histoire raconte qu'ils chauffaient leurs armes en fer à blanc pour pourfendre leurs adversaires au combat, et qu'ils ont dû finir par se rendre compte qu'à la longue, leurs armes devenaient de plus en plus résistantes aux chocs et qu'ils ont par la suite cherché à perfectionner le système.</ref>.
Depuis l'[[Âge du fer]], on utilisait les [[bas fourneau]]x pour produire des massiots composés de fer et d'acier, qui devait ensuite être travaillé à la main par les [[forgeron]]s.
On considère souvent [[René-Antoine Ferchault de Réaumur|Réaumur]] comme le fondateur de la sidérurgie scientifique moderne. Il réalise de très nombreuses expériences afin d’améliorer la fabrication de l’acier et publie le résultat de ses observations en [[1712]].
L'acier est apparu par l’évolution de la [[métallurgie]], vers [[1786]]. Cette année-là, trois savants français, [[Claude Louis Berthollet|Berthollet]], [[Gaspard Monge]] et [[Alexandre-Théophile Vandermonde|Vandermonde]], caractérisèrent trois types de produits obtenus à partir de la coulée des [[haut-fourneau|hauts-fourneaux]] : le [[fer]], la [[fonte (métallurgie)|fonte]] et l'acier. L'acier était alors obtenu à partir du fer, lui-même produit par affinage de la fonte issue du haut-fourneau. L’acier était plus dur que le fer et moins fragile que la fonte.
Au {{XIXe siècle}} sont apparues des méthodes de fabrication directe de conversion de la fonte, avec les [[Histoire de la production de l'acier#1856, l'acier Bessemer|convertisseur Bessemer]] en [[1856]] ([[Henry Bessemer]]) le [[Histoire de la production de l'acier#1877, Thomas et Gilchrist déphosphore la fonte|procédé Thomas-Gilchrist]] en [[1877]] ([[Sidney Gilchrist Thomas]] et [[Percy Carlyle Gilchrist]] de [[phosphore|déphosphoration]] de la fonte et [[four Siemens-Martin|Siemens-Martin]]. Ces découvertes, permettant la fabrication en masse d'un acier de « qualité » (pour l'époque), participent à la [[Révolution industrielle]]. Enfin, vers la seconde moitié du {{s-|XIX|e}}, [[Dmitry Chernov]] découvre les transformations polymorphes de l’acier et établit le diagramme binaire fer/carbone, faisant passer la métallurgie de l’état d’artisanat à celui de science.
== Fabrication de l'acier ==
{{Article détaillé|Fabrication de l'acier}}
== Composition des aciers ==
On distingue plusieurs types d'aciers selon le pourcentage de carbone qu'ils contiennent :
* les aciers hypoeutectoïdes (de 0,0101 à 0,77% de carbone) qui sont les plus mous ;
* les aciers eutectoïdes (0,77% de carbone) ;
* les aciers hypereutectoïdes (de 0,77 à 2,11% de carbone) qui sont les plus durs.
La structure [[Cristallographie|cristalline]] des aciers à l'équilibre thermodynamique dépend de leur concentration (essentiellement en [[carbone]] mais aussi d'autres éléments d'alliage), et de la température. On peut aussi avoir des structures hors équilibre (par exemple dans le cas d'une [[trempe]]).
La structure du fer pur dépend de la température :
* en dessous de 721°C et au-dessus de {{formatnum:1400}}°C le fer (fer α) a une structure cristalline [[cubique centré|cubique à corps centré]] (structure cristalline à température ambiante) ;
* entre 721°C et 950°C jusqu'à {{formatnum:1400}}°C le fer (fer γ) a une structure cristalline [[cubique à faces centrées]].
[[Image:diag phase fer carbone.png|center|frame|Diagramme de phase fer-cémentite, permettant de visualiser les conditions d'existence des formes d'acier]]
Les aciers non alliés (au carbone) peuvent contenir jusqu'à 2,11% en masse de carbone. Certains aciers alliés peuvent contenir plus de carbone par l'ajout d'éléments dits « gammagènes ».
Le carbone provient du procédé de [[réduction]] du minerai, qui se fait avec du [[Coke (charbon)|coke]] dans un [[haut-fourneau]]. Selon les propriétés désirées, on ajoute ou on enlève des éléments d'alliage :
* le [[bore]] renforce la cohésion des [[joint de grain|joints de grains]], on en ajoute parfois en faible teneur (quelques centaines de ppm en masse) ;
* le [[soufre]] fragilise l'acier, par précipitation de [[sulfure]]s aux [[joint de grain|joints de grains]], on l'enlève donc lors de l'élaboration ;
* le [[nickel]] et le [[chrome (chimie)|chrome]] protègent de la [[corrosion]] en venant former une couche passive, ils sont donc présents dans les aciers dits « inoxydables » ;
* mais aussi le [[magnésium]], l'[[aluminium]], le [[silicium]], le [[titane]], le [[manganèse]], le [[cobalt]], le [[zinc]], l'[[yttrium]]...
{{Phases acier}}
== Différentes « familles » d'aciers ==
Il existe des aciers faiblement alliés, à faible teneur en carbone, et au contraire des aciers contenant beaucoup d'éléments d'alliage (par exemple, un [[acier inoxydable]] typique contient 8% de nickel et 18% de chrome en masse).
=== Différentes classifications ===
==== Anciennes normes françaises ====
En France, les aciers ont d'abord été classés selon leur [[ductilité]] : acier extra doux, doux (Adx), demi-doux, demi-dur…
Puis, on les a classé selon leur [[résistance à la rupture]], ''R<sub>max</sub>'', exprimée en daN/mm²<ref>certains notent abusivement « kg/mm² », en fait « [[Kilogramme-force|kgf]]/mm² »</ref> (soit 10<sup>7</sup> [[pascal (unité)|Pa]]), sous la dénomination « A ''R<sub>max</sub>'' » (par exemple, l'acier « A 33 » avait une résistance à la rupture de {{unité|33|daN/mm²}}, {{unité|330|MPa}}).
Puis, on les a classé selon leur [[limite élastique]] ''R<sub>e</sub>'', sous la dénomination « E ''R<sub>e</sub>'' » (par exemple, l'acier « E 24 » avait une limite élastique de {{unité|24|daN/mm²}}, {{unité|240|MPa}}). On peut établir les équivalences suivantes entre les deux normes :
{| border="1"
|+ Équivalences entre les normes « A » et « E »
|-
! Norme E !! Norme A
|-
| E 24 || A 37
|-
| E 26 || A 42
|-
| E 30 || A 48
|-
| E 36 || A 52
|}
À l'époque, la principale préoccupation était donc mécanique. On a créé d'autres normes selon les domaines. Par exemple, pour les tubes, on parlait d'acier « Tu 37 a » (« Tu » pour tube, « 37 » est le module à la rupture en daN/mm², « a » indique la pureté).
Au fur et à mesure, la composition de l'acier, l'alliage, est devenu de plus en plus important. On a donc abandonné les propriétés mécaniques pour indiquer la teneur en différents éléments. Pour les aciers non alliés, on distinguait la série CC de la série XC ; cette dernière avait un contrôle plus important sur la composition, et notamment une teneur en [[soufre]] et en [[phosphore]] (éléments fragilisants) plus basse. On indiquait la teneur en carbone en pourcentage massique multiplié par 100 :
* Série CC :
** CC 10 : teneur moyenne en carbone de 0,10% ;
** CC 20 : teneur moyenne en carbone de 0,20% ;
** CC 35 : teneur moyenne en carbone de 0,35%.
* Série XC
** XC 10 : teneur moyenne en carbone de 0,09% ;
** XC 12 : teneur moyenne en carbone de 0,13% ;
** XC 18 : teneur moyenne en carbone de 0,19% ;
** XC 25 : teneur moyenne en carbone de 0,26% ;
** XC 32 : teneur moyenne en carbone de 0,32% ;
** XC 38 : teneur moyenne en carbone de 0,38%.
Pour les aciers faiblement alliés, on indiquait la teneur en carbone comme ci-dessous, puis la liste des éléments d'alliage par ordre de teneur décroissante, suivi d'un coefficient de teneur pour l'élément le plus concentré, la teneur étant obtenue en divisant le coefficient par un facteur de 4 ou 10 selon les éléments.
{| border="1"
|+ Éléments d'alliage selon la norme Afnor
|-
! Élément !! Symbole !! facteur !! teneur minimale<br /> en %
|-
| [[aluminium]] (Al) || A || 10 || 0,30
|-
| [[chrome]] (Cr) || C || 4 || 0,25
|-
| [[cobalt]] (Co) || K || 4 || 0,10
|-
| [[manganèse]] (Mn) || M || 4 || 1,2
|-
| [[molybdène]] (Mo) || D || 10 || 0,10
|-
| [[nickel]] (Ni) || N || 4 || 0,5
|-
| [[niobium]] (Nb) || Nb || 10 || 0,10
|-
| [[plomb]] (Pb) || Pb || 10 || 0,10
|-
| [[silicium]] (Si) || S || 4 || 1,0
|-
| [[soufre]] (S) || F || 10 || 0,10
|-
| [[titane]] (Ti) || T || 10 || 0,30
|-
| [[tungstène]] (W) || W || 10 || 0,30
|-
| [[vanadium]] (V) || V || 10 || 0,05
|}
Par exemple, l'acier 35 NCD 16 est un acier ayant environ 0,35% de C (« 35 »), contenant environ 4% de Ni (« N…16 »), ainsi que du Cr et du Mo en plus faible teneur (« CD »). En l'occurrence, la norme indique :
* C : 0,30 – 0,37% ;
* Ni : 3,70 – 4,20% ;
* Cr : 1,60 – 2% ;
* Mo : 0,3 – 0,5%.
Le 100 Cr 6 est un acier faiblement allié avec 1% de carbone et 1,5% de chrome.
Les aciers fortement alliés commençaient par « Z », suivi de la teneur en carbone (comme ci-dessus), et de la liste des éléments avec leur teneur — sans facteur multiplicatif. par exemple, l'acier Z 6 CN 18-09 contient environ 0,06% de C, environ 18% de Cr et 9% de Ni.
==== Anciennes normes des États-Unis ====
Exemple de dénominations :
* ASTM A53 et A 106 : Grade A — Grade B — Grade C ;
* ASTM A 333 : Grade 1 — Grade 6 ;
* API 5 A : H 40 — J 55 — K 55 — N 80 ;
* API 5 L : Grade A — Grade B ;
* API 5 LX : X 42 — X 46 — X 52 — X 56 — X 60 — X 65 — X 70 ;
* API 5 AX : P 105 — P 110 — S 135.
==== Anciennes normes allemandes ====
Exemple de dénominations :
* DIN 1629 : St 35 — St 45 — St 52 ;
* DIN 17-175 : St 35-8 — St 45-8 ;
* DIN 17-172 : USt 34-7 — RSt 34-7 — USt 38-7 — RRSt 38-7.
=== Aciers non alliés ===
==== Aciers spéciaux (type C) ====
Leur composition est plus précise et plus pure et correspond à des usages définis à l'avance.
Leurs applications courantes sont les forets ([[perceuse]]s), [[ressort]]s, [[arbre de transmission|arbres de transmission]], matrices ([[moule (outil)|moules]]), …
=== Aciers inoxydables ===
L'[[acier inoxydable]] est une des trois grandes familles d'aciers qui présente une grande résistance à la corrosion, à l'oxydation à chaud et au [[fluage]] (déformation irréversible). C'est un acier allié au nickel et au chrome.
Ses applications sont multiples: chimie, nucléaire, mais aussi couteaux et équipements ménagers. Ces aciers contiennent au moins 10,5% de chrome et moins de 1,2% de carbone.
=== Autres aciers alliés ===
==== Aciers faiblement alliés ====
Aucun élément d'addition ne dépassant 5% en masse, ils sont utilisés pour des applications nécessitant une haute résistance.
Un exemple de désignation normalisée: 35 NiCrMo16.
Le premier chiffre (35) représente le pourcentage de carbone multiplié par 100, les lettres qui suivent sont les éléments d'addition ([[Nickel|Ni]], [[Chrome|Cr]] et [[molybdène|Mo]]) et leurs pourcentages respectifs multipliés par un coefficent dépendant de sa nature définie par le tableau dessous.
{| class="wikitable"
! Élément d'addition
! coefficient
|-----
| Cr, Co, Mn, Ni, Si, W
| 4
|-{{ligne grise}}
| Al, Be, Cu, Mo, Nb, Pb, Ta, Ti, V, Zr
| 10
|-----
| Ce, N, P, S
| 100
|-{{ligne grise}}
| B
| {{formatnum:1000}}
|}
==== Aciers fortement alliés ====
Au moins un élément d'addition dépasse les 5% en masse, destinés à des usages bien spécifiques, on y trouve des aciers à outils, réfractaires, ''Maraging'' (très haute résistance, utilisés dans l'aéronautique), ''Hadfields'' (très grande résistance à l'usure), à roulements.
Un exemple de désignation normalisée: X2CrNi18-9 où X est la lettre représentant les aciers fortement alliés, le premier chiffre (2) représente le pourcentage de carbone multiplié par 100, les lettres qui suivent sont les éléments d'addition ([[Chrome|Cr]] et [[Nickel|Ni]]) et leurs pourcentages respectifs donc ici on a un acier fortement allié avec 0,02% de carbone allié avec du chrome à hauteur de 18% et de nickel à hauteur de 9% (c'est un [[acier inoxydable]]).
Les aciers rapides (HS) font partie de cette famille et sont décrits par les lettres HS suivies de la teneur des éléments d'alliages suivants: [[Tungstène|W]], [[Molybdène|Mo]], [[Vanadium|V]], [[Cobalt|Co]]
==== Aciers multiphasés ====
Ces aciers sont conçus suivant les principe des [[matériau composite|composites]]: par des traitements thermiques et mécaniques, on parvient à enrichir localement la matière certains en éléments d'[[alliage]]. On obtient alors un mélange de [[phase]]s [[dur]]es et de [[phase]]s [[ductile]]s, dont la combinaison permet l'obtention de meilleures caractéristiques mécaniques. On citera, par exemple:
* les [[lame de Damas|aciers damassés]] où des couches blanches ductiles pauvres en [[carbone]] absorbent les chocs, et les noires, plus riches en carbone, garantissent un bon tranchant [http://perso.orange.fr/microstructure-damas/index.html]
* les aciers Dual Phase qui sont la déclinaison moderne de l'acier damassé, mais où la distinction entre [[phase]] [[dur]]e (la [[martensite]]) et [[phase]] [[ductile]] (la [[ferrite (acier)|ferrite]]), se fait plus finement, au niveau du [[grain]].
* les aciers TRIP (TRansformation Induced Plasticity), où la [[ferrite (acier)|ferrite]] se transforme partiellement en [[martensite]] après une sollicitation mécanique. On débute donc avec un acier [[ductile]], pour aboutir à un acier de type Dual Phase.
== Propriétés et caractéristiques des aciers ==
L’acier est un alliage de fer, sa [[densité]] varie donc autour de celle du fer (7,32 à 7,86), suivant sa composition chimique et ses traitements thermiques. La densité d'un acier est typiquement un peu supérieure à 8. Par exemple, la densité d'un acier inoxydable de type 304 est environ 8,02.
Ils ont un [[module de Young]] d'environ {{formatnum:210000}} MPa, indépendamment de leur composition. Les autres propriétés varient énormément en fonction de leur composition, du traitement thermo-mécanique et des traitements de surface auxquels ils ont été soumis.
Le traitement thermo-mécanique est l'association :
* d'un [[traitement thermique]], sous la forme d'un cycle chauffage-refroidissement ([[trempe]], [[Revenu (métallurgie)|revenu]]...) ;
* d'un traitement mécanique, une déformation provoquant de l'[[écrouissage]] ([[laminage]], [[forgeage]], [[tréfilage]]...).
Le traitement de surface consiste à modifier la composition chimique ou la structure d'une couche extérieur d'acier. Cela peut être :
* une réaction en phase liquide ([[chromatation]], [[carburation]], [[nitruration]] en bain de sel, [[galvanisation]]...) ;
* une réaction en phase gazeuse (nitruration en phase liquide) ;
* une projection d'[[ion]]s ([[implantation ionique]]) ;
* un recouvrement ([[peinture]], [[zingage]]).
Voir aussi l'article détaillé [[b:Tribologie - Traitements anti-usure|traitements anti-usure]].
== Symbolique ==
* L'acier est le 7<sup>ème</sup> niveau dans la progression de la [[sarbacane]] sportive.
== Notes et références ==
{{reflist}}
== Voir aussi ==
=== Articles connexes ===
*[[ArcelorMittal]], numéro un mondial de la sidérurgie
*[[Liste des producteurs d'acier]]
*[[Aciérie électrique]]
*[[Thyssen]], grande famille allemande de l'acier
*[[Concours Construction Acier]]
=== Liens externes ===
{{Commons|Steel|l'acier}}
* [http://www.ffacier.org/pages/rubriques-ffa/lacier/questce/questce.htm Qu’est-ce que l’acier ?], un article de la [http://www.ffacier.org/ Fédération française de l’acier]
* [http://www.otua.org/default.htm L’Office Technique pour l’Utilisation de l’Acier]
* [http://www.infosteel.be Centre Information Acier]
* Nuances d'acier
** [http://www.achats-industriels.com/equivalences/en10083.asp Équivalence entre les normes]
** [http://www.cedametal.com/indexfr.htm Logiciel Cedam] (Comparaison et désignations des alliages de métaux)
{{Portail|Chimie|Industrie}}
{{Lien BA|en}}
{{Lien AdQ|es}}
[[Catégorie:Acier]]
[[af:Staal]]
[[ar:صلب (سبيكة)]]
[[az:Polad]]
[[bg:Стомана]]
[[bs:Čelik]]
[[ca:Acer]]
[[cs:Ocel]]
[[cy:Dur]]
[[da:Stål]]
[[de:Stahl]]
[[el:Χάλυβας]]
[[en:Steel]]
[[eo:Ŝtalo]]
[[es:Acero]]
[[et:Teras]]
[[eu:Altzairu]]
[[fa:فولاد]]
[[fi:Teräs]]
[[fur:Açâr]]
[[ga:Cruach (miotal)]]
[[gd:Stàilinn]]
[[gl:Aceiro]]
[[he:פלדה]]
[[hr:Čelik]]
[[hsb:Wocl]]
[[hu:Acél]]
[[id:Baja]]
[[is:Stál]]
[[it:Acciaio]]
[[ja:鋼]]
[[jbo:gasta]]
[[ka:ფოლადი]]
[[ko:강철]]
[[la:Chalybs]]
[[lb:Stol]]
[[lt:Plienas]]
[[lv:Tērauds]]
[[ml:ഉരുക്ക്]]
[[mn:Ган]]
[[ms:Keluli]]
[[nl:Staal (metaal)]]
[[nn:Stål]]
[[no:Stål]]
[[oc:Acièr]]
[[pl:Stal]]
[[pt:Aço]]
[[qu:Asiru]]
[[ro:Oţel]]
[[ru:Сталь]]
[[scn:Azzaru]]
[[sh:Čelik]]
[[simple:Steel]]
[[sk:Oceľ]]
[[sl:Jeklo]]
[[sr:Челик]]
[[sv:Stål]]
[[sw:Chuma cha pua]]
[[ta:உருக்கு (உலோகம்)]]
[[te:ఉక్కు]]
[[th:เหล็กกล้า]]
[[tr:Çelik]]
[[uk:Сталь]]
[[vi:Thép]]
[[yo:Irin]]
[[zh:钢]]