Bacillus thuringiensis
423715
30840750
2008-06-21T07:18:57Z
Thijs!bot
105469
robot Ajoute: [[cs:Bacillus thuringiensis]]
{{Taxobox bactérie | ''Bacillus thuringiensis'' | Bacillus thuringiensis.JPG | Cristaux protéiques d'une forme<br>sporulée de ''[[Bacillus thuringiensis]]'' }}
{{Taxobox phylum | Firmicutes }}
{{Taxobox classe | Bacilli }}
{{Taxobox ordre | Bacillales }}
{{Taxobox famille | Bacillaceae }}
{{Taxobox genre | Bacillus }}
{{Taxobox binomial bactérie | Bacillus thuringiensis | {{auteur|[[Ernst Berliner|Berliner]]}}, [[1915]] }}
{{Taxobox fin}}
'''''Bacillus thuringiensis''''' (abrégé en '''''Bt''''') est un bacille [[Coloration de Gram|Gram]] positif, [[aérobie]] et sporulé. On le retrouve dans pratiquement tous les sols, l'eau, l'air et le feuillage des végétaux. Il fait partie d'un groupe de six bacilles, rassemblés sous le terme « groupe ''Bacillus cereus'' » : ''[[Charbon (bacille)|B. anthracis]]'' (responsable de la [[maladie du charbon]]), ''[[Bacillus cereus|B. cereus]]'', ''[[Bacillus mycoides|B. mycoides]]'', ''[[Bacillus pseudomycoides|B. pseudomycoides]]'', ''[[Bacillus weihenstephanensis|B. weihenstephanensis]]'' et ''[[Bacillus thuringiensis|B. thuringiensis]]''.
''Bacillus thuringiensis'' a été isolé en [[1901]] par le bactériologiste japonais [[S. Ishiwata]] à partir de [[Ver à soie|vers à soie]] qu'il peut infecter et tuer.
<br>La première description scientifique est due à l'allemand [[Ernst Berliner|E. Berliner]] en [[1911]].
==Description ==
À l'état végétatif, ''Bacillus thuringiensis'' a la forme d'un bâtonnet de 5[[Micromètre|µm]] de long sur 1µm de large, et est pourvu de [[flagelle]]s.
<br>Il se distingue des autres bacilles du groupe cereus par sa capacité à synthétiser et excréter des [[Cristal|cristaux]] mortellement toxiques pour certaines insectes. Ces cristaux ne sont pas minéraux, mais formés de l'association de plusieurs [[protéine]]s qui, ensemble ont une propriété insecticide sur les [[Lepidoptera|lépidoptères]], les [[Coleoptera|coléoptères]] et/ou les [[Diptera|diptères]].
<br>Elles agissent en détruisant les cellules de l'intestin moyen de la [[larve]] d'insecte atteint par ces toxines, ce qui aboutit à la mort de l'insecte, qui peut alors être consommé par le bacille.
<br>On connaît actuellement plus de 14 [[gène]]s codant ces protéines.
==Utilisation==
Les vertus entomotoxiques de ''Bacillus thuringiensis'' ont été à l'origine d'un intérêt agricole, sylvicole et commercial dès les années 1930, mais beaucoup plus marqué à la fin du XXème siècle, notamment avec le développement du [[génie génétique]] et le [[brevetage du vivant]].
Les premières applications de ''Bacillus thuringiensis'' dans l'environnement datent de [[1933]].
<br>Il a été utilisé dès les [[années 1950]] dans les [[forêt]]s, les [[agriculture|champs]] et les [[vignoble]]s. <br>Jusqu'au milieu des [[années 1970]], sa principale application était la lutte contre les lépidoptères défoliateurs dans les forêts et certains papillons parasites des grandes cultures, de maïs notamment.
<br>En [[1976]], la découverte des sérotypes ''israelensis'' ([[Bti]]) et ''tenebrionis'' a permis l'ouverture de nouveaux marchés, grâce à une action [[larvicide]] sur les [[moustique]]s, les [[simulie]]s et les coléoptères.
==Avantages/inconvénients : ==
* Les toxines dites ''Bt'' sont des [[protéine]]s cristallines très sensibles aux [[Ultraviolet|rayons ultraviolets]] qui les dégradent rapidement. Ce produit, lorsqu'il est utilisé en pulvérisation présente donc l'avantage d'avoir une faible rémanence sur les feuilles (moindre dans le sol). Ce produit lorsqu'il est d'origine naturelle, est autorisé en [[agriculture bio]], sous forme d'une poudre. Il se dégrade rapidement au soleil.
* L'industrie des [[biotechnologie]]s a produit des [[plantes transgéniques]] dite "Bt", c'est à dire modifiées par ajout d'un ou plusieurs des gènes codant la toxine insecticide (Cry1Ab) de ''Bacillus thuringiensis''.<br>Elles en produisent dans leurs tissus aériens (feuilles et tige), dans leur [[pollen]], mais également dans la sphère racinaire ([[rhizosphère]]), d'où le Bt pourrait s'accumuler plus longtemps dans le sol.
* '''Risques liés à la persistance du transgène dans l'environnement ?''' <br>Les bactéries sont dans certaines conditions susceptibles d'intégrer les gènes d'autres bactéries. Les gènes ''cry1Ab'' codant la production de protéines (« ''delta endotoxine'' ») dans le maïs nord-américain proviennent de ''B. thurigiensis kurstaki'' (Btk), bactérie très pathogène pour les papillons. Une étude a évalué la fréquence et la persistance du gène cry1Ab du maïs bt ou du bacille dans les milieux aquatiques, ou à proximité de champs où du maïs Bt a été cultivé. <br>L’étude a été précédée d’une validation de la méthodologie de préparation des échantillons et d’extraction de l’ADN (par PCR) dans différentes matrices (eau, sol, sédiment...) Des eaux de surface et des sédiments artificiellement enrichis avec une quantité connue d’ADN génomique provenant de bacilles ou de maïs Bt ont ensuite été étudiés in vitro, pour évaluer la persistance du gène cry1Ab. Enfin, du sol, des sédiments, de l'eau et d'autres échantillons ont été collectés avant les semis, puis 15 jours après la libération du pollen de maïs, après la récolte mécanique et lors du labour (enfouissement des racines) pour y mesurer la présence de gènes cry1Ab.<br> Le gène cry1Ab s’est montré persistant durant en moyenne 21 jours dans les eaux de surface et presque deux fois plus longtemps (41 jours) dans les sédiments. Dans les sédiments argilo-sableux, le gène était encore présent après 40 jours. L’étude a aussi montré que les gènes cry1Ab gènes provenant du maïs transgénique ou de source naturelle sont plus abondant dans les sédiments que dans les eaux de surface. Le transgène cry1Ab est transportée par le courant. Le transgène a été détecté dans les fleuves Richelieu et Saint-Laurent jusqu’à (82 km en aval de la zone de culture) suggérant de multiples apports de ce gène, ou qu’il est transporté sur de longues distances avant d’être dégradé. <br>Le transgène cry1Ab issu du maïs Bt tend à diminuer au fur et à mesure que l’on séloigne des cultures de maïs Bt, et il est d’autant plus présent dans les sédiments qu’il l’est dans les eaux de surface (Corrélation significative : R = 0,83; P = 0,04). L’étude<ref>''Occurrence and persistence of Bacillus thuringiensis (Bt) and transgenic Bt corn cry1Ab gene from an aquatic environment''[http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=ShowDetailView&TermToSearch=16499967&ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus Accès à l'étude], Douville M, Gagné F, Blaise C, André C, Ecotoxicol Environ Saf. 2007 Feb;66(2):195-203. Epub 2006 Feb 24, PMID: 16499967, PubMed - indexed for MEDLINE</ref> a donc conclu que l'ADN de maïs Bt et de Bt persiste dans les milieux aquatiques, et qu’il est présent dans les rivières drainant les zones agricoles et en aval.
* '''Persistance de la ''toxine Bt'', avec risque d'impact sur les écosystèmes ?''' <br>Certains chercheurs, dont en France l'écotoxicologue jean-François Narbonne, ont au début des années 2000 alerté sur le fait que ce Bt, en s'accumulant puisse finir par poser problème : toxicité du sol contaminé, accumulation dans les sédiments toxique dans les [[fleuve]]s et [[estuaire]]s. On en a d'abord trouvé dans le [[fleuve Saint-Laurent]] au Canada, en aval des zones de grande culture, puis Todd Royer, co-auteur d’une étude américaine récente (2007) <ref>« Toxins in transgenic crop byproducts may affect headwater stream ecosystems, in Proceedings of the National Academy of Sciences », octobre 2007 ([http://www.pnas.org/cgi/content/abstract/104/41/16204 voir] {{en}} </ref> renforce et relaye cette inquiétude aux USA ; Les analyses faites sur 12 sites de l’[[Indiana]] (USA) ont en effet montré que les taux de bt deviennent effectivement préoccupants dans les cours d'eau, au point d’affecter certains [[invertébré]]s aquatiques jugés [[bioindicateur]]s de la qualité des écosystèmes aquatiques (ex : grande phrygane), dont la croissance est affectée par cette toxine, qui tue la phrygane à forte dose. Cette étude, qui a porté sur 12 sites choisis dans l’Etat de l’Indiana, attribue l’origine de ce Bt aux maïs transgéniques cultivés dans les bassins versants de ces rivières. Ils y libèrent des toxines BT dans l’environnement du bassin versant, d’où elles sont apportées jusqu’aux fossés et rivières par le ruissellement. L'étude évoque notamment pour la première fois le rôle des pollens et des déchets ou résidus de maïs comme source non négligeable de toxines. Ces derniers peuvent s'accumuler, se dégrader et être transportés par l'eau vers le bas des bassins versants. Le pollen du maïs est assez lourd pour ne pas être transporté loin par le vent (sauf tempête printannière)<ref>[http://www.soilassociation.org/Web/SA/SAWeb.nsf/195e597ae6f23abc80256ada0051a50f/80256ad800554549802568660075e5b4/$FILE/Pollen%20Dispersal%20Report.pdf étude sur la dispersion des pollens de plantes cultivées] « ''Pollen dispersal in the crops Maize (Zea mays), Oil seed rape (Brassica napus ssp oleifera), Potatoes (Solanum tuberosum), Sugar
beet (Beta vulgaris ssp. vulgaris) and Wheat (Triticum aestivum)'' » (Soil Association / National Pollen Research Unit,){{en}}</ref>, mais ce pollen de forme très arrondie et dépourvu de spicules est facilement emporté par le ruissellement et peut alors se concentrer en certains points (flaques, ornières, fossés, sédiments des cours d'eau). Le poids de pollen émis annuellement par hectare est faible, le nombre de grains de pollen est très élevé et les émissions se font massivement en quelques jours ou semaines, à la fin du printemps et au début de l'été à un moment important pour de nombreuses espèces (reproduction/ponte ou croissance des alevins). Beaucoup d'études ont concerné la dispersion des pollens viables, mais on a peu d'informations sur leur devenir dans l'environnement ensuite. <br>Les auteurs notent que le maïs nord-américain est de plus en plus OGM (presque exclusivement), et sa surface s'est encore accrue dans les plaines du [[Midwest]] pour produire des [[agrocarburant]]s. Ce maïs est justement souvent planté à proximité de fleuves et rivières ou de zone [[irrigation|irrigables]], car c'est une plante particulièrement consommatrice en eau. <br>Des tests de nourrissage d'insectes aquatiques avec du Bt, faits lors de cette étude ont montré qu'à faible dose le bt inhibait leur croissance, et qu'à dose plus élevée, il augmentait les taux de mortalité.
* Ainsi contrairement aux affirmations de l’EPA en 1996 lors de l’autorisation du premier maïs OGM américain, le Bt pourrait avoir des impacts ''collatéraux'' sur des espèces non-cibles. Les premiers tests avaient été faits avec des [[daphnie]]s qui sont des crustacés d’[[eau douce]] et qui ne semblent pas affectées par le Bt.
* Enfin, le risque existe toujours d'apparition de résistances de la part d'insectes ou autres invertébrés qui y seraient constamment exposés.
==Voir aussi==
* [[Maïs Bt]].
* [[Pesticide]], [[Insecticide]]
== Sources ==
* {{fr}} [http://www.bacterio.cict.fr/bacdico/bb/cereusgroupe.html « groupe bacillus cereus »]
* {{fr}} [http://res2.agr.ca/stjean/publication/bulletin/bacillus_thuringiensis_3_f.htm Analyse des incidences environnementales de l'insecticide microbien ''Bacillus thuringiensis'']
* {{fr}} [http://dsp-psd.communication.gc.ca/Collection/A54-9-29F.pdf Version complète en pdf de l'article sur les incidences environnementales de ''Bacillus thuringiensis'']
* {{fr}} [http://www.inapg.inra.fr/ens_rech/bio/biotech/textes/applicat/agricult/vegetale/protcult/entomo98/gp1/btpart3.htm ''Bacillus thuringiensis'' et la transgénèse, sur le site de l'INRA]
===Notes et références===
<references/>
{{Portail microbiologie}}
[[Catégorie:Auteur incomplet ou manquant]]
[[Catégorie:Bacillus]]
[[cs:Bacillus thuringiensis]]
[[de:Bacillus thuringiensis]]
[[en:Bacillus thuringiensis]]
[[es:Bacillus thuringiensis]]
[[it:Bacillus thuringiensis]]
[[ja:バチルス・チューリンゲンシス]]
[[nl:Bacillus thuringiensis]]
[[uk:Bacillus thuringiensis]]
[[zh:苏云金芽孢杆菌]]